297 research outputs found

    Methodology to assess safety effects of future Intelligent Transport Systems on railway level crossings

    Get PDF
    There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX

    Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery

    Get PDF
    Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms

    How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality

    Get PDF
    Advances in computer graphics algorithms and virtual reality (VR) systems, together with the reduction in cost of associated equipment, have led scientists to consider VR as a useful tool for conducting experimental studies in fields such as neuroscience and experimental psychology. In particular virtual body ownership, where the feeling of ownership over a virtual body is elicited in the participant, has become a useful tool in the study of body representation, in cognitive neuroscience and psychology, concerned with how the brain represents the body. Although VR has been shown to be a useful tool for exploring body ownership illusions, integrating the various technologies necessary for such a system can be daunting. In this paper we discuss the technical infrastructure necessary to achieve virtual embodiment. We describe a basic VR system and how it may be used for this purpose, and then extend this system with the introduction of real-time motion capture, a simple haptics system and the integration of physiological and brain electrical activity recordings

    Enhancing user experience and safety in the context of automated driving through uncertainty communication

    Get PDF
    Operators of highly automated driving systems may exhibit behaviour characteristic of overtrust issues due to an insufficient awareness of automation fallibility. Consequently, situation awareness in critical situations is reduced and safe driving performance following emergency takeovers is impeded. Previous research has indicated that conveying system uncertainties may alleviate these issues. However, existing approaches require drivers to attend the uncertainty information with focal attention, likely resulting in missed changes when engaged in non-driving-related tasks. This research project expands on existing work regarding uncertainty communication in the context of automated driving. Specifically, it aims to investigate the implications of conveying uncertainties under consideration of non-driving-related tasks and, based on the outcomes, develop and evaluate an uncertainty display that enhances both user experience and driving safety. In a first step, the impact of visually conveying uncertainties was investigated under consideration of workload, trust, monitoring behaviour, non-driving-related tasks, takeover performance, and situation awareness. For this, an anthropomorphic visual uncertainty display located in the instrument cluster was developed. While the hypothesised benefits for trust calibration and situation awareness were confirmed, the results indicate that visually conveying uncertainties leads to an increased perceived effort due to a higher frequency of monitoring glances. Building on these findings, peripheral awareness displays were explored as a means for conveying uncertainties without the need for focused attention to reduce monitoring glances. As a prerequisite for developing such a display, a systematic literature review was conducted to identify evaluation methods and criteria, which were then coerced into a comprehensive framework. Grounded in this framework, a peripheral awareness display for uncertainty communication was developed and subsequently compared with the initially proposed visual anthropomorphic uncertainty display in a driving simulator study. Eye tracking and subjective workload data indicate that the peripheral awareness display reduces the monitoring effort relative to the visual display, while driving performance and trust data highlight that the benefits of uncertainty communication are maintained. Further, this research project addresses the implications of increasing the functional detail of uncertainty information. Results of a driving simulator study indicate that particularly workload should be considered when increasing the functional detail of uncertainty information. Expanding upon this approach, an augmented reality display concept was developed and a set of visual variables was explored in a forced choice sorting task to assess their ordinal characteristics. Particularly changes in colour hue and animation-based variables received high preference ratings and were ordered consistently from low to high uncertainty. This research project has contributed a series of novel insights and ideas to the field of human factors in automated driving. It confirmed that conveying uncertainties improves trust calibration and situation awareness, but highlighted that using a visual display lessens the positive effects. Addressing this shortcoming, a peripheral awareness display was designed applying a dedicated evaluation framework. Compared with the previously employed visual display, it decreased monitoring glances and, consequentially, perceived effort. Further, an augmented reality-based uncertainty display concept was developed to minimise the workload increments associated with increases in the functional detail of uncertainty information.</div

    Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Get PDF
    The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications

