21,728 research outputs found

    The use of Virtual Reality in Enhancing Interdisciplinary Research and Education

    Get PDF
    Virtual Reality (VR) is increasingly being recognized for its educational potential and as an effective way to convey new knowledge to people, it supports interactive and collaborative activities. Affordable VR powered by mobile technologies is opening a new world of opportunities that can transform the ways in which we learn and engage with others. This paper reports our study regarding the application of VR in stimulating interdisciplinary communication. It investigates the promises of VR in interdisciplinary education and research. The main contributions of this study are (i) literature review of theories of learning underlying the justification of the use of VR systems in education, (ii) taxonomy of the various types and implementations of VR systems and their application in supporting education and research (iii) evaluation of educational applications of VR from a broad range of disciplines, (iv) investigation of how the learning process and learning outcomes are affected by VR systems, and (v) comparative analysis of VR and traditional methods of teaching in terms of quality of learning. This study seeks to inspire and inform interdisciplinary researchers and learners about the ways in which VR might support them and also VR software developers to push the limits of their craft.Comment: 6 Page

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Distributed Learning System Design: A New Approach and an Agenda for Future Research

    Get PDF
    This article presents a theoretical framework designed to guide distributed learning design, with the goal of enhancing the effectiveness of distributed learning systems. The authors begin with a review of the extant research on distributed learning design, and themes embedded in this literature are extracted and discussed to identify critical gaps that should be addressed by future work in this area. A conceptual framework that integrates instructional objectives, targeted competencies, instructional design considerations, and technological features is then developed to address the most pressing gaps in current research and practice. The rationale and logic underlying this framework is explicated. The framework is designed to help guide trainers and instructional designers through critical stages of the distributed learning system design process. In addition, it is intended to help researchers identify critical issues that should serve as the focus of future research efforts. Recommendations and future research directions are presented and discussed

    Technology for social work education

    Get PDF
    The intention of this paper is to examine aspects of the role of information technology in social work education in relation to existing developments within an international context, conceptual issues concerning the application of CAL to the teaching of social work, and the implication of these issues for the development of integrated teaching modules in Interpersonal Skills and Research Methods, together with some of the practical issues encountered and solutions being adopted The context for the paper is joint work by the authors as members of the ProCare Project, a partnership between Southampton and Bournemouth Universities, and part of the UK Government‐funded Teaching and Learning Technology Programme (TLTP) in Higher Education. ProCare is developing courseware on Interpersonal Skills and on Research Methods for use in qualifying‐level Social Work and Nursing education. While the emphasis is on the social work version of the Interpersonal Skills module, limited reference is made to the nursing component and the differential approaches that proved necessary within the subject areas under development

    Toward future 'mixed reality' learning spaces for STEAM education

    Get PDF
    Digital technology is becoming more integrated and part of modern society. As this begins to happen, technologies including augmented reality, virtual reality, 3d printing and user supplied mobile devices (collectively referred to as mixed reality) are often being touted as likely to become more a part of the classroom and learning environment. In the discipline areas of STEAM education, experts are expected to be at the forefront of technology and how it might fit into their classroom. This is especially important because increasingly, educators are finding themselves surrounded by new learners that expect to be engaged with participatory, interactive, sensory-rich, experimental activities with greater opportunities for student input and creativity. This paper will explore learner and academic perspectives on mixed reality case studies in 3d spatial design (multimedia and architecture), paramedic science and information technology, through the use of existing data as well as additional one-on-one interviews around the use of mixed reality in the classroom. Results show that mixed reality can provide engagement, critical thinking and problem solving benefits for students in line with this new generation of learners, but also demonstrates that more work needs to be done to refine mixed reality solutions for the classroom

    Supporting mathematics learning

    Get PDF

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin
    corecore