126,395 research outputs found

    Les retours tactile et kinesthésique améliorent la perception de distance en réalité virtuelle

    Get PDF
    National audienceResearch spanning psychology, neuroscience and HCI found that depth perception distortion is a common problem in virtual reality. This distortion results in depth compression, where users perceive objects closer than their intended distance. Studies suggested that cues, such as audio and haptic, help to solve this issue. We focus on haptic feedback and investigate how force feedback compares to tactile feedback within peripersonal space in reducing depth perception distortion. Our study (N=12) compares the use of haptic force feedback, vibration haptic feedback, a combination of both or no feedback. Our results show that both vibration and force feedback improve depth perception distortion over no feedback (8.3 times better distance estimation than with no haptic feedback vs. 1.4 to 1.5 times better with either vibration or force feedback on their own). Participants also subjectively preferred using force feedback, or a combination of force and vibration feedback, over no feedback.Des recherches en psychologie, neurosciences et IHM ont montré que la distorsion de la perception des distances est un problème courant en réalité virtuelle. Cette distorsion entraîne une compression des profondeurs, et les utilisateurs perçoivent des objets plus proches qu'ils ne le sont. Dans ce papier, nous nous concentrons sur le retour haptique et examinons comment le retour de force se compare au retour tactile pour réduire la compression des profondeurs. Notre étude (N = 12) compare l'utilisation du retour de force, le retour tactile vibratoire, la combinaison des deux ou l'absence de retour. Nos résultats montrent que le retour tactile et le retour de force améliorent la perception de la profondeur. L'estimation de distance est 8.3 fois meilleure que sans retour, par rapport à 1.4-1.5 fois avec retour tactile vibratoire ou de force non-combinés. Les participants ont également préféré utiliser le retour de force, ou une combinaison de force et tactile

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    Size and shape constancy in consumer virtual reality

    Get PDF
    With the increase in popularity of consumer virtual reality headsets, for research and other applications, it is important to understand the accuracy of 3D perception in VR. We investigated the perceptual accuracy of near-field virtual distances using a size and shape constancy task, in two commercially available devices. Participants wore either the HTC Vive or the Oculus Rift and adjusted the size of a virtual stimulus to match the geometric qualities (size and depth) of a physical stimulus they were able to refer to haptically. The judgments participants made allowed for an indirect measure of their perception of the egocentric, virtual distance to the stimuli. The data show under-constancy and are consistent with research from carefully calibrated psychophysical techniques. There was no difference in the degree of constancy found in the two headsets. We conclude that consumer virtual reality headsets provide a sufficiently high degree of accuracy in distance perception, to allow them to be used confidently in future experimental vision science, and other research applications in psychology

    The Use Of Cabri 3D Software As Virtual Manipulation Tool In 3-Dimension Geometry Learning To Improve Junior High School Students’ Spatial Ability

    Get PDF
    This study is aimed to know students’ spatial ability who work under 3-dimension learning use Cabri 3D software at Junior High School in Bandung. The using of Cabri 3D software as manipulative tool in 3-dimension geometry learning can reduce misperception about 3-dimension materials. This study is quasi-experiment and the instruments cosist of spatial ability test and students’ worksheet. This study is conducted for 8th grade students at Junior High School in Bandung. Based on study result, it is found that students’ spatial ability enhancement under the learning, where Cabri 3D software is used, than those who were taught by conventional learning. From five elements of spatial ability based on Meir (1976), only 2 elements of spatial ability which do has no improve merit significantly, namely, perception ability component and visualization ability, while rotation ability, relation ability and orientation ability have improved significantly. Key Words: Cabri 3D Software, Virtual Manipulation Tool, Geometry 3 Dimension, Spatial Abilit

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii
    • …
    corecore