    Realistic Interaction with Virtual Objects within Arm's Reach

    Get PDF
    The automotive industry requires realistic virtual reality applications more than other domains to increase the efficiency of product development. Currently, the visual quality of virtual invironments resembles reality, but interaction within these environments is usually far from what is known in everyday life. Several realistic research approaches exist, however they are still not all-encompassing enough to be usable in industrial processes. This thesis realizes lifelike direct multi-hand and multi-finger interaction with arbitrary objects, and proposes algorithmic and technical improvements that also approach lifelike usability. In addition, the thesis proposes methods to measure the effectiveness and usability of such interaction techniques as well as discusses different types of grasping feedback that support the user during interaction. Realistic and reliable interaction is reached through the combination of robust grasping heuristics and plausible pseudophysical object reactions. The easy-to-compute grasping rules use the objects’ surface normals, and mimic human grasping behavior. The novel concept of Normal Proxies increases grasping stability and diminishes challenges induced by adverse normals. The intricate act of picking-up thin and tiny objects remains challenging for some users. These cases are further supported by the consideration of finger pinches, which are measured with a specialized finger tracking device. With regard to typical object constraints, realistic object motion is geometrically calculated as a plausible reaction on user input. The resulting direct finger-based interaction technique enables realistic and intuitive manipulation of arbitrary objects. The thesis proposes two methods that prove and compare effectiveness and usability. An expert review indicates that experienced users quickly familiarize themselves with the technique. A quantitative and qualitative user study shows that direct finger-based interaction is preferred over indirect interaction in the context of functional car assessments. While controller-based interaction is more robust, the direct finger-based interaction provides greater realism, and becomes nearly as reliable when the pinch-sensitive mechanism is used. At present, the haptic channel is not used in industrial virtual reality applications. That is why it can be used for grasping feedback which improves the users’ understanding of the grasping situation. This thesis realizes a novel pressure-based tactile feedback at the fingertips. As an alternative, vibro-tactile feedback at the same location is realized as well as visual feedback by the coloring of grasp-involved finger segments. The feedback approaches are also compared within the user study, which reveals that grasping feedback is a requirement to judge grasp status and that tactile feedback improves interaction independent of the used display system. The considerably stronger vibrational tactile feedback can quickly become annoying during interaction. The interaction improvements and hardware enhancements make it possible to interact with virtual objects in a realistic and reliable manner. By addressing realism and reliability, this thesis paves the way for the virtual evaluation of human-object interaction, which is necessary for a broader application of virtual environments in the automotive industry and other domains.StĂ€rker als andere Branchen benötigt die Automobilindustrie realistische Virtual Reality Anwendungen fĂŒr eine effiziente Produktentwicklung. WĂ€hrend sich die visuelle QualitĂ€t virtueller Darstellungen bereits der RealitĂ€t angenĂ€hert hat, ist die Interaktion mit virtuellen Umgebungen noch weit vom tĂ€glichen Erleben der Menschen entfernt. Einige ForschungsansĂ€tze haben sich mit realistischer Interaktion befasst, gehen aber nicht weit genug, um in industriellen Prozessen eingesetzt zu werden. Diese Arbeit realisiert eine lebensnahe mehrhĂ€ndige und fingerbasierte Interaktion mit beliebigen Objekten. Dabei ermöglichen algorithmische und technische Verbesserungen eine realitĂ€tsnahe Usability. Außerdem werden Methoden fĂŒr die Evaluation dieser Interaktionstechnik vorgestellt und benutzerunterstĂŒtzende Greiffeedbackarten diskutiert. Die verlĂ€ssliche und gleichzeitig realistische Interaktion wird durch die Kombination von robusten Greifheuristiken und pseudophysikalischen Objektreaktionen erreicht. Die das menschliche Greifverhalten nachbildenden Greifregeln basieren auf den OberflĂ€chennormalen der Objekte. Die Reduktion negativer EinflĂŒsse verfĂ€lschter Normalen und eine höhere GriffstabilitĂ€t werden durch das neuartige Konzept der Normal Proxies erreicht. Dennoch bleibt fĂŒr manche Nutzer das Aufnehmen von dĂŒnnen und kleinen Objekten problematisch. Diese FĂ€lle werden zusĂ€tzlich durch die Einbeziehung von FingerberĂŒhrungen unterstĂŒtzt, die mit einem speziellen Fingertracking GerĂ€t erfasst werden. Plausible Objektreaktionen auf Benutzereingaben werden unter BerĂŒcksichtigung typischer ObjekteinschrĂ€nkungen geometrisch berechnet. Die Arbeit schlĂ€gt zwei Methoden zur Evaluierung der fingerbasierten Interaktion vor. Ein Expertenreview zeigt, dass sich erfahrene Benutzer sehr schnell in die Technik einfinden. In einer Benutzerstudie wird nachgewiesen, dass fingerbasierte Interaktion im hier untersuchten Kontext vor indirekter Interaktion mit einem EingabegerĂ€t bevorzugt wird. WĂ€hrend letztere robuster zu handhaben ist, stellt die fingerbasierte Interaktion einen deutlich höheren Realismus bereit und erreicht mit den vorgeschlagenen Verbesserungen eine vergleichbare VerlĂ€sslichkeit. Um Greifsituationen transparent zu gestalten, realisiert diese Arbeit ein neuartiges druckbasiertes taktiles Feedback an den Fingerspitzen. Alternativ wird ein vibrotaktiles Feedback am gleichen Ort realisiert und visuelles Feedback durch die EinfĂ€rbung der griffbeteiligten Fingersegmente umgesetzt. Die verschiedenen FeedbackansĂ€tze werden in der Benutzerstudie verglichen. Dabei wird Greiffeedback als Voraussetzung identifiziert, um den Greifzustand zu beurteilen. Taktiles Feedback verbessert dabei die Interaktion unabhĂ€ngig vom eingesetzten Display. Das merklich stĂ€rkere Vibrationsfeedback kann wĂ€hrend der Interaktion störend wirken. Die vorgestellten Interaktionsverbesserungen und Hardwareerweiterungen ermöglichen es, mit virtuellen Objekten auf realistische und zuverlĂ€ssige Art zu interagieren. Indem die Arbeit Realismus und VerlĂ€sslichkeit gleichzeitig adressiert, bereitet sie den Boden fĂŒr die virtuelle Untersuchung von Mensch-Objekt Interaktionen und ermöglicht so einen breiteren Einsatz virtueller Techniken in der Automobilindustrie und in anderen Bereichen

