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ABSTRACT

Implementations of metadata tend to favor centralized, static metadata. This depiction is at variance with 
the past decade of focus on big data, cloud native architectures and streaming platforms. Big data velocity 
can demand a correspondingly dynamic view of metadata. These trends, which include DevOps, CI/CD, 
DataOps and data fabric, are surveyed. Several specific cloud native tools are reviewed and weaknesses in 
their current metadata use are identified. Implementations are suggested which better exploit capabilities 
of streaming platform paradigms, in which metadata is continuously collected in dynamic contexts. Future 
cloud native software features are identified which could enable streamed metadata to power real time data 
fusion or fine tune automated reasoning through real time ontology updates.

1. BACKGROUND AND OBJECTIVE

Longstanding formulations for metadata depict it as static “data about data.” A dominant visualization 
presents metadata as an unmoving, timeless thermometer paired with “real data”—outdoor temperature. 
Similarly, experimenters may treat independent variables like birthdate and geolocation as static when 
compared to more fluid dependent measures such as blood pressure. But what software and knowledge 
management paradigms would be disrupted if the situation were reversed, with metadata showing the 
greater volume, velocity or variety? DevOps Continuous Integration / Continuous Deployment (CI/CD) has 
emerged [1] as a leading software engineering approach which integrates agile project management, 
incremental quality assessment and greater opportunities for automated test and deployment. In principle, 
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DevOps should improve collection, propagation and protection of metadata. Yet the current IEEE/ISO 
DevOps standard [2] is silent on the matter of metadata integration. The present analysis suggests how 
continuous metadata, analogous to CI, can be adapted to the CI/CD pipeline and support previously 
identified techniques for dynamic metadata flows. Such a capability could emerge from attempts to 
consolidate, better govern and map data flows [“fabric” or “mesh”] within enterprises. Other frameworks, 
which include constructs such as DataOps, are inspired by new capabilities in stream processing, the cloud 
native movement, and the need to improve enterprise data access and governance. Continuous metadata 
may reflect a radical reframing of metadata, but efforts to more fully enable ontology-based reasoning with 
that stream remain incremental.

2. THE CI/CD LANDSCAPE

Agile methodologies were developed in software engineering in part because it became clear that the 
goal of requirements-in-advance was unachievable. Agile methodologies such as Scaled Agile [3] emerged 
from quality processes like Plan-Do-Check-Act [4] and the Extreme Programming initiative. Iterating in 
smaller work elements with more frequent quality checks has been modestly successful at reframing how 
software projects are managed. There is considerable acceptance that software features—with associated 
metadata—are to be added at meticulously smaller stages, or sprints, as complex software is built. This 
procedure is also followed for update and maintenance activities—even when data and metadata has 
previously been specified, designed, collected and consumed in production. 

Jenkins, an open-source project representative for how it enables CI/CD methods, automates aspects of 
routine developer tasks related to software build, test and deployment [5]. Jenkins and other CI/CD tools 
facilitate more frequent software releases—not yet real time, but at least conceptually continuous. CI/CD 
facilitates other important facets, such as keeping test harnesses, test data, and even metadata in synch with 
development. There are accompanying enhancements to Integrated Development Environments (e.g., 
Eclipse) through plugins, some of which are capable of injecting or inheriting metadata from domain-
specific modeling tools such as the Business Process Modeling Language (BPMN) [6] or the System Modeling 
language (SysML) [7]. CI/CD tooling is widely adopted, especially for updating mobile phone apps. It is in 
the dual contexts of comparatively frequent code releases and large-scale data flows in which CI/CD-enabled 
continuous metadata arises.

While Scaled Agile attempts to map attributes and processes from enterprise portfolios down to individual 
sprints, Scaled Agile is light on metadata management and has yet to be studied as an ontology enabler. 
Nor does agile methodology overcome limitations that result from immature domain requirements 
representations. It is mostly silent on domain models. Despite these limitations, Scaled Agile does incorporate 
value stream mapping, from which some form of metadata analysis can proceed. Value streams, when made 
an integral part of agile processes [8], can flow through software build processes into production deployments, 
accompany data into data lakes, and to potentially flow continuously in stream processing engines like 
Kafka or Flink [9].
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Data warehouse processes such as dimension reduction can be employed to capture and process 
metadata streams, potentially in near-real time “over the wire.” However, these were processes born of a 
desire to reduce, not add to big metadata. In some contexts, this can result in more manageable or less 
noisy signals. Such reductions, however, can require judgments from domain specialists. For instance, in 
order to retain sufficient attribute granularity to implement NIST Policy Decision Points [10] in real time, 
and to leverage domain-rich ontologies to inform those decisions [11], care must be taken if attributes are 
to be merged, discarded or translated. When data sources are fused, not uncommon in Complex Event 
Processing, Know Your Customer, and situation awareness applications, it can be even less clear which 
attributes to retain and which to process.

