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MIXING TIMES OF RANDOM WALKS ON DYNAMIC
CONFIGURATION MODELS

BY LUCA AVENA∗,1, HAKAN GÜLDAŞ∗,1, REMCO VAN DER HOFSTAD†,1,2

AND FRANK DEN HOLLANDER∗,1,3

Leiden University∗ and Eindhoven University of Technology†

The mixing time of a random walk, with or without backtracking, on a
random graph generated according to the configuration model on n vertices,
is known to be of order logn. In this paper, we investigate what happens
when the random graph becomes dynamic, namely, at each unit of time a
fraction αn of the edges is randomly rewired. Under mild conditions on the
degree sequence, guaranteeing that the graph is locally tree-like, we show
that for every ε ∈ (0,1) the ε-mixing time of random walk without back-
tracking grows like

√
2 log(1/ε)/ log(1/(1 − αn)) as n → ∞, provided that

limn→∞ αn(logn)2 = ∞. The latter condition corresponds to a regime of
fast enough graph dynamics. Our proof is based on a randomised stopping
time argument, in combination with coupling techniques and combinatorial
estimates. The stopping time of interest is the first time that the walk moves
along an edge that was rewired before, which turns out to be close to a strong
stationary time.

1. Introduction and main result.

1.1. Motivation and background. The mixing time of a Markov chain is the
time it needs to approach its stationary distribution. For random walks on finite
graphs, the characterisation of the mixing time has been the subject of intensive
study. One of the main motivations is the fact that the mixing time gives informa-
tion about the geometry of the graph (see the books by Aldous and Fill [1] and by
Levin, Peres and Wilmer [17] for an overview and for applications). Typically, the
random walk is assumed to be “simple”, meaning that steps are along edges and
are drawn uniformly at random from a set of allowed edges, for example, with or
without backtracking.

In the last decade, much attention has been devoted to the analysis of mixing
times for random walks on finite random graphs. Random graphs are used as mod-
els for real-world networks. Three main models have been in the focus of attention:
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1978 AVENA, GÜLDAŞ, VAN DER HOFSTAD AND DEN HOLLANDER

(1) the Erdős–Rényi random graph (Benjamini, Kozma and Wormald [5], Ding,
Lubetzky and Peres [11], Fountoulakis and Reed [13], Nachmias and Peres [22]);
(2) the configuration model (Ben-Hamou and Salez [3], Berestycki, Lubetzky,
Peres and Sly [7], Bordenave, Caputo and Salez [10], Lubetzky and Sly [18]);
(3) percolation clusters (Benjamini and Mossel [6]).

Many real-world networks are dynamic in nature. It is therefore natural to study
random walks on dynamic finite random graphs. This line of research was initiated
recently by Peres, Stauffer and Steif [24] and by Peres, Sousi and Steif [23], who
characterised the mixing time of a simple random walk on a dynamical percola-
tion cluster on a d-dimensional discrete torus, in various regimes. The goal of the
present paper is to study the mixing time of a random walk without backtracking
on a dynamic version of the configuration model.

The static configuration model is a random graph with a prescribed degree se-
quence (possibly random). It is popular because of its mathematical tractability and
its flexibility in modeling real-world networks (see van der Hofstad [25], Chap-
ter 7, for an overview). For random walk on the static configuration model, with or
without backtracking, the asymptotics of the associated mixing time, and related
properties such as the presence of the so-called cutoff phenomenon, were derived
recently by Berestycki et al. [7], and by Ben-Hamou and Salez [3]. In particular,
under mild assumptions on the degree sequence, guaranteeing that the graph is an
expander with high probability, the mixing time was shown to be of order logn,
with n the number of vertices.

In the present paper, we consider a discrete-time dynamic version of the con-
figuration model, where at each unit of time a fraction αn of the edges is sampled
and rewired uniformly at random. (A different dynamic version of the configura-
tion model was considered in the context of graph sampling. See Greenhill [14]
and references therein.) Our dynamics preserves the degrees of the vertices. Con-
sequently, when considering a random walk on this dynamic configuration model,
its stationary distribution remains constant over time and the analysis of its mix-
ing time is a well-posed question. It is natural to expect that, due to the graph
dynamics, the random walk mixes faster than the logn order known for the static
model. In our main theorem, we will make this precise under mild assumptions
on the prescribed degree sequence stated in Condition 1.2 and Remark 1.3 be-
low. By requiring that limn→∞ αn(logn)2 = ∞, which corresponds to a regime
of fast enough graph dynamics, we find in Theorem 1.7 below that for every
ε ∈ (0,1) the ε-mixing time for random walk without backtracking grows like√

2 log(1/ε)/ log(1/(1 − αn)) as n → ∞, with high probability in the sense of
Definition 1.5 below. Note that this mixing time is o(logn), so that the dynamics
indeed speeds up the mixing.

1.2. Model. We start by defining the model and setting up the notation. The
set of vertices is denoted by V and the degree of a vertex v ∈ V by d(v). Each
vertex v ∈ V is thought of as being incident to d(v) half-edges (see Figure 1). We
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FIG. 1. Vertices with half-edges.

write H for the set of half-edges, and assume that each half-edge is associated to a
vertex via incidence. We denote by v(x) ∈ V the vertex to which x ∈ H is incident
and by H(v) := {x ∈ H : v(x) = v} ⊂ H the set of half-edges incident to v ∈ V . If
x, y ∈ H(v) with x �= y, then we write x ∼ y and say that x and y are siblings of
each other. The degree of a half-edge x ∈ H is defined as

(1.1) deg(x) := d
(
v(x)

) − 1.

We consider graphs on n vertices, that is, |V | = n, with m edges, so that |H | =∑
v∈V deg(v) = 2m =: �.
The edges of the graph will be given by a configuration that is a pairing of half-

edges. We denote by η(x) the half-edge paired to x ∈ H in the configuration η.
A configuration η will be viewed as a bijection of H without fixed points and with
the property that η(η(x)) = x for all x ∈ H (also called an involution). With a
slight abuse of notation, we will use the same symbol η to denote the set of pairs
of half-edges in η, so {x, y} ∈ η means that η(x) = y and η(y) = x. Each pair of
half-edges in η will also be called an edge. The set of all configurations on H will
be denoted by ConfH .

We note that each configuration gives rise to a graph that may contain self-loops
(edges having the same vertex on both ends) or multiple edges (between the same
pair of vertices). On the other hand, a graph can be obtained via several distinct
configurations.

We will consider asymptotic statements in the sense of |V | = n → ∞. Thus,
quantities like V,H,d,deg and � all depend on n. In order to lighten the notation,
we often suppress n from the notation.

1.2.1. Configuration model. We recall the definition of the configuration
model, phrased in our notation. Inspired by Bender and Canfield [4], the configu-
ration model was introduced by Bollobás [8] to study the number of regular graphs
of a given size (see also Bollobás [9]). Molloy and Reed [20, 21] introduced the
configuration model with general prescribed degrees.

The configuration model on V with degree sequence (d(v))v∈V is the uniform
distribution on ConfH . We sometimes write dn = (d(v))v∈V when we wish to
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stress the n-dependence of the degree sequence. Identify H with the set

[1, �] := {1, . . . , �}.
A sample η from the configuration model can be generated by the following sam-
pling algorithm:

1. Initialize U = H,η = ∅, where U denotes the set of unpaired half-edges.
2. Pick a half-edge, say x, uniformly at random from U \ {minU}.
3. Update η → η ∪ {{x,minU}} and U → U \ {x,minU}.
4. If U �= ∅, then continue from step 2. Else return η.