    Realistic Interaction with Virtual Objects within Arm's Reach

    Get PDF
    The automotive industry requires realistic virtual reality applications more than other domains to increase the efficiency of product development. Currently, the visual quality of virtual invironments resembles reality, but interaction within these environments is usually far from what is known in everyday life. Several realistic research approaches exist, however they are still not all-encompassing enough to be usable in industrial processes. This thesis realizes lifelike direct multi-hand and multi-finger interaction with arbitrary objects, and proposes algorithmic and technical improvements that also approach lifelike usability. In addition, the thesis proposes methods to measure the effectiveness and usability of such interaction techniques as well as discusses different types of grasping feedback that support the user during interaction. Realistic and reliable interaction is reached through the combination of robust grasping heuristics and plausible pseudophysical object reactions. The easy-to-compute grasping rules use the objects’ surface normals, and mimic human grasping behavior. The novel concept of Normal Proxies increases grasping stability and diminishes challenges induced by adverse normals. The intricate act of picking-up thin and tiny objects remains challenging for some users. These cases are further supported by the consideration of finger pinches, which are measured with a specialized finger tracking device. With regard to typical object constraints, realistic object motion is geometrically calculated as a plausible reaction on user input. The resulting direct finger-based interaction technique enables realistic and intuitive manipulation of arbitrary objects. The thesis proposes two methods that prove and compare effectiveness and usability. An expert review indicates that experienced users quickly familiarize themselves with the technique. A quantitative and qualitative user study shows that direct finger-based interaction is preferred over indirect interaction in the context of functional car assessments. While controller-based interaction is more robust, the direct finger-based interaction provides greater realism, and becomes nearly as reliable when the pinch-sensitive mechanism is used. At present, the haptic channel is not used in industrial virtual reality applications. That is why it can be used for grasping feedback which improves the users’ understanding of the grasping situation. This thesis realizes a novel pressure-based tactile feedback at the fingertips. As an alternative, vibro-tactile feedback at the same location is realized as well as visual feedback by the coloring of grasp-involved finger segments. The feedback approaches are also compared within the user study, which reveals that grasping feedback is a requirement to judge grasp status and that tactile feedback improves interaction independent of the used display system. The considerably stronger vibrational tactile feedback can quickly become annoying during interaction. The interaction improvements and hardware enhancements make it possible to interact with virtual objects in a realistic and reliable manner. By addressing realism and reliability, this thesis paves the way for the virtual evaluation of human-object interaction, which is necessary for a broader application of