There are several motivations to catalog and govern enterprise data. Gartner advises that “data and 
analytics leaders who are engaged in the deployment of a data fabric to support composable data as the 
future of their data management solutions should enrich the data fabric by using existing administrative 
and management data from systems, platforms and data management as metadata” [12]. Governance 
motivates regulated enterprises, but observability and manageability are more common drivers. Continuous 
metadata processes could benefit enterprises in:

• Governance
• Security
• Data quality
• Compliance 
• Human / IT resource optimization 
• Transparency
• Decision Support
• AI, Machine Learning

Contexts exist in each of these domains where point in time metadata assessments are problematic. For 
instance, if privacy compliance laws change, additional metadata may need to be collected. New data 
partnerships bring new metadata, such as merchant product metadata used in connection with customer 
ecommerce events.

The need for such flexibility is built into some big data platforms. Apache Parquet allows for metadata 
to be embedded in its native formats [13]. Apache Arrow, designed for real time in-memory analytics, 
provides a custom metadata field at three levels to provide a mechanism for developers to pass application-
specific metadata in Arrow protocol messages. This capability includes Field, Schema, and Message. 
VMware’s Tanzu Application Service (TAS) allows metadata annotation for resources such as spaces and 
applications. Metadata can describe resource attributes in a TAS for VMs deployment, which can support 
operations, monitoring, and auditing.

“For example, you can tag resources with metadata that describes the type of environment they belong 
to. You could also use metadata to describe app characteristics, such as front end or back end. Other 
examples include billing codes, points of contact, resource consumption, and information about 
security or risk” [14].
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3. CLASSIFICATION PROPAGATION IN APACHE ATLAS

How does metadata propagate in a CI/CD pipeline? This process is illustrated by a series of Apache Atlas 
diagrams.  The diagrams shown below illustrate how Personally Identifiable Information [PII] is tagged as 
data moves through various CD processes in Apache Atlas, an open-source project. The Apache Atlas team 
describes the process as “update classification associated with an entity” [15].

Figure 1. Injection of Personally Identifi able Info (PII) Metadata Propagation Using Apache Atlas.

Figure 2. Update of PII Metadata Using Apache Atlas.

  Diagrams reproduced here were produced by Apache Atlas contributors and are licensed under Apache License 2.0.
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Figure 3. Metadata-enabled fi ltering of PII using Apache Atlas.

4. OCEAN SOUNDS OR HOW TO BOIL THE OCEAN

Domain specialists are more likely than developers to drive the push for continuous metadata. Consider 
a use case in oceanography.

In a proposed architecture for in situ, real-time ocean sound monitoring, Martinez et al. [16] contemplate 
a future capability in which “metadata could move beyond sensor deployment and focus on sensor 
calibration and operational history, providing traceability throughout the whole instrument’s life-cycle.” The 
envisioned capability, like many longitudinal investigations, makes assumptions about metadata needs 
based on current best practices, research hypotheses and the technical capabilities of current instrumentation. 
When instrumentation changes, metadata streams will need to reflect them. Moreover, as “instrumentation” 
moves, in many settings, toward machine-to-machine, software-enabled instrumentation, the need for 
continuous metadata may become clearer.

Appealing as this use case may seem, a reality check is needed. While a CI/CD pipeline managed by 
Jenkins [or Ansible for Infrastructure as Code [17, 18]] and featuring a systematic, traceable, audit-friendly 
management of metadata is a compelling model, there are powerful anti-patterns. For instance, it may be 
difficult in large enterprises to implement across thousands of developers dispersed across international 
software supply chains—as is found with Boeing and Airbus projects. Conversely, in smaller enterprises, 
“coding” might only occur in limited settings, such as Excel spreadsheet macros or in-app scripts such as 
WordPress plugins. There are also “low-code” quasi-applications such as Bubble, Google’s AppSheet, and 
Betty Blocks which can occupy some of the space formerly taken by full-fledged applications. Yet another 
application-like setting can be seen in autonomously managed analytics, described by some as a variant 
of Literate Programming [19], on display in the Jupyter [20] community, where computational notebooks 
can copy, transform, merge and train data [21]. Data can rapidly proliferate as analysts produce subsets, 
joins and supersets of original datasets. Continuous metadata could be implemented in any these settings, 
including compute islands once derided as “rogue,” but which are emerging as specialized data consumers 
and producers—but one size may not fit all.
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Metadata must be transported with these continuous merges, split and fuse operations for reasons of 
provenance, quality and manageability. Tagging of training sets, explained Jörg Schad, machine learning 
specialist at Arrango DB, is important for machine learning: “One needs additional information from the 
Machine Learning Pipeline besides the actual model: metadata capturing information about datasets, 
executions, features, models, and other artifacts from our machine learning pipeline” [22]. The ML pipeline 
is a data engineering variant of agile CI/CD.

