research

Age Optimal Information Gathering and Dissemination on Graphs

Abstract

We consider the problem of timely exchange of updates between a central station and a set of ground terminals VV, via a mobile agent that traverses across the ground terminals along a mobility graph G=(V,E)G = (V, E). We design the trajectory of the mobile agent to minimize peak and average age of information (AoI), two newly proposed metrics for measuring timeliness of information. We consider randomized trajectories, in which the mobile agent travels from terminal ii to terminal jj with probability Pi,jP_{i,j}. For the information gathering problem, we show that a randomized trajectory is peak age optimal and factor-8H8\mathcal{H} average age optimal, where H\mathcal{H} is the mixing time of the randomized trajectory on the mobility graph GG. We also show that the average age minimization problem is NP-hard. For the information dissemination problem, we prove that the same randomized trajectory is factor-O(H)O(\mathcal{H}) peak and average age optimal. Moreover, we propose an age-based trajectory, which utilizes information about current age at terminals, and show that it is factor-22 average age optimal in a symmetric setting

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021