864 research outputs found

    LOT-ECC: LOcalized and tiered reliability mechanisms for commodity memory systems

    Get PDF
    pre-printMemory system reliability is a serious and growing concern in modern servers. Existing chipkill-level mem- ory protection mechanisms suffer from several draw- backs. They activate a large number of chips on ev- ery memory access - this increases energy consump- tion, and reduces performance due to the reduction in rank-level parallelism. Additionally, they increase ac- cess granularity, resulting in wasted bandwidth in the absence of sufficient access locality. They also restrict systems to use narrow-I/O x4 devices, which are known to be less energy-efficient than the wider x8 DRAM de- vices. In this paper, we present LOT-ECC, a local- ized and multi-tiered protection scheme that attempts to solve these problems. We separate error detection and error correction functionality, and employ simple checksum and parity codes effectively to provide strong fault-tolerance, while simultaneously simplifying imple- mentation. Data and codes are localized to the same DRAM row to improve access efficiency. We use sys- tem firmware to store correction codes in DRAM data memory and modify the memory controller to handle data mapping. We thus build an effective fault-tolerance mechanism that provides strong reliability guarantees, activates as few chips as possible (reducing power con- sumption by up to 44.8% and reducing latency by up to 46.9%), and reduces circuit complexity, all while work- ing with commodity DRAMs and operating systems. Fi- nally, we propose the novel concept of a heterogeneous DIMM that enables the extension of LOT-ECC to x16 and wider DRAM parts

    LOT-ECC: LOcalized and tiered reliability mechanisms for commodity memory systems

    Get PDF
    pre-printMemory system reliability is a serious and growing concern in modern servers. Existing chipkill-level mem- ory protection mechanisms suffer from several draw- backs. They activate a large number of chips on ev- ery memory access - this increases energy consump- tion, and reduces performance due to the reduction in rank-level parallelism. Additionally, they increase ac- cess granularity, resulting in wasted bandwidth in the absence of sufficient access locality. They also restrict systems to use narrow-I/O x4 devices, which are known to be less energy-efficient than the wider x8 DRAM de- vices. In this paper, we present LOT-ECC, a local- ized and multi-tiered protection scheme that attempts to solve these problems. We separate error detection and error correction functionality, and employ simple checksum and parity codes effectively to provide strong fault-tolerance, while simultaneously simplifying imple- mentation. Data and codes are localized to the same DRAM row to improve access efficiency. We use sys- tem firmware to store correction codes in DRAM data memory and modify the memory controller to handle data mapping. We thus build an effective fault-tolerance mechanism that provides strong reliability guarantees, activates as few chips as possible (reducing power con- sumption by up to 44.8% and reducing latency by up to 46.9%), and reduces circuit complexity, all while work- ing with commodity DRAMs and operating systems. Fi- nally, we propose the novel concept of a heterogeneous DIMM that enables the extension of LOT-ECC to x16 and wider DRAM parts

    Doctor of Philosophy

    Get PDF
    dissertationThe computing landscape is undergoing a major change, primarily enabled by ubiquitous wireless networks and the rapid increase in the use of mobile devices which access a web-based information infrastructure. It is expected that most intensive computing may either happen in servers housed in large datacenters (warehouse- scale computers), e.g., cloud computing and other web services, or in many-core high-performance computing (HPC) platforms in scientific labs. It is clear that the primary challenge to scaling such computing systems into the exascale realm is the efficient supply of large amounts of data to hundreds or thousands of compute cores, i.e., building an efficient memory system. Main memory systems are at an inflection point, due to the convergence of several major application and technology trends. Examples include the increasing importance of energy consumption, reduced access stream locality, increasing failure rates, limited pin counts, increasing heterogeneity and complexity, and the diminished importance of cost-per-bit. In light of these trends, the memory system requires a major overhaul. The key to architecting the next generation of memory systems is a combination of the prudent incorporation of novel technologies, and a fundamental rethinking of certain conventional design decisions. In this dissertation, we study every major element of the memory system - the memory chip, the processor-memory channel, the memory access mechanism, and memory reliability, and identify the key bottlenecks to efficiency. Based on this, we propose a novel main memory system with the following innovative features: (i) overfetch-aware re-organized chips, (ii) low-cost silicon photonic memory channels, (iii) largely autonomous memory modules with a packet-based interface to the proces- sor, and (iv) a RAID-based reliability mechanism. Such a system is energy-efficient, high-performance, low-complexity, reliable, and cost-effective, making it ideally suited to meet the requirements of future large-scale computing systems

