1,070 research outputs found

    Towards Automated Retrieval of 3D Designed Data in 3D Sensed Data

    Get PDF

    Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes

    Full text link
    We present the Semantic Robot Programming (SRP) paradigm as a convergence of robot programming by demonstration and semantic mapping. In SRP, a user can directly program a robot manipulator by demonstrating a snapshot of their intended goal scene in workspace. The robot then parses this goal as a scene graph comprised of object poses and inter-object relations, assuming known object geometries. Task and motion planning is then used to realize the user's goal from an arbitrary initial scene configuration. Even when faced with different initial scene configurations, SRP enables the robot to seamlessly adapt to reach the user's demonstrated goal. For scene perception, we propose the Discriminatively-Informed Generative Estimation of Scenes and Transforms (DIGEST) method to infer the initial and goal states of the world from RGBD images. The efficacy of SRP with DIGEST perception is demonstrated for the task of tray-setting with a Michigan Progress Fetch robot. Scene perception and task execution are evaluated with a public household occlusion dataset and our cluttered scene dataset.Comment: published in ICRA 201

    Going Further with Point Pair Features

    Full text link
    Point Pair Features is a widely used method to detect 3D objects in point clouds, however they are prone to fail in presence of sensor noise and background clutter. We introduce novel sampling and voting schemes that significantly reduces the influence of clutter and sensor noise. Our experiments show that with our improvements, PPFs become competitive against state-of-the-art methods as it outperforms them on several objects from challenging benchmarks, at a low computational cost.Comment: Corrected post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016; https://link.springer.com/chapter/10.1007/978-3-319-46487-9_5

    Radial Intersection Count Image: a Clutter Resistant 3D Shape Descriptor

    Full text link
    A novel shape descriptor for cluttered scenes is presented, the Radial Intersection Count Image (RICI), and is shown to significantly outperform the classic Spin Image (SI) and 3D Shape Context (3DSC) in both uncluttered and, more significantly, cluttered scenes. It is also faster to compute and compare. The clutter resistance of the RICI is mainly due to the design of a novel distance function, capable of disregarding clutter to a great extent. As opposed to the SI and 3DSC, which both count point samples, the RICI uses intersection counts with the mesh surface, and is therefore noise-free. For efficient RICI construction, novel algorithms of general interest were developed. These include an efficient circle-triangle intersection algorithm and an algorithm for projecting a point into SI-like (α\alpha, β\beta) coordinates. The 'clutterbox experiment' is also introduced as a better way of evaluating descriptors' response to clutter. The SI, 3DSC, and RICI are evaluated in this framework and the advantage of the RICI is clearly demonstrated.Comment: 18 pages, 16 figures, to be published in Computers & Graphic
    • …
    corecore