44,441 research outputs found

    Novel CBIR System Based on Ripplet Transform Using Interactive Neuro-Fuzzy Technique

    Get PDF
    Content Based Image Retrieval (CBIR) system is an emerging research area in effective digital data management and retrieval paradigm. In this article, a novel CBIR system based on a new Multiscale Geometric Analysis (MGA)-tool, called Ripplet Transform Type-I (RT) is presented. To improve the retrieval result and to reduce the computational complexity, the proposed scheme utilizes a Neural Network (NN) based classifier for image pre-classification, similarity matching using Manhattan distance measure and relevance feedback mechanism (RFM) using fuzzy entropy based feature evaluation technique. Extensive experiments were carried out to evaluate the effectiveness of the proposed technique. The performance of the proposed CBIR system is evaluated using a 2 £ 5-fold cross validation followed by a statistical analysis. The experimental results suggest that the proposed system based on RT, performs better than many existing CBIR schemes based on other transforms, and the difference is statistically significant

    Collaborative Image Retrieval via Regularized Metric Learning

    Get PDF
    In content-based image retrieval (CBIR), relevant images are identified based on their similarities to query images. Most CBIR algorithms are hindered by the semantic gap between the low-level image features used for computing image similarity and the high-level semantic concepts conveyed in images. One way to reduce the semantic gap is to utilize the log data of users ’ feedback that has been collected by CBIR systems in history, which is also called “collaborative image retrieval”. In this paper, we present a novel metric learning approach, named “regularized metric learning”, for collaborative image retrieval, which learns a distance metric by exploring the correlation between low-level image features and the log data of users ’ relevance judgments. Compared to the previous research, a regularization mechanism is used in our algorithm to effectively prevent overfitting. Meanwhile, we formulate the proposed learning algorithm into a semi-definite programming problem, which can be solved very efficiently by existing software packages and is scalable to the size of log data. An extensive set of experiments has been conducted to show that the new algorithm can substantially improve the retrieval accuracy of a baseline CBIR system using Euclidean distance metric, even with a modest amount of log data. The experiment also indicates that the new algorithm is more effective and more efficient tha

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Can a workspace help to overcome the query formulation problem in image retrieval?

    Get PDF
    We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience

    An image retrieval system based on explicit and implicit feedback on a tablet computer

    Get PDF
    Our research aims at developing a image retrieval system which uses relevance feedback to build a hybrid search /recommendation system for images according to users’ inter ests. An image retrieval application running on a tablet computer gathers explicit feedback through the touchscreen but also uses multiple sensing technologies to gather implicit feedback such as emotion and action. A recommendation mechanism driven by collaborative filtering is implemented to verify our interaction design

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    Exploring EEG for Object Detection and Retrieval

    Get PDF
    This paper explores the potential for using Brain Computer Interfaces (BCI) as a relevance feedback mechanism in content-based image retrieval. We investigate if it is possible to capture useful EEG signals to detect if relevant objects are present in a dataset of realistic and complex images. We perform several experiments using a rapid serial visual presentation (RSVP) of images at different rates (5Hz and 10Hz) on 8 users with different degrees of familiarization with BCI and the dataset. We then use the feedback from the BCI and mouse-based interfaces to retrieve localized objects in a subset of TRECVid images. We show that it is indeed possible to detect such objects in complex images and, also, that users with previous knowledge on the dataset or experience with the RSVP outperform others. When the users have limited time to annotate the images (100 seconds in our experiments) both interfaces are comparable in performance. Comparing our best users in a retrieval task, we found that EEG-based relevance feedback outperforms mouse-based feedback. The realistic and complex image dataset differentiates our work from previous studies on EEG for image retrieval.Comment: This preprint is the full version of a short paper accepted in the ACM International Conference on Multimedia Retrieval (ICMR) 2015 (Shanghai, China
    corecore