The resulting configuration η gives rise to a graph on V with degree sequence
(d(v))v∈V .

REMARK 1.1. Note that in the above algorithm two half-edges that belong to
the same vertex can be paired, which creates a self-loop, or two half-edges that be-
long to vertices that already have an edge between them can be paired, which cre-
ates multiple edges. However, if the degrees are not too large (as in Condition 1.2
below), then as n → ∞ the number of self-loops and the number of multiple edges
converge to two independent Poisson random variables (see Janson [15, 16], An-
gel, van der Hofstad and Holmgren [2]). Consequently, convergence in probability
for the configuration model implies convergence in probability for the configura-
tion model conditioned on being simple.

Let Un be uniformly distributed on [1, n]. Then

(1.2) Dn = d(Un)

is the degree of a random vertex on the graph of size n. Write Pn to denote the law
of Dn. Throughout the sequel, we impose the following mild regularity conditions
on the degree sequence.

CONDITION 1.2 (Regularity of degrees). (R1) Let � = |H |. Then � is even
and of order n, that is, � = �(n) as n → ∞.

(R2) Let

(1.3) νn :=
∑

z∈H deg(z)

�
=

∑
v∈V d(v)[d(v) − 1]∑

v∈V d(v)
= En(Dn(Dn − 1))

En(Dn)

denote the expected degree of a uniformly chosen half-edge.
Then lim supn→∞ νn < ∞.

(R3) Pn(Dn ≥ 2) = 1 for all n ∈ N.

REMARK 1.3. Conditions (R1) and (R2) are minimal requirements to guaran-
tee that the graph is locally tree-like (in the sense of Lemma 4.2 below). They also
ensure that the probability of the graph being simple has a strictly positive limit.
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Conditioned on being simple, the configuration model generates a random graph
that is uniformly distributed among all the simple graphs with the given degree
sequence (see van der Hofstad [25], Chapter 7, [26], Chapters 3 and 6). Condition
(R3) ensures that the random walk without backtracking is well defined because it
cannot get stuck on a dead-end.

1.2.2. Dynamic configuration model. We begin by describing the random
graph process. It is convenient to take as the state space the set of configurations
ConfH . For a fixed initial configuration η and fixed 2 ≤ k ≤ m = �/2, the graph
evolves as follows (see Figure 2):

1. At each time t ∈ N, pick k edges (pairs of half-edges) from Ct−1 uniformly
at random without replacement. Cut these edges to get 2k half-edges and denote
this set of half-edges by Rt .

2. Generate a uniform pairing of these half-edges to obtain k new edges. Re-
place the k edges chosen in step 1 by the k new edges to get the configuration Ct

at time t .

This process rewires k edges at each step by applying the configuration model
sampling algorithm in Section 1.2.1 restricted to k uniformly chosen edges. Since
half-edges are not created or destroyed, the degree sequence of the graph given by
Ct is the same for all t ∈ N0. This gives us a Markov chain on the set of configura-
tions ConfH . For η, ζ ∈ ConfH , the transition probabilities for this Markov chain
are given by

(1.4) Q(η, ζ ) = Q(ζ,η) :=

⎧⎪⎪⎨⎪⎪⎩
1

(2k − 1)!!

(m−dHam(η,ζ )
k−dHam(η,ζ )

)(m
k

) if dHam(η, ζ ) ≤ k,

0 otherwise,

where dHam(η, ζ ) := |η \ ζ | = |ζ \ η| is the Hamming distance between config-
urations η and ζ , which is the number of edges that appear in η but not in ζ .
The factor 1/(2k − 1)!! comes from the uniform pairing of the half-edges, while
the factor

(m−dHam(η,ζ )
k−dHam(η,ζ )

)
/
(m
k

)
comes from choosing uniformly at random a set of k

FIG. 2. One move of the dynamic configuration model. Bold edges on the left are the ones chosen
to be rewired. Bold edges on the right are the newly formed edges.
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edges in η that contains the edges in η \ζ . It is easy to see that this Markov chain is
irreducible and aperiodic, with stationary distribution the uniform distribution on
ConfH , denoted by ConfH , which is the distribution of the configuration model.

1.2.3. Random walk without backtracking. On top of the random graph pro-
cess, we define the random walk without backtracking, that is, the walk cannot
traverse the same edge twice in a row. As in Ben-Hamou and Salez [3], we define
it as a random walk on the set of half-edges H , which is more convenient in the
dynamic setting because the edges change over time while the half-edges do not.
For a fixed configuration η and half-edges x, y ∈ H , the transition probabilities of
the random walk are given by [recall (1.1)]

Pη(x, y) :=
⎧⎪⎨⎪⎩

1

deg(y)
if η(x) ∼ y and η(x) �= y,

0 otherwise.
(1.5)

When the random walk is at half-edge x in configuration η, it jumps to one of the
siblings of the half-edge it is paired to uniformly at random (see Figure 3). The
transition probabilities are symmetric with respect to the pairing given by η, that
is, Pη(x, y) = Pη(η(y), η(x)), in particular, they are doubly stochastic, and so the
uniform distribution on H , denoted by UH , is stationary for Pη for any η ∈ ConfH .

1.2.4. Random walk on dynamic configuration model. The random walk with-
out backtracking on the dynamic configuration model is the joint Markov chain
(Mt)t∈N0 = (Ct ,Xt)t∈N0 in which (Ct )t∈N0 is the Markov chain on the set of con-
figurations ConfH as described in (1.4), and (Xt)t∈N0 is the random walk that at
each time step t jumps according to the transition probabilities PCt (·, ·) as in (1.5).

Formally, for initial configuration η and half-edge x, the one-step evolution of
the joint Markov chain is given by the conditional probabilities

(1.6) Pη,x(Ct = ζ,Xt = z | Ct−1 = ξ,Xt−1 = y) = Q(ξ, ζ )Pζ (y, z), t ∈N,

with

Pη,x(C0 = η,X0 = x) = 1.(1.7)

FIG. 3. The random walk moves from half-edge Xt to half-edge Xt+1, one of the siblings of the
half-edge that Xt is paired to.
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It is easy to see that if d(v) > 1 for all v ∈ V , then this Markov chain is irreducible
and aperiodic, and has the unique stationary distribution ConfH × UH .

While the graph process (Ct )t∈N0 and the joint process (Mt)t∈N0 are Markovian,
the random walk (Xt)t∈N0 is not. However, UH is still the stationary distribution
of (Xt)t∈N0 . Indeed, for any η ∈ ConfH and y ∈ H we have

(1.8)
∑
x∈H

UH(x)Pη,x(Xt = y) = ∑
x∈H

1

�
Pη,x(Xt = y) = 1

�
= UH(y).

The next to last equality uses that
∑

x∈H Pη,x(Xt = y) = 1 for every y ∈ H , which
can be seen by conditioning on the graph process and using that the space-time
inhomogeneous random walk has a doubly stochastic transition matrix [recall the
remarks made below (1.5)].

1.3. Main theorem. We are interested in the behaviour of the total variation
distance between the distribution of Xt and the uniform distribution

(1.9) Dη,x(t) := ∥∥Pη,x(Xt ∈ ·) − UH(·)∥∥TV.

(We recall that the total variation distance of two probability measures μ1,μ2 on
a finite state space S is given by the following equivalent expressions:

‖μ1 − μ2‖TV := ∑
x∈S

∣∣μ1(x) − μ2(x)
∣∣ = ∑

x∈S

[
μ1(x) − μ2(x)

]
+

= sup
A⊆S

[
μ1(A) − μ2(A)

]
,

(1.10)

where [a]+ := max{a,0} for a ∈ R.) Since (Xt)t∈N0 is not Markovian, it is not
clear whether t �→ Dη,x(t) is decreasing or not. On the other hand,

(1.11) Dη,x(t) ≤ ∥∥Pη,x(Mt ∈ ·) − (UH × ConfH )(·)∥∥TV,

and since the right-hand side converges to 0 as t → ∞, so does Dη,x(t). Therefore,
the following definition is well-posed.

DEFINITION 1.4 (Mixing time of the random walk). For ε ∈ (0,1), the ε-
mixing time of the random walk is defined as

(1.12) tnmix(ε;η, x) := inf
{
t ∈ N0 : Dη,x(t) ≤ ε

}
.

Note that tnmix(ε;η, x) depends on the initial configuration η and half-edge x.
We will prove statements that hold for typical choices of (η, x) under the uniform
distribution μn (recall that H depends on the number of vertices n) given by

(1.13) μn := ConfH × UH on ConfH × H,

where typical is made precise through the following definition.
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DEFINITION 1.5 (With high probability). A statement that depends on the
initial configuration η and half-edge x is said to hold with high probability (w.h.p.)
in η and x if the μn-measure of the set of pairs (η, x) for which the statement holds
tends to 1 as n → ∞.

Below we sometimes write w.h.p. with respect to some probability measure
other than μn, but it will always be clear from the context which probability mea-
sure we are referring to.

Throughout the paper, we assume the following condition on

(1.14) αn := k/m, n ∈ N,

denoting the proportion of edges involved in the rewiring at each time step of the
graph dynamics defined in Section 1.2.2.

CONDITION 1.6 (Fast graph dynamics). The ratio αn in (1.14) is subject to
the constraint

(1.15) lim
n→∞αn(logn)2 = ∞.

We can now state our main result.

THEOREM 1.7 (Sharp mixing time asymptotics). Suppose that Conditions 1.2
and 1.6 hold. Then, for every ε > 0, w.h.p. in η and x,

(1.16) tnmix(ε;η, x) = [
1 + o(1)

]√ 2 log(1/ε)

log(1/(1 − αn))
.

Note that Condition 1.6 allows for limn→∞ αn = 0. In that case (1.16) simplifies
to

(1.17) tnmix(ε;η, x) = [
1 + o(1)

]√2 log(1/ε)

αn

.

1.4. Discussion. 1. Theorem 1.7 gives the sharp asymptotics of the mixing
time in the regime where the dynamics is fast enough (as specified by Con-
dition 1.6). Note that if limn→∞ αn = α ∈ (0,1], then tnmix(ε;η, x) is of order
one: at every step the random walk has a nonvanishing probability to traverse
a rewired edge, and so it is qualitatively similar to a random walk on a com-
plete graph. On the other hand, when limn→∞ αn = 0 the mixing time is of order
1/

√
αn = o(logn), which shows that the dynamics still speeds up the mixing. The

regime αn = �(1/(logn)2), which is not captured by Theorem 1.7, corresponds
to 1/

√
αn = �(logn), and we expect the mixing time to be comparable to that

of the static configuration model. In the regime αn = o(1/(logn)2), we expect the
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mixing time to be the same as that of the static configuration model. In a future
paper, we plan to provide a comparative analysis of the three regimes.

2. In the static model, the ε-mixing time is known to scale like [1 + o(1)]c logn

for some c ∈ (0,∞) that is independent of ε ∈ (0,1) (Ben-Hamou and Salez [3]).
Consequently, there is cutoff, that is, the total variation distance drops from 1 to
0 in a time window of width o(logn). In contrast, in the regime of fast graph
dynamics there is no cutoff, that is, the total variation distance drops from 1 to 0
gradually on scale 1/

√
αn.

3. Our proof is robust and can be easily extended to variants of our model where,
for example, (kn)n∈N is random with kn having a first moment that tends to infinity
as n → ∞, or where time is continuous and pairs of edges are randomly rewired
at rate αn.

4. Theorem 1.7 can be compared to the analogous result for the static config-
uration model only when Pn(Dn ≥ 3) = 1 for all n ∈ N. In fact, only under the
latter condition does the probability of having a connected graph tend to one (see
Luczak [19], Federico and van der Hofstad [12]). If (R3) holds, then on the dy-
namic graph the walk mixes on the whole of H , while on the static graph it mixes
on the subset of H corresponding to the giant component.

5. We are not able to characterise the mixing time of the joint process of dynamic
random graph and random walk. Clearly, the mixing time of the joint process is
at least as large as the mixing time of each process separately. While the graph
process helps the random walk to mix, the converse is not true because the graph
process does not depend on the random walk. Observe that once the graph process
has mixed it has an almost uniform configuration, and the random walk ought
to have mixed already. This observation suggests that if the mixing times of the
graph process and the random walk are not of the same order, then the mixing
time of the joint process will have the same order as the mixing time of the graph
process. Intuitively, we may expect that the mixing time of the graph corresponds
to the time at which all edges are rewired at least once, which should be of order
(n/k) logn = (1/αn) logn by a coupon collector argument. In our setting, the latter
is much larger than 1/

√
αn.

6. We emphasize that we look at the mixing times for “typical” initial conditions
and we look at the distribution of the random walk averaged over the trajectories
of the graph process: the “annealed” model. It would be interesting to look at dif-
ferent setups, such as “worst-case” mixing, in which the maximum of the mixing
times over all initial conditions is considered, or the “quenched” model, in which
the entire trajectory of the graph process is fixed instead of just the initial con-
figuration. In such setups, the results can be drastically different. For example, if
we consider the quenched model for d-regular graphs, then we see that for any
time t and any fixed realization of configurations up to time t , the walk without
backtracking can reach at most (d − 1)t half-edges. This gives us a lower bound
of order logn for the mixing time in the quenched model, which contrasts with the
o(logn) mixing time in our setup.
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7. It would be of interest to extend our results to random walk with backtracking,
which is harder. Indeed, because the configuration model is locally tree-like and
random walk without backtracking on a tree is the same as self-avoiding walk, in
our proof we can exploit the fact that typical walk trajectories are self-avoiding.
In contrast, for the random walk with backtracking, after it jumps over a rewired
edge, which in our model serves as a randomized stopping time, it may jump back
over the same edge, in which case it has not mixed. This problem remains to be
resolved.

1.5. Outline. The remainder of this paper is organised as follows. Section 2
gives the main idea behind the proof, namely, we introduce a randomised stopping
time τ = τn, the first time the walk moves along an edge that was rewired before,
and we state a key proposition, Proposition 2.1 below, which says that this time is
close to a strong stationary time and characterises its tail distribution. As shown
at the end of Section 2, Theorem 1.7 follows from Proposition 2.1, whose proof
consists of three main steps. The first step in Section 3 consists of a careful com-
binatorial analysis of the distribution of the walk given the history of the rewiring
of the half-edges in the underlying evolving graph. The second step in Section 4
uses a classical exploration procedure of the static random graph from a uniform
vertex to unveil the locally tree-like structure in large enough balls. The third step
in Section 5 settles the closeness to stationarity and provides control on the tail of
the randomized stopping time τ .

