227 research outputs found

    Advanced Data Mining Techniques for Compound Objects

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in large data collections. The most important step within the process of KDD is data mining which is concerned with the extraction of the valid patterns. KDD is necessary to analyze the steady growing amount of data caused by the enhanced performance of modern computer systems. However, with the growing amount of data the complexity of data objects increases as well. Modern methods of KDD should therefore examine more complex objects than simple feature vectors to solve real-world KDD applications adequately. Multi-instance and multi-represented objects are two important types of object representations for complex objects. Multi-instance objects consist of a set of object representations that all belong to the same feature space. Multi-represented objects are constructed as a tuple of feature representations where each feature representation belongs to a different feature space. The contribution of this thesis is the development of new KDD methods for the classification and clustering of complex objects. Therefore, the thesis introduces solutions for real-world applications that are based on multi-instance and multi-represented object representations. On the basis of these solutions, it is shown that a more general object representation often provides better results for many relevant KDD applications. The first part of the thesis is concerned with two KDD problems for which employing multi-instance objects provides efficient and effective solutions. The first is the data mining in CAD parts, e.g. the use of hierarchic clustering for the automatic construction of product hierarchies. The introduced solution decomposes a single part into a set of feature vectors and compares them by using a metric on multi-instance objects. Furthermore, multi-step query processing using a novel filter step is employed, enabling the user to efficiently process similarity queries. On the basis of this similarity search system, it is possible to perform several distance based data mining algorithms like the hierarchical clustering algorithm OPTICS to derive product hierarchies. The second important application is the classification and search for complete websites in the world wide web (WWW). A website is a set of HTML-documents that is published by the same person, group or organization and usually serves a common purpose. To perform data mining for websites, the thesis presents several methods to classify websites. After introducing naive methods modelling websites as webpages, two more sophisticated approaches to website classification are introduced. The first approach uses a preprocessing that maps single HTML-documents within each website to so-called page classes. The second approach directly compares websites as sets of word vectors and uses nearest neighbor classification. To search the WWW for new, relevant websites, a focused crawler is introduced that efficiently retrieves relevant websites. This crawler minimizes the number of HTML-documents and increases the accuracy of website retrieval. The second part of the thesis is concerned with the data mining in multi-represented objects. An important example application for this kind of complex objects are proteins that can be represented as a tuple of a protein sequence and a text annotation. To analyze multi-represented objects, a clustering method for multi-represented objects is introduced that is based on the density based clustering algorithm DBSCAN. This method uses all representations that are provided to find a global clustering of the given data objects. However, in many applications there already exists a sophisticated class ontology for the given data objects, e.g. proteins. To map new objects into an ontology a new method for the hierarchical classification of multi-represented objects is described. The system employs the hierarchical structure of the ontology to efficiently classify new proteins, using support vector machines

    Efficient Analysis in Multimedia Databases

    Get PDF
    The rapid progress of digital technology has led to a situation where computers have become ubiquitous tools. Now we can find them in almost every environment, be it industrial or even private. With ever increasing performance computers assumed more and more vital tasks in engineering, climate and environmental research, medicine and the content industry. Previously, these tasks could only be accomplished by spending enormous amounts of time and money. By using digital sensor devices, like earth observation satellites, genome sequencers or video cameras, the amount and complexity of data with a spatial or temporal relation has gown enormously. This has led to new challenges for the data analysis and requires the use of modern multimedia databases. This thesis aims at developing efficient techniques for the analysis of complex multimedia objects such as CAD data, time series and videos. It is assumed that the data is modeled by commonly used representations. For example CAD data is represented as a set of voxels, audio and video data is represented as multi-represented, multi-dimensional time series. The main part of this thesis focuses on finding efficient methods for collision queries of complex spatial objects. One way to speed up those queries is to employ a cost-based decompositioning, which uses interval groups to approximate a spatial object. For example, this technique can be used for the Digital Mock-Up (DMU) process, which helps engineers to ensure short product cycles. This thesis defines and discusses a new similarity measure for time series called threshold-similarity. Two time series are considered similar if they expose a similar behavior regarding the transgression of a given threshold value. Another part of the thesis is concerned with the efficient calculation of reverse k-nearest neighbor (RkNN) queries in general metric spaces using conservative and progressive approximations. The aim of such RkNN queries is to determine the impact of single objects on the whole database. At the end, the thesis deals with video retrieval and hierarchical genre classification of music using multiple representations. The practical relevance of the discussed genre classification approach is highlighted with a prototype tool that helps the user to organize large music collections. Both the efficiency and the effectiveness of the presented techniques are thoroughly analyzed. The benefits over traditional approaches are shown by evaluating the new methods on real-world test datasets

    Spatial Database Support for Virtual Engineering

    Get PDF
    The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery. This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects. After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects. In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets.Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wichtiger Faktor fĂŒr den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer kĂŒrzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effektive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen rĂ€umlichen Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu genĂŒgen, mĂŒssen entsprechend spezialisierte Zugriffsmethoden in vollwertige Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-aktionen, kontrollierte NebenlĂ€ufigkeit und Wiederanlauf sichergestellt sind. Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen fĂŒr Kollisions- und Ähnlichkeitsanfragen auf komplexen rĂ€umlichen Objekten zu ent-wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu integrieren. Im ersten Teil der Arbeit werden verschiedene rĂ€umliche Indexstrukturen zur effizienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre IntegrationsfĂ€higkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-knĂŒpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsanfragen vorgestellt. Das erste Verfