58,719 research outputs found

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page

    Mixing and relaxation time for Random Walk on Wreath Product Graphs

    Full text link
    Suppose that G and H are finite, connected graphs, G regular, X is a lazy random walk on G and Z is a reversible ergodic Markov chain on H. The generalized lamplighter chain X* associated with X and Z is the random walk on the wreath product H\wr G, the graph whose vertices consist of pairs (f,x) where f=(f_v)_{v\in V(G)} is a labeling of the vertices of G by elements of H and x is a vertex in G. In each step, X* moves from a configuration (f,x) by updating x to y using the transition rule of X and then independently updating both f_x and f_y according to the transition probabilities on H; f_z for z different of x,y remains unchanged. We estimate the mixing time of X* in terms of the parameters of H and G. Further, we show that the relaxation time of X* is the same order as the maximal expected hitting time of G plus |G| times the relaxation time of the chain on H.Comment: 30 pages, 1 figur

    Metric Construction, Stopping Times and Path Coupling

    Full text link
    In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to restrict analysis to standard one-step path coupling. This approach provides insight for the design of non-standard metrics giving improvements in the analysis of specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs.Comment: 21 pages, revised version includes statement and proof of general stopping times theorem (section 2.2), and additonal remarks in section

    Age Optimal Information Gathering and Dissemination on Graphs

    Full text link
    We consider the problem of timely exchange of updates between a central station and a set of ground terminals VV, via a mobile agent that traverses across the ground terminals along a mobility graph G=(V,E)G = (V, E). We design the trajectory of the mobile agent to minimize peak and average age of information (AoI), two newly proposed metrics for measuring timeliness of information. We consider randomized trajectories, in which the mobile agent travels from terminal ii to terminal jj with probability Pi,jP_{i,j}. For the information gathering problem, we show that a randomized trajectory is peak age optimal and factor-8H8\mathcal{H} average age optimal, where H\mathcal{H} is the mixing time of the randomized trajectory on the mobility graph GG. We also show that the average age minimization problem is NP-hard. For the information dissemination problem, we prove that the same randomized trajectory is factor-O(H)O(\mathcal{H}) peak and average age optimal. Moreover, we propose an age-based trajectory, which utilizes information about current age at terminals, and show that it is factor-22 average age optimal in a symmetric setting

    Estimating graph parameters with random walks

    Full text link
    An algorithm observes the trajectories of random walks over an unknown graph GG, starting from the same vertex xx, as well as the degrees along the trajectories. For all finite connected graphs, one can estimate the number of edges mm up to a bounded factor in O(trel3/4m/d)O\left(t_{\mathrm{rel}}^{3/4}\sqrt{m/d}\right) steps, where trelt_{\mathrm{rel}} is the relaxation time of the lazy random walk on GG and dd is the minimum degree in GG. Alternatively, mm can be estimated in O(tunif+trel5/6n)O\left(t_{\mathrm{unif}} +t_{\mathrm{rel}}^{5/6}\sqrt{n}\right), where nn is the number of vertices and tunift_{\mathrm{unif}} is the uniform mixing time on GG. The number of vertices nn can then be estimated up to a bounded factor in an additional O(tunifmn)O\left(t_{\mathrm{unif}}\frac{m}{n}\right) steps. Our algorithms are based on counting the number of intersections of random walk paths X,YX,Y, i.e. the number of pairs (t,s)(t,s) such that Xt=YsX_t=Y_s. This improves on previous estimates which only consider collisions (i.e., times tt with Xt=YtX_t=Y_t). We also show that the complexity of our algorithms is optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show that, given either mm or the mixing time of GG, we can compute the "other parameter" with a self-stopping algorithm

    Mixing times of random walks on dynamic configuration models

    Get PDF
    The mixing time of a random walk, with or without backtracking, on a random graph generated according to the configuration model on nn vertices, is known to be of order logn\log n. In this paper we investigate what happens when the random graph becomes {\em dynamic}, namely, at each unit of time a fraction αn\alpha_n of the edges is randomly rewired. Under mild conditions on the degree sequence, guaranteeing that the graph is locally tree-like, we show that for every ε(0,1)\varepsilon\in(0,1) the ε\varepsilon-mixing time of random walk without backtracking grows like 2log(1/ε)/log(1/(1αn))\sqrt{2\log(1/\varepsilon)/\log(1/(1-\alpha_n))} as nn \to \infty, provided that limnαn(logn)2=\lim_{n\to\infty} \alpha_n(\log n)^2=\infty. The latter condition corresponds to a regime of fast enough graph dynamics. Our proof is based on a randomised stopping time argument, in combination with coupling techniques and combinatorial estimates. The stopping time of interest is the first time that the walk moves along an edge that was rewired before, which turns out to be close to a strong stationary time.Comment: 23 pages, 6 figures. Previous version contained a mistake in one of the proofs. In this version we look at nonbacktracking random walk instead of simple random wal

    The Best Mixing Time for Random Walks on Trees

    Full text link
    We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let G=(V,E)G=(V,E) be a tree with stationary distribution π\pi. For a vertex vVv \in V, let H(v,π)H(v,\pi) denote the expected length of an optimal stopping rule from vv to π\pi. The \emph{best mixing time} for GG is minvVH(v,π)\min_{v \in V} H(v,\pi). We show that among all trees with V=n|V|=n, the best mixing time is minimized uniquely by the star. For even nn, the best mixing time is maximized by the uniquely path. Surprising, for odd nn, the best mixing time is maximized uniquely by a path of length n1n-1 with a single leaf adjacent to one central vertex.Comment: 25 pages, 7 figures, 3 table
    corecore