2. Stopping time decomposition. We employ a randomised stopping time
argument to get bounds on the total variation distance. We define the randomised
stopping time τ = τn to be the first time the walker makes a move through an edge
that was rewired before. Recall from Section 1.2.2 that Rt is the set of half-edges
involved in the rewiring at time step t . Letting R≤t = ⋃t

s=1 Rs , we set

(2.1) τ := min{t ∈ N : Xt−1 ∈ R≤t }.
As we will see later, τ behaves like a strong stationary time. We obtain our main
result by deriving bounds on Dη,x(t) in terms of conditional distributions of the
random walk involving τ and in terms of tail probabilities of τ . In particular, by
the triangle inequality, for any t ∈ N0, η ∈ ConfH and x ∈ H ,

Dη,x(t) ≤ Pη,x(τ > t)
∥∥Pη,x(Xt ∈ · | τ > t) − UH(·)∥∥TV

+ Pη,x(τ ≤ t)
∥∥Pη,x(Xt ∈ · | τ ≤ t) − UH(·)∥∥TV

(2.2)

and
Dη,x(t) ≥ Pη,x(τ > t)

∥∥Pη,x(Xt ∈ · | τ > t) − UH(·)∥∥TV

− Pη,x(τ ≤ t)
∥∥Pη,x(Xt ∈ · | τ ≤ t) − UH(·)∥∥TV.

(2.3)

With these in hand, we only need to find bounds for Pη,x(τ > t), ‖Pη,x(Xt ∈ · |
τ > t) − UH(·)‖TV and ‖Pη,x(Xt ∈ · | τ ≤ t) − UH(·)‖TV.

The key result for the proof of our main theorem is the following proposition.
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PROPOSITION 2.1 (Closeness to stationarity and tail behaviour of stopping
time). Suppose that Conditions 1.2 and 1.6 hold. For t = t (n) = o(logn), w.h.p.
in x and η, ∥∥Pη,x(Xt ∈ · | τ ≤ t) − UH(·)∥∥TV = o(1),(2.4) ∥∥Pη,x(Xt ∈ · | τ > t) − UH(·)∥∥TV = 1 − o(1),(2.5)

Pη,x(τ > t) = (1 − αn)
t (t+1)/2 + o(1).(2.6)

We close this section by showing how Theorem 1.7 follows from Proposi-
tion 2.1.

PROOF OF PROPOSITION 2.1. By Condition 1.6,

(2.7)

√
2 log(1/ε)

log(1/(1 − αn))
= O

(
α−1/2

n

) = o(logn).

Using the bounds in (2.2)–(2.3), together with (2.4)–(2.6) in Proposition 2.1, we
see that for t = o(logn),

(2.8) (1 − αn)
t (t+1)/2 + o(1) ≤ Dη,x(t) ≤ (1 − αn)

t (t+1)/2 + o(1).

Choosing t as in (1.16) we obtain Dη,x(t) = ε + o(1), which is the desired result.
�

The remainder of the paper is devoted to the proof of Proposition 2.1.

3. Pathwise probabilities. In order to prove (2.4) of Proposition 2.1, we will
show in (5.8) in Section 5 that the following crucial bound holds for most y ∈ H :

(3.1) Pη,x(Xt = y | τ ≤ t) ≥ 1 − o(1)

�
.

By most, we mean that the number of y such that this inequality holds is � − o(�)

w.h.p. in η and x. To prove (3.1), we will look at Pη,x(Xt = y, τ ≤ t) by parti-
tioning according to all possible paths taken by the walk and all possible rewiring
patterns that occur on these paths. For a time interval [s, t] := {s, s +1, . . . , t} with
s ≤ t , we define

(3.2) x[s,t] := xs · · ·xt .

In particular, for any y ∈ H ,

Pη,x(Xt = y, τ ≤ t)

=
t∑

r=1

∑
T ⊆[1,t]
|T |=r

∑
x1,...,xt−1∈H

Pη,x

(
X[1,t] = x[1,t],

xi−1 ∈ R≤i ∀i ∈ T ,xj−1 /∈ R≤j ∀j ∈ [1, t] \ T
)

(3.3)
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FIG. 4. An example of a segmented path with 4 segments. Solid lines represent the segments, con-
sisting of a path of half-edges in η, dashed lines indicate the succession of the segments. The latter
do not necessarily correspond to a pair in η, and will later correspond to rewired edges in the graph
dynamics.

with x0 = x and xt = y. Here, r is the number of steps at which the walk moves
along a previously rewired edge, and T is the set of times at which this occurs.

For a fixed sequence of half-edges x[0,t] with x0 = x and a fixed set of times
T ⊆ [1, t] with |T | = r , we will use the short-hand notation

(3.4) A(x[0,t];T ) := {
xi−1 ∈ R≤i ∀i ∈ T ,xj−1 /∈ R≤j ∀j ∈ [1, t] \ T

}
.

Writing T = {t1, . . . , tr} with 1 ≤ t1 < t2 < · · · < tr ≤ t , we note that the condi-
tional probability Pη,x(X[1,t] = x[1,t] | A(x[0,t];T )) can be nonzero only if each
subsequence x[ti−1,ti−1] induces a non-backtracking path in η for i ∈ [2, r + 1]
with t0 = 0 and tr+1 = t + 1. The last sum in (3.3) is taken over such sequences
in H , which we call segmented paths (see Figure 4). For each i ∈ [1, r + 1], the
subsequence x[ti−1,ti−1] of length ti − ti−1 that forms a nonbacktracking path in η

is called a segment.
We will restrict the last sum in (3.3) to the set of self-avoiding segmented paths.

These are the paths where no two half-edges are siblings, which means that the
vertices v(xi) visited by the half-edges xi are distinct for all i ∈ [0, t], so that if the
random walk takes this path, then it does not see the same vertex twice. We will
denote by SPη

t (x, y;T ) the set of self-avoiding segmented paths in η of length t +1
that start at x and end at y, where T gives the positions of the ends of the segments
(see Figure 5). Segmented paths x[0,t] have the nice property that the probability
Pη,x(A(x[0,t];T )) is the same for all x[0,t] that are isomorphic, as stated in the next
lemma.

LEMMA 3.1 (Isomorphic segmented path are equally likely). Fix t ∈ N, T ⊆
[1, t] and η ∈ ConfH . Suppose that x[0,t] and y[0,t] are two segmented paths in η

of length t + 1 with |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s ′ ≤ t , where |x[s,s′]| denotes
the number of distinct half-edges in x[s,s′]. Then

(3.5) Pη,x

(
A(x[0,t];T )

) = Pη,x

(
A(y[0,t];T )

)
.
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FIG. 5. An element of SP
η
t (x, y;T ) with T = {t1, t2, t3}.

PROOF. Fix x, y ∈ H . Consider the coupling ((Cx
t )t∈N0, (C

y
t )t∈N0) of two dy-

namic configuration models with parameter k starting from η, defined as follows.
Let f : H → H be such that

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yi if x = xi for some i ∈ [0, t],
xi if x = yi for some i ∈ [0, t],
η(yi) if x = η(xi) for some i ∈ [0, t],
η(xi) if x = η(yi) for some i ∈ [0, t],
x otherwise.