virtual environments in the automotive industry and other domains.StĂ€rker als andere Branchen benötigt die Automobilindustrie realistische Virtual Reality Anwendungen fĂŒr eine effiziente Produktentwicklung. WĂ€hrend sich die visuelle QualitĂ€t virtueller Darstellungen bereits der RealitĂ€t angenĂ€hert hat, ist die Interaktion mit virtuellen Umgebungen noch weit vom tĂ€glichen Erleben der Menschen entfernt. Einige ForschungsansĂ€tze haben sich mit realistischer Interaktion befasst, gehen aber nicht weit genug, um in industriellen Prozessen eingesetzt zu werden. Diese Arbeit realisiert eine lebensnahe mehrhĂ€ndige und fingerbasierte Interaktion mit beliebigen Objekten. Dabei ermöglichen algorithmische und technische Verbesserungen eine realitĂ€tsnahe Usability. Außerdem werden Methoden fĂŒr die Evaluation dieser Interaktionstechnik vorgestellt und benutzerunterstĂŒtzende Greiffeedbackarten diskutiert. Die verlĂ€ssliche und gleichzeitig realistische Interaktion wird durch die Kombination von robusten Greifheuristiken und pseudophysikalischen Objektreaktionen erreicht. Die das menschliche Greifverhalten nachbildenden Greifregeln basieren auf den OberflĂ€chennormalen der Objekte. Die Reduktion negativer EinflĂŒsse verfĂ€lschter Normalen und eine höhere GriffstabilitĂ€t werden durch das neuartige Konzept der Normal Proxies erreicht. Dennoch bleibt fĂŒr manche Nutzer das Aufnehmen von dĂŒnnen und kleinen Objekten problematisch. Diese FĂ€lle werden zusĂ€tzlich durch die Einbeziehung von FingerberĂŒhrungen unterstĂŒtzt, die mit einem speziellen Fingertracking GerĂ€t erfasst werden. Plausible Objektreaktionen auf Benutzereingaben werden unter BerĂŒcksichtigung typischer ObjekteinschrĂ€nkungen geometrisch berechnet. Die Arbeit schlĂ€gt zwei Methoden zur Evaluierung der fingerbasierten Interaktion vor. Ein Expertenreview zeigt, dass sich erfahrene Benutzer sehr schnell in die Technik einfinden. In einer Benutzerstudie wird nachgewiesen, dass fingerbasierte Interaktion im hier untersuchten Kontext vor indirekter Interaktion mit einem EingabegerĂ€t bevorzugt wird. WĂ€hrend letztere robuster zu handhaben ist, stellt die fingerbasierte Interaktion einen deutlich höheren Realismus bereit und erreicht mit den vorgeschlagenen Verbesserungen eine vergleichbare VerlĂ€sslichkeit. Um Greifsituationen transparent zu gestalten, realisiert diese Arbeit ein neuartiges druckbasiertes taktiles Feedback an den Fingerspitzen. Alternativ wird ein vibrotaktiles Feedback am gleichen Ort realisiert und visuelles Feedback durch die EinfĂ€rbung der griffbeteiligten Fingersegmente umgesetzt. Die verschiedenen FeedbackansĂ€tze werden in der Benutzerstudie verglichen. Dabei wird Greiffeedback als Voraussetzung identifiziert, um den Greifzustand zu beurteilen. Taktiles Feedback verbessert dabei die Interaktion unabhĂ€ngig vom eingesetzten Display. Das merklich stĂ€rkere Vibrationsfeedback kann wĂ€hrend der Interaktion störend wirken. Die vorgestellten Interaktionsverbesserungen und Hardwareerweiterungen ermöglichen es, mit virtuellen Objekten auf realistische und zuverlĂ€ssige Art zu interagieren. Indem die Arbeit Realismus und VerlĂ€sslichkeit gleichzeitig adressiert, bereitet sie den Boden fĂŒr die virtuelle Untersuchung von Mensch-Objekt Interaktionen und ermöglicht so einen breiteren Einsatz virtueller Techniken in der Automobilindustrie und in anderen Bereichen
    • 

    corecore