Event correlation, data loss prevention and predictive maintenance are examples where advance 
knowledge of metadata—or metadata granularity—is partial at best. For many enterprise objectives, a 360° 
view of customers, voters, patients, vendors, and privacy regulations must be restructured as laws and 
science shift, sometimes in unpredictable ways. In multivariate causality scenarios such as drug trials, a 
medication could act as a suppressant at one dosage and an accelerant at a different dosage. Or vegetarian 
trial subjects might experience unanticipated side effects than omnivores. Recognizing such a pattern could 
be dependent on acquiring related metadata streams from sources not anticipated at the outset.

5. METADATA MADE DYNAMIC

The construct of changing metadata is not new. A 2011 study looked at Continuous Data Mining for 
XBRL [23]. In data warehouse frameworks, analysts considered “slowly changing dimensions” which can 
involve metadata [24]. Metadata in flux is a consideration for distributed file designs, where object metadata 
must be synchronized across networks [25]. There is recognition that metadata associated with science 
artifacts, such as software artifacts and instrumentation, must be reconciled [26].

Other approaches consider Complex Event Processing [27, 28] as an organizing principle in which event 
metadata plays a significant role. The more complex and the more time-dependent the metadata, the more 
likely that traditional, static metadata notions will prove insufficient. Also, existing work has shown how 
events can be part of ontologies [29], which contribute even more structured and numerous attribute 
metadata. Metadata is more often seen as a big data collateral artifact, such as embedded schemas in 
Parquet, rather than a major contributor to big data processing demands itself.

6. RECENT CONTINUOUS METADATA APPROACHES

Less well studied, by contrast, are processes exploited by recent commercial software offerings tackle 
the potential sprawl of data in large enterprises using a variety of tools [30]. Machine learning, and metadata 
tagging through CI/CD pipelines are processes within the software development life cycle which can be 
studied in GitHub repositories [31]. Though some have advocated for consistent use of metadata for software 
engineering [32], it has yet to be widely adopted. Often developers are unaware that “tags” are in fact 
metadata; this can result in a lack of metadata discipline, which limits its value for continuous metadata.

One explanation for the lack of systematic metadata adoption lies in the complex relationship between 
developers and domain experts. As noted by Edwards et al. [33] “… each domain has its own configuration 
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of classifications, instruments, dates and places.” Software engineers are not knowledge engineers; they 
may be poorly equipped proxies for domain experts. In many current engineering paradigms, traceability 
from subject matter to code, if provided at all, is weakly instantiated and resists automation. In agile, as in 
other engineering paradigms, the gap between natural language, pseudo code and code is daunting. Even 
when developers are enlisted to provide declarative artifacts and metadata through integrated development 
environments or code generation, the resulting metadata streams may need further curation, if they can be 
used at all.

Most CI/CD-ready tools are weakly provisioned for metadata. For instance, in the Cloud Native Community, 
The Update Framework [TUF] is a tool designed to protect the software supply chain when new updates 
are released [34]. But TUF supports only a limited set of metadata types, which was clearly not designed 
to support a rich complement of metadata through a build pipeline. 

Major cloud platform providers offer scalable, adaptable resources increasingly well-suited to big data 
analytics. Amazon Web Services (AWS) cites metrics and logging capabilities that leverage its CloudWatch 
and Embedded Metric Format. These permit AWS users to “record an event with whatever metrics, 
dimensions and metadata” desired [35]. Despite such extensions, to date rich, standardized domain 
ontologies are only hinted at [36]. For continuous metadata, as well as other facets of engineering that 
benefit from automated reasoning from metadata, the gap between metadata theory and practice in major 
cloud platforms remains wide.

Kubernetes is a dominant cloud orchestration platform developed to support large scale containerization. 
Containerization allows for Kubernetes workloads to be injected with metadata, which can enable analysts 
to correlate applications with specific containers, pods, or hosts. Kubernetes accommodates CI/CD practices, 
though Kubernetes use of metadata is largely ad hoc.