(3.6)

This is a one-to-one function because |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s′ ≤ t .
What f does is to map the half-edges of x[0,t] and their pairs in η to the half-edges
of y[0,t] and their pairs in η, and vice versa, while preserving the order in the path.
For the coupling, at each time t ∈ N we rewire the edges of Cx

t−1 and C
y
t−1 as

follows:

1. Choose k edges from Cx
t−1 uniformly at random without replacement, say

{z1, z2}, . . . , {z2k−1, z2k}. Choose the edges {f (z1),f (z2)}, . . . , {f (z2k−1),f (z2k)}
from C

y
t−1.

2. Rewire the half-edges z1, . . . , z2k uniformly at random to obtain Cx
t . Set

C
y
t (f (zi)) = f (Cx

t (zi)).

Step 2 and the definition of f ensure that in Step 1 {f (z1), f (z2)}, . . . ,
{f (z2k−1), f (z2k)} are in C

y
t−1. Since under the coupling the event A(x[0,t];T )

is the same as the event A(y[0,t];T ), we get the desired result. �

In order to prove the lower bound in (3.1), we will need two key facts. The
first, stated in Lemma 3.2 below, gives a lower bound on the probability of a walk
trajectory given the rewiring history. The second, stated in Lemma 4.3 below, is a
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lower bound on the number of relevant self-avoiding segmented paths, and exploits
the locally tree-like structure of the configuration model.

LEMMA 3.2 (Paths estimate given rewiring history). Suppose that t = t (n) =
o(logn) and T = {t1, . . . , tr} ⊆ [1, t]. Let x0 · · ·xt ∈ SPη

t (x, y;T ) be a self-
avoiding segmented path in η that starts at x and ends at y. Then

(3.7) Pη,x

(
X[1,t] = x[1,t] | A(x[0,t];T )

) ≥ 1 − o(1)

�r

∏
i∈[1,t]\T

1

deg(xi)
.

PROOF. In order to deal with the dependencies introduced by conditioning on
A(x[0,t];T ), we will go through a series of conditionings. First, we note that for the
random walk to follow a specific path, the half-edges it traverses should be rewired
correctly at the right times. Conditioning on A(x[0,t];T ) accomplishes part of the
job: since we have xi−1 /∈ R≤i for i ∈ [1, t] \T and x[0,t] ∈ SPη

t (x, y;T ), we know
that, at time i, xi−1 is paired to a sibling of xi in Ci , and so the random walk can
jump from xi−1 to xi with probability 1/deg(xi) at time i for i ∈ [1, t] \ T .

Let us call the path x[0,t] open if Ci(xi−1) ∼ xi for i ∈ [1, t], that is, if xi−1 is
paired to a sibling of xi in Ci for i ∈ [1, t]. Then

(3.8) Pη,x(X[1,t] = x[1,t] | x[0,t] is open) =
t∏

i=1

1

deg(xi)

and

(3.9) Pη,x(X[1,t] = x[1,t] | x[0,t] is not open) = 0.

Using these observations, we can treat the random walk and the rewiring process
separately, since the event {x[0,t] is open} depends only on the rewirings. Our goal
is to compute the probability

(3.10) Pη,x

(
x[0,t] is open | A(x[0,t];T )

)
.

Note that, by conditioning on A(x[0,t];T ), the part of the path within segments
is already open, so we only need to deal with the times the walk jumps from one
segment to another. To have x[0,t] open, each xtj−1 should be paired to one of the
siblings of xtj for j ∈ [1, r]. Hence

Pη,x

(
x[0,t] is open | A(x[0,t];T )

)
= ∑

z1,...,zr∈H
zj∼xtj

∀j∈[1,r]

Pη,x

(
Ctj (xtj−1) = zj ∀j ∈ [1, r] | A(x[0,t];T )

)
.(3.11)

Fix z1, . . . , zr ∈ H with zj ∼ xtj , and let yj = xtj−1 for j ∈ [1, r]. We will look at
the probability

(3.12) Pη,x

(
Ctj (yj ) = zj ∀j ∈ [1, r] | A(x[0,t];T )

)
.
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Conditioning on the event A(x[0,t];T ) we impose that each yj is rewired at
some time before tj , but do not specify at which time this happens. Let us refine
our conditioning one step further by specifying these times. Fix s1, . . . , sr ∈ [1, t]
such that sj ≤ tj for each j ∈ [1, r] (the sj need not be distinct). Let Â be the event
that xi−1 /∈ R≤i for i ∈ [1, t]\T and yj is rewired at time sj for the last time before
time tj for j ∈ [1, r]. Then Â ⊆ A(x[0,t];T ). Since sj is the last time before tj at
which yj is rewired, the event Ctj (yj ) = zj is the same as the event Csj (yj ) = zj

when we condition on Â. We look at the probability

(3.13) Pη,x

(
Csj (yj ) = zj ∀j ∈ [1, r] | Â)

.

Let s′
1 < · · · < s′

r ′ ∈ [1, t] be the distinct times such that s′
i = sj for some j ∈ [1, r],

and n
y
i the number of j ’s for which sj = s′

i for i ∈ [1, r ′], so that by condition-
ing on Â we rewire n

y
i half-edges yj at time s′

i . Letting also Di = {Cs′
i
(yj ) =

zj , for j such that sj = s′
i}, we can write the above conditional probability as

(3.14)
r ′∏

i=1

Pη,x

(
Di

∣∣∣ Â,

i−1⋂
j=1

Dj

)
.

We next compute these conditional probabilities.
Fix i ∈ [1, r ′] and η′ ∈ ConfH . We do one more conditioning and look at the

probability

(3.15) Pη,x

(
Di

∣∣∣ Â,

i−1⋂
j=1

Dj,Cs′
i−1 = η′

)
.

The rewiring process at time s′
i consists of two steps: (1) pick k edges uniformly at

random; (2) do a uniform rewiring. Concerning (1), by conditioning on Â, we see
that the yj ’s for which sj = s′

i are already chosen. In order to pair these to zj ’s with
sj = s′

i , the zj ’s should be chosen as well. If some of the zj ’s are already paired to
some yj ’s already chosen, then they will be automatically included in the rewiring
process. Let m′

i be m minus the number of half-edges in {x0, . . . , xt }∪{z1, . . . , zr},
for which the conditioning on Â implies that they cannot be in Rs′

i
. Then

Pη,x

(
zj ∈ Rs′

i
for j such that sj = s′

i

∣∣∣ Â,

i−1⋂
j=1

Dj,Cs′
i−1 = η′

)

≥
(m′

i−2n
y
i

k−2n
y
i

)
(m′

i−n
y
i

k−n
y
i

) =
∏n

y
i −1

j=0 (k − n
y
i − j)∏n

y
i −1

j=0 (m′
i − n

y
i − j)

≥
∏n

y
i −1

j=0 (k − n
y
i − j)

mn
y
i

.

(3.16)

Concerning (2), conditioned on the relevant zj ’s already chosen in (1), the proba-
bility that they will be paired to correct yj ’s is

(3.17)
1∏n

y
i

j=1(2k − 2j + 1)

.
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Since the last two statements hold for any η′ with Pη,x(Cs′
i−1 = η′ | Â,

⋂i−1
j=1 Dj) >

0, combining these we get

(3.18) Pη,x

(
Di

∣∣∣ Â,

i−1⋂
j=1

Dj

)
≥

∏n
y
i −1

j=0 (k − n
y
i − j)

mn
y
i
∏n

y
i

j=1(2k − 2j + 1)

=
(

1 − O(n
y
i /k)

2m

)n
y
i

.