    Doctor of Philosophy in Computing

    Get PDF
    dissertatio

    Enabling Recovery of Secure Non-Volatile Memories

    Get PDF
    Emerging non-volatile memories (NVMs), such as phase change memory (PCM), spin-transfer torque RAM (STT-RAM) and resistive RAM (ReRAM), have dual memory-storage characteristics and, therefore, are strong candidates to replace or augment current DRAM and secondary storage devices. The newly released Intel 3D XPoint persistent memory and Optane SSD series have shown promising features. However, when these new devices are exposed to events such as power loss, many issues arise when data recovery is expected. In this dissertation, I devised multiple schemes to enable secure data recovery for emerging NVM technologies when memory encryption is used. With the data-remanence feature of NVMs, physical attacks become easier; hence, emerging NVMs are typically paired with encryption. In particular, counter-mode encryption is commonly used due to its performance and security advantages over other schemes (e.g., electronic codebook encryption). However, enabling data recovery in power failure events requires the recovery of security metadata associated with data blocks. Naively writing security metadata updates along with data for each operation can further exacerbate the write endurance problem of NVMs as they have limited write endurance and very slow write operations. Therefore, it is necessary to enable the recovery of data and security metadata (encryption counters) but without incurring a significant number of writes. The first work of this dissertation presents an explanation of Osiris, a novel mechanism that repurposes error correcting code (ECC) co-located with data to enable recovery of encryption counters by additionally serving as a sanity-check for encryption counters used. Thus, by using a stop-loss mechanism with a limited number of trials, ECC can be used to identify which encryption counter that was used most recently to encrypt the data and, hence, allow correct decryption and recovery. The first work of this dissertation explores how different stop-loss parameters along with optimizations of Osiris can potentially reduce the number of writes. Overall, Osiris enables the recovery of encryption counters while achieving better performance and fewer writes than a conventional write-back caching scheme of encryption counters, which lacks the ability to recover encryption counters. Later, in the second work, Osiris implementation is expanded to work with different counter-mode memory encryption schemes, where we use an epoch-based approach to periodically persist updated counters. Later, when a crash occurs, we can recover counters through test-and-verification to identify the correct counter within the size of an epoch for counter recovery. Our proposed scheme, Osiris-Global, incurs minimal performance overheads and write overheads in enabling the recovery of encryption counters. In summary, the findings of the present PhD work enable the recovery of secure NVM systems and, hence, allows persistent applications to leverage the persistency features of NVMs. Meanwhile, it also minimizes the number of writes required in meeting this crash consistency requirement of secure NVM systems

    Architectural Techniques to Enable Reliable and Scalable Memory Systems

    Get PDF
    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even building the next Exascale supercomputer. To ensure even a bare-minimum level of reliability, present-day solutions tend to have high performance, power and area overheads. Ideally, we would like memory systems to remain robust, scalable, and implementable while keeping the overheads to a minimum. This dissertation describes how simple cross-layer architectural techniques can provide orders of magnitude higher reliability and enable seamless scalability for memory systems while incurring negligible overheads.Comment: PhD thesis, Georgia Institute of Technology (May 2017

    Dvé:Improving DRAM reliability and performance on-demand via coherent replication

    Get PDF
    corecore