Scalable cloud platforms are friendly to creation of knowledge graphs. Graphs can be manually created, 
automatically generated or developed through hybrid methods. Such graphs can support metadata analysis, 
such as in KGBase or OKG-Soft annotations [37], which structures software metadata within an open 
knowledge graph. No published examples of CI/CD processes directly leveraging knowledge graphs were 
discovered.

Models may be used to help identify how metadata can be used but can be tagged themselves in order 
to facilitate discovery, mapping, and inference. These can contribute generally to model-based systems 
engineering [MBSE], such as envisioned by Object Management Group Object Definition Metamodel™ [38], 
or by domain-specific models [39]. Scaled Agile explicitly embraces MBSE [40], though its exact CI/CD 
implementation is more supportive of checklists than code. Regardless of current standards, sense-making 
for continuous metadata can be facilitated by models, whatever their provenance.

Despite inconsistent progress in CI/CD processes outside of traditional developer communities, there are 
a few examples outside the discipline. Metadata management figures prominently in one building industry 
standard [41] and [42]. A resource conforming to the Haystack ontology standard offers “… Haystack 
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compliant control system vendors to test their control modules and algorithms without the need for a 
physical building or modifying their hardware and software, enabling faster and cheaper development 
cycles.” 

Solutions are nontrivial. Caution is abundant in advice offered by Grafana Labs for its Loki cloud logging 
stack: 

“Use dynamic labels sparingly. Too many label value combinations leads to too many streams. The 
penalties for that in Loki are a large index and small chunks in the store, which in turn can actually 
reduce performance. To avoid those issues, don’t add a label for something until you know you need 
it!” [43].

7. BIG AND CONTINUOUS: RADICAL REFRAMING OF METADATA

This author credits an Amazon Web Services representative with a key insight in the early days of 
commercial big data. “Guess what’s probably our largest database?” he asked. Social Security? No, we were 
told. It was the footprint of AWS performance, tuning, billing and infrastructure management system. In 
other words, AWS found itself investing heavily in metrics to characterize what it sells. Because what it 
sells varies over time, and because those services are often enabled for real time consumption (e.g., AWS 
Lake Formation [44]), point in time metadata solutions would prove inadequate.

Continuous metadata can improve cybersecurity. Greater integration of metadata with the CI/CD cycle 
championed in DevOps can support Attribute Based Access Controls (ABAC), safety and privacy through 
the use of embedded ontologies [45]. Updates to metadata streams as releases produce new software 
features improve available attribute granularity, which in turn makes policy decision points more effective 
for enforcing data protection. Yet automated reasoning with continuous metadata is rare, partly because 
platforms rarely engineer systematic connections between software, data streams and semantics—either 
through ontologies or through linked data.

There are a few published examples of ontological reasoning using cloud native services. One example 
is the Data Use Ontology project [46], which leverages, among other resources, the cloud-friendly ELK 
Reasoner [47]. Still, connective tissue between surging open-source big data / analytics streaming platforms 
and ontologies remains thin. Continuous metadata cloud support for ontologies in current practice appears 
to be limited to prototypes [48].

Scattered progress on continuous metadata is in evidence, though not typically identified as such. Future 
work can be expected to further enable more standardized uses of metadata in CI/CD, computational 
workbooks and infrastructure management. Optimists might anticipate metadata- and tag-enabled ontologies 
to play a larger role in what some call Composable Data Services [49]. Whatever the long-term impact 
of machine learning, it teaches that training sets and learning sources can be varied and voluminous. 
Gartner analysts Meyer and Zaidi write that semantics enrichment is essential to allow for “ML algorithms 
to recognize otherwise disparate data as commonly defined and having potential for integration” [12]. 
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Collecting metadata for future analysis may become a default practice as it becomes clear that one-off, 
point-in-time metadata collection may prove inadequate for many settings. 

In earlier work, Obrst, Whitaker & Meng [50] explored “dynamic context” and “knowledge-enhanced 
objects interpreted on the fly.” 

“We envision the future in terms of objects traveling across dynamically determined domain boundaries 
and application contexts arising in the course of execution. Conceptually, a context embodies the 
mechanism necessary for a system to receive an object at runtime and to examine, interrogate, 
interpret and determine if it can be dynamically assimilated.”

Scalable, parallel cloud services can process continuous metadata, connect and embellish contexts, even 
refine existing ontologies. As a currently preferred destination for Continuous Integration, labeled Kubernetes 
namespaces offer one design pattern, but others will emerge. Domain experts will call upon metadata 
streams to extend domain boundaries and recalibrate the landscape, possibly with each sprint. The allure 
of autonomous reasoning is too powerful for it to be otherwise. 
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