Since
∑r ′

i=1 n
y
i = r , substituting (3.18) into (3.14) and rolling back all the condi-

tionings we did so far, we get

Pη,x

(
Ctj (xtj−1) = zj ∀j ∈ [1, r] | A(x[0,t];T )

)
≥ 1 − O(r2/k)

�r
= 1 − o(1)

�r
,

(3.19)

where we use that r2/k → 0 since r = o(logn) and k = αnn with (logn)2αn →
∞. Now sum over z1, . . . , zr in (3.11), to obtain

(3.20) Pη,x

(
x[0,t] is open | A(x[0,t];T )

) ≥ (1 − o(1))
∏r

j=1 deg(xtj )

�r
,

and multiply with (3.8) to get the desired result. �

4. Tree-like structure of the configuration model. In this section, we look
at the structure of the neighbourhood of a half-edge chosen uniformly at random
in the configuration model. Since we will work with different probability spaces,
we will denote by P a generic probability measure whose meaning will be clear
from the context.

For fixed t ∈ N, x ∈ H and η ∈ ConfH , we denote by B
η
t (x) := {y ∈ H :

distη(x, y) ≤ t} the t-neighbourhood of x in η, where distη(x, y) is the length
of the shortest nonbacktracking path from x to y. We start by estimating the mean
of |Bη

t (x)|, the number of half-edges in B
η
t (x).

LEMMA 4.1 (Average size of balls of relevant radius). Let νn be as in Condi-
tion 1.2 and suppose that t = t (n) = o(logn). Then, for any δ > 0,

(4.1) E
(|Bη

t (x)|) = [
1 + o(1)

]
νt+1
n = o

(
nδ),

where the expectation is w.r.t. μn in (1.13).

PROOF. We have

(4.2)
∣∣Bη

t (x)
∣∣ = ∑

y∈H

1{distη(x,y)≤t}.

Putting this into the expectation, we get

(4.3) E
(∣∣Bη

t (x)
∣∣) = 1

�

∑
x,y∈H

P
(
distη(x, y) ≤ t

)
.
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For fixed x, y ∈ H ,

P
(
distη(x, y) ≤ t

)
≤

t∑
d=1

∑
x1,...,xd−1∈H

P(xx1 · · ·xd−1y forms a self-avoiding path in η)

≤
t∑

d=1

∑
x1,...,xd−1∈H

(
d−1∏
j=1

deg(xj )

� − 2j + 1

)
deg(y)

� − 2d + 1

= deg(y)

�

t∑
d=1

(
d∏

i=1

�

� − 2i + 1

) ∑
x1,...,xd−1∈H

(
d−1∏
i=1

deg(xi)

�

)

= deg(y)

�

t∑
d=1

(
d∏

i=1

�

� − 2i + 1

)(∑
z∈H

deg(z)

�

)d−1
.

(4.4)

Since t = o(logn) and � = �(n), we have

(4.5) P
(
distη(x, y) ≤ t

) ≤ [
1 + o(1)

]deg(y)

�
(νn)

t .

Substituting this into (4.3), we get

(4.6) E
(∣∣Bη

t (x)
∣∣) ≤ 1 + o(1)

�

∑
x,y∈H

deg(y)

�
(νn)

t = [
1 + o(1)

]
(νn)

t+1 = o
(
nδ),

where the last equality follows from (R2) in Condition 1.2 and the fact that t =
o(logn). �

For the next result, we will use an exploration process to build the neighbour-
hood of a uniformly chosen half-edge. (Similar exploration processes have been
used in [3, 7] and [18].) We explore the graph by starting from a uniformly chosen
half-edge x and building up the graph by successive uniform pairings, as explained
in the procedure below. Let G(s) denote the thorny graph obtained after s pairings
as follows (in our context, a thorny graph is a graph in which half-edges are not
necessarily paired to form edges, as shown in Figure 6). We set G(0) to consist of
x, its siblings and the incident vertex v(x). Along the way, we keep track of the
set of unpaired half-edges at each time s, denoted by U(s) ⊂ H , and the so-called
active half-edges, A(s) ⊂ U(s). We initialize U(0) = H and A(0) = {x}. We build
up the sequence of graphs (G(s))s∈N0 as follows:

1. At each time s ∈ N, take the next unpaired half-edge in A(s − 1), say y.
Sample a half-edge uniformly at random from H , say z. If z is already paired or
z = y, then reject and sample again. Pair y and z.

2. Add the newly formed edge {y, z}, the incident vertex v(z) of z, and its
siblings to G(s − 1), to obtain G(s).
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FIG. 6. Example snapshots of G(s) at times s = 1 and s = 3.

3. Set U(s) = U(s − 1) \ {y, z}, that is, remove y, z from the set of unpaired
half-edges, and set A(s) = A(s − 1) ∪ {H(v(z))} \ {y, z}, that is, add siblings of z

to the set of active half-edges and remove the active half-edges just paired.

This procedure stops when A(s) is empty. We think of A(s) as a first-in first-out
queue. So, when we say that we pick the next half-edge in Step 1, we refer to the
half-edge on top of the queue, which ensures that we maintain the breadth-first
order. The rejection sampling used in Step 1 ensures that the resulting graph is
distributed according to the configuration model. This procedure eventually gives
us the connected component of x in η, the part of the graph that can be reached
from x by a nonbacktracking walk, where η is distributed uniformly on ConfH .

LEMMA 4.2 (Tree-like neighbourhoods). Suppose that s = s(n) =
o(n(1−2δ)/2) for some δ ∈ (0, 1

2). Then G(s) is a tree with probability 1 − o(n−δ).

PROOF. Let F be the first time the uniform sampling of z in Step 1 fails at
the first attempt, or z is a sibling of x, or z is in A(s − 1). Thus, at time F we
either choose an already paired half-edge or we form a cycle by pairing to some
half-edge already present in the graph. We have

(4.7) P
(
G(s) is not a tree

) ≤ P(F ≤ s).

Let Yi , i ∈ N, be i.i.d. random variables whose distribution is the same as the dis-
tribution of the degree of a uniformly chosen half-edge. When we form an edge
before time F , we use one of the unpaired half-edges of the graph, and add new
unpaired half-edges whose number is distributed as Y1. Hence the number of un-
paired half-edges in G(u) is stochastically dominated by

∑u+1
i=1 Yi − u, with one

of the Yi’s coming from x and the other ones coming from the formation of each
edge. Therefore, the probability that one of the conditions of F will be met at step
u is stochastically dominated by (

∑u
i=1 Yi + u − 2)/�. We either choose an un-

paired half-edge in G(u) or we choose a half-edge belonging to an edge in G(u),
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and by the union bound we have

P
(
G(s) is not a tree | (Yi)i∈[1,s]

)
≤ P

(
F ≤ s | (Yi)i∈[1,s]

)
≤

∑s
u=1

∑u
i=1(Yi + u − 2)

�
=

∑s
i=1(s − i + 1)Yi + s(s − 1)/2

�
.

(4.8)

Since E(Y1) = νn = O(1) and s = o(n(1−2δ)/2), via the Markov inequality we get
that, with probability at least 1 − o(n−δ),

(4.9) s

s∑
i=1

Yi < n1−δ.

