3 research outputs found

    Automating the integration of clinical studies into medical ontologies

    Get PDF
    A popular approach to knowledge extraction from clinical databases is to first define an ontology of the concepts one wishes to model and subsequently, use these concepts to test various hypotheses and make predictions about a person’s future health and wellbeing. The challenge for medical experts is in the time taken to map between their concepts/hypotheses and information contained within clinical studies. Presently, most of this work is performed manually. We have developed a method to generate links between Risk Factors in a medical ontology and the questions and result data in longitudinal studies. This can then be exploited to express complex queries based on domain concepts, to extract knowledge from external studies

    Mapping longitudinal studies to risk factors in an ontology for dementia

    Get PDF
    A common activity carried out by healthcare professionals is to test various hypotheses on longitudinal study data in an effort to develop new and more reliable algorithms that might determine the possibility of developing certain illnesses. The In-MINDD project provides input from a number of European dementia experts to identify the most accurate model of inter-related risk factors which can yield a personalised dementia risk quotient and profile. This model is then validated against the large population-based prospective Maastricht Aging Study (MAAS) dataset. As part of this overall goal, the research presented in this paper demonstrates how we can automate the process of mapping modifiable risk factors against large sections of the aging study and thus, use information technology to provide more powerful query interfaces

    Continuous Metadata in Continuous Integration, Stream Processing and Enterprise DataOps

    Get PDF
    ABSTRACTImplementations of metadata tend to favor centralized, static metadata. This depiction is at variance with the past decade of focus on big data, cloud native architectures and streaming platforms. Big data velocity can demand a correspondingly dynamic view of metadata. These trends, which include DevOps, CI/CD, DataOps and data fabric, are surveyed. Several specific cloud native tools are reviewed and weaknesses in their current metadata use are identified. Implementations are suggested which better exploit capabilities of streaming platform paradigms, in which metadata is continuously collected in dynamic contexts. Future cloud native software features are identified which could enable streamed metadata to power real time data fusion or fine tune automated reasoning through real time ontology updates
    corecore