Combining this with the bound given above and the fact that � = �(n), we arrive
at

(4.10) P
(
G(s) is not a tree

) = o
(
n−δ). �

To further prepare for the proof of the lower bound in (3.1) and Proposition 2.1
in Section 5, we introduce one last ingredient. For x ∈ H and η ∈ ConfH , we
denote by B̄

η
t (x) the set of half-edges from which there is a nonbacktracking path

to x of length at most t . For fixed t ∈ N, T = {t1, . . . , tr} ⊆ [1, t] and η ∈ ConfH ,
we say that an (r + 1)-tuple (x0, x1, . . . , xr) is good for T in η if it satisfies the
following two properties:

1. B
η
tj−tj−1

(xj ) is a tree for j ∈ [1, r] with t0 = 0, and B̄
η
t−tr

(xr) is a tree.

2. The trees B
η
tj−tj−1

(xj ) for j ∈ [1, r] and B̄
η
t−tr

(xr) are all disjoint.

For a good (r + 1)-tuple all the segmented paths, such that the ith segment starts
from xi−1 and is of length ti − ti−1 for i ∈ [1, r] and the (r + 1)st segment ends at
xr and is of length t − tr , are self-avoiding by the tree property. The next lemma
states that w.h.p. in η almost all (r + 1)-tuples are good. We denote by N

η
t (T ) the

set of (r + 1)-tuples that are good for T in η, and let N
η
t (T )c be the complement

of N
η
t (T ). We have the following estimate on |Nη

t (T )|.

LEMMA 4.3 (Estimate on good paths). Suppose that t = t (n) = o(logn). Then
there exist δ̄ > 0 such that w.h.p. in η for all T ⊆ [1, t],
(4.11)

∣∣Nη
t (T )

∣∣ = (
1 − n−δ̄)�|T |+1.

PROOF. Fix ε > 0 and T ⊆ [1, t] with |T | = r . We want to show that w.h.p.
|Nη

t (T )c| ≤ ε�r+1. By the Markov inequality, we have

(4.12) P
(∣∣Nη

t (T )c
∣∣ > ε�r+1) ≤ E(|Nη

t (T )c|)
ε�r+1 = P(Z[0,r] ∈ N

η
t (T )c)

ε
,
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where Z0, . . . ,Zr are i.i.d. uniform half-edges and we use that 1/�r+1 is the uni-
form probability over a collection of r + 1 half-edges. Let Bi−1 = B

η
ti−ti−1

(Zi−1)

for i ∈ [1, r] and Br = B
η
t−tr

(Zr). By the union bound,

(4.13) P
(
Z[0,r] ∈ N

η
t (T )c

) ≤
r∑

i=0

P(Bi is not a tree) +
r∑

i,j=0

P(Bi ∩ Bj �= ∅).

By Lemma 4.1 and since t = o(logn), for any 0 < δ < 1
2 we have E|Bi | = o(nδ),

and so by the Markov inequality |Bi | = o(n(1−2δ)/2) with probability 1 − o(n−δ).
Hence, by Lemma 4.2 and since � = �(n), for i ∈ [1, r], we have

(4.14) P(Bi−1 is not a tree) = o
(
n−δ).

Again using Lemma 4.1, we see that for any i, j ∈ [1, r],

P(Bi ∩ Bj �=∅) ≤ P
(
Zj ∈ B

η
t (Zi)

) = E(|Bη
t (Zi)|)
�

≤ o
(
nδ−1)

.(4.15)

Since r ≤ t = o(logn), setting δ̄ = 2δ/3 and taking ε = n−δ , we get

(4.16) P
(∣∣Nη

t (T )c
∣∣ > ε�r+1) ≤ rn−δ̄ + r2nδ̄−1

ε
= o

(
n−δ/4)

uniformly in T ⊆ [1, t]. Since there are 2t different T ⊆ [1, t] and 2t = 2o(logn) =
o(nδ/8), taking the union bound we see that (4.11) holds for all T ⊆ [1, t] with
probability 1 − o(n−δ/8). �

5. Closeness to stationarity and tail behaviour of stopping time. We are
now ready to prove the lower bound in (3.1) and Proposition 2.1. Before giving
these proofs, we need one more lemma, for which we introduce some new nota-
tion. For fixed t ∈ N, T ⊆ [1, t] with |T | = r > 0, η ∈ ConfH and x, y ∈ H , let
N

η
t (x, y;T ) denote the set of (r − 1)-tuples such that (x, x1, . . . , xr−1, y) is good

for T in η. Furthermore, for a given (r + 1)-tuple x = (x, x1, . . . , xr−1, y) that is
good for T in η, let SPη

t (x;T ) denote the set of all segmented paths in which the ith
segment starts at xi−1 and is of length ti − ti−1 for i ∈ [1, r] with x0 = x and t0 = 0,
and the (r + 1)st segment ends at y and is of length t − tr . By the definition of a
good tuple, these paths are self-avoiding, and hence SPη

t (x;T ) ⊂ SPη
t (x, y;T ).

LEMMA 5.1 (Total mass of relevant paths). Suppose that t = t (n) = o(logn).
Then w.h.p. in η and x, y for all T ⊆ [1, t],

(5.1)
∑

x[0,t]∈SP
η
t (x,y;T )

Pη,x

(
X[1,t] = x[1,t] | A(x[0,t];T )

) ≥ 1 − o(1)

�
.
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PROOF. By Lemma 4.3, the number of pairs of half-edges x, y for which
|Nη

t (x, y;T )| ≥ (1 − n−δ̄)�|T |−1 = [1 − o(1)]�|T |−1 for all T ∈ [1, t] is at least
(1 − 2t n−δ̄)�2 = [1 − o(1)]�2 w.h.p. in η. Take such a pair x, y ∈ H , and let r =
|T |. By Lemma 3.2 and the last observation before the statement of Lemma 5.1,
we have ∑

x[0,t]∈SP
η
t (x,y;T )

Pη,x

(
X[1,t] = x[1,t] | A(x[0,t];T )

)

≥ ∑
x∈N

η
t (x,y;T )

∑
y0...yt∈SP

η
t (x,T )

1 − o(1)

�r

∏
i∈[1,t]\T

1

deg(yi)
.

(5.2)

We analyze at the second sum by inspecting the contributions coming from each
segment separately. For fixed x ∈ N

η
t (x, y;T ), when we sum over the segmented

paths in SPη
t (x, T ), we sum over all paths that go out of xi−1 of length ti − ti−1 for

i ∈ [1, r]. Since
∏ti−1

j=ti−1+1
1

deg(yj )
is the probability that the random walk without

backtracking follows this path on the static graph given by η starting from xi−1,
when we sum over all such paths the contribution from these terms sums up to 1
for each i ∈ [1, r], that is, the contributions of the first r segments coming from
the products of inverse degrees sum up to 1. For the last segment we sum, over
all paths going into y, the probability that the random walk without backtracking
on the static graph given by η follows the path. Since the uniform distribution is
stationary for this random walk, the sum over the last segment of the probabilities
1
�

∏t
j=tr+1

1
deg(yj )

gives us 1/�. With this observation, using that |Nη
t (x, y;T )| ≥

(1 − o(1))�r−1, we get∑
x[0,t]∈SP

η
t (x,y;T )

Pη,x

(
X[1,t] = x[1,t] | A(x[0,t];T )

)

≥ 1 − o(1)

�

∑
x∈N

η
t (x,y;T )

1 − o(1)

�r−1 = 1 − o(1)

�
,

(5.3)

which is the desired result. �

• PROOF OF (2.4). For any self-avoiding segmented path x0 · · ·xt , we have
|x[s,s′]| = s′ − s + 1 for all 1 ≤ s < s′ ≤ t . By Lemma 3.1, the probability
Pη,x(A(x[0,t];T )) depends on η and T only, and we can write Pη,x(A(x[0,t];T )) =
p

η
t (T ) for any xx1 · · ·xt−1y ∈ SPη

t (x, y;T ). Applying Lemma 5.1, we get

Pη,x(Xt = y, τ ≤ t)

≥
t∑

r=1

∑
T ⊆[1,t]
|T |=r

∑
x[0,t]∈SP

η
t (x,y;T )

Pη,x

(
X[1,t] = x[1,t] | A(x[0,t];T )

)
(5.4)
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× Pη,x

(
A(x[0,t];T )

)
≥ 1 − o(1)

�

t∑
r=1

∑
T ⊆[1,t]
|T |=r

p
η
t (T ).

If the t-neighbourhood of x in η is a tree, then all t-step nonbacktracking paths
starting at x are self-avoiding (here is a place where the nonbacktracking nature
of our walk is crucially used). In particular, for any such path xx1 · · ·xt we have
Pη,x(A(x[0,t];∅)) = p

η
t (∅). Denoting by �

η
t (x) the set of paths in η of length t

that start from x, we also have

Pη,x(τ > t) = ∑
x0···xt∈�

η
t (x)

Pη,x

(
X[1,t] = x[1,t],A(x[0,t];∅)

)

= ∑
x0···xt∈�

η
t (x)

t∏
i=1

1

deg(xi)
p

η
t (∅) = p

η
t (∅),

(5.5)

since the product
∏t

i=1
1

deg(xi )
is the probability that a random walk without back-

tracking in the static η follows the path x0x1 · · ·xt , and we take the sum over all
paths going out of x.

For a fixed path x0x1 · · ·xt , we have

t∑
r=1

∑
T ⊆[1,t]
|T |=r

Pη,x

(
A(x[0,t];T )

) = 1 − Pη,x

(
A(x[0,t];∅)

)
.(5.6)

So, when the t-neighbourhood of x in η is a tree, we have

t∑
r=1

∑
T ⊆[1,t]
|T |=r

p
η
t (T ) = 1 − p

η
t (∅) = 1 − Pη,x(τ > t) = Pη,x(τ ≤ t),(5.7)

which gives

(5.8) Pη,x(Xt = y, τ ≤ t) ≥ 1 − o(1)

�
Pη,x(τ ≤ t)

and settles the lower bound (3.1). Since the latter holds w.h.p. in η and x, y, we
have that the number of y for which this holds is [1 − o(1)]� w.h.p. in η and x.
Denoting the set of y ∈ H for which the lower bound in (3.1) holds by N

η
t (x), we

get that w.h.p. in η and x,∥∥Pη,x(Xt ∈ · | τ ≤ t) − UH(·)∥∥TV

= ∑
y∈H

[
1

�
− Pη,x(Xt = y | τ ≤ t)

]+
(5.9)



RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS 1999

≤ ∑
y∈N

η
t (x)

[
1

�
− 1 − o(1)

�

]+
+ ∑

y /∈N
η
t (x)

1

�

= o(1),

which is (2.4). �

• PROOF OF (2.5). First, note that Pη,x(Xt ∈ B
η
t (x) | τ > t) = 1. On the other

hand, using Lemma 4.1 and the Markov inequality, we see that UH(B
η
t (x)) =

|Bη
t (x)|/� = o(1) w.h.p. in η and x, and so we get∥∥Pη,x(Xt ∈ · | τ > t) − UH(·)∥∥TV

≥ Pη,x

(
Xt ∈ B

η
t (x) | τ > t

) − UH

(
B

η
t (x)

)
= 1 − o(1).

(5.10)

�

• PROOF OF (2.6). Taking T = ∅ in Lemma 4.3, we see that B
η
t (x) is a tree

w.h.p. in η and x, so each path in η of length t that goes out of x is self-avoiding.
By looking at pathwise probabilities, we see that

(5.11) Pη,x(τ > t) = ∑
x0···xt∈�

η
t (x)

Pη,x

(
X[1,t] = x[1,t], xi−1 /∈ R≤i ∀i ∈ [1, t]).

Since the event {xi−1 /∈ R≤i ∀i ∈ [1, t]} implies that the edge involving xi−1 is
open a time i,

Pη,x

(
X[1,t] = x[1,t] | xi−1 /∈ R≤i ∀i ∈ [1, t]) =

t∏
i=1

1

deg(xi)
.(5.12)

Next, let us look at the probability Pη,x(xi /∈ R≤i ∀i ∈ [1, t]). By rearranging and
conditioning, we get

Pη,x

(
xi−1 /∈ R≤i ∀i ∈ [1, t])
= Pη,x

(
xj /∈ Ri ∀j ∈ [i − 1, t − 1] ∀i ∈ [1, t])

=
t∏

i=1

Pη,x

(
xj /∈ Ri ∀j ∈ [i − 1, t − 1] |

xk /∈ Rj ∀k ∈ [j − 1, t − 1] ∀j ∈ [1, i − 1]).
(5.13)

Observe that, on the event {xk /∈ Rj ∀k ∈ [j − 1, t − 1 ∀j ∈ [1, i − 1]}, the path
xi−1 · · ·xt−1 has not rewired until time i − 1, and so the number of edges given by
these half-edges is t − i + 1, since it was originally a self-avoiding path. With this
we see that for any i ∈ [1, t],

(5.14)

Pη,x

(
xj /∈ Ri ∀j ∈ [i − 1, t − 1] | xk /∈ Rj ∀k ∈ [j − 1, t − 1] ∀j ∈ [1, i − 1])
=

(m−t+i−1
k

)(m
k

) ,
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and hence

Pη,x

(
xi−1 /∈ R≤i ∀i ∈ [1, t]) =

t∏
i=1

(m−t+i−1
k

)(m
k

)
=

t∏
i=1

(m−i
k

)(m
k

)
=

t∏
i=1

i−1∏
j=0

(
1 − k

m − j

)

=
t∏

j=1

(
1 − k

m − j + 1

)t−j+1
.

(5.15)

Since j ≤ t = o(logn), m = �(n) and n/ log2 n = o(k), we have

Pη,x

(
xi−1 /∈ R≤i for all i ∈ [1, t]) = [

1 + o(1)
]
(1 − k/m)t(t+1)/2

= (1 − αn)
t (t+1)/2 + o(1).

(5.16)

Putting this together with (5.12) and inserting it into (5.11), we get

Pη,x(τ > t) = [
(1 − αn)

t (t+1)/2 + o(1)
] ∑
x0···xt∈�

η
t (x)

t∏
i=1

1

deg(xi)

= (1 − αn)
t (t+1)/2 + o(1),

(5.17)

since, for each path x0 · · ·xt , the product
∏t

i=1
1

deg(xi )
is the probability that the

random walk without backtracking on the static graph given by η follows the path,
and we sum over all paths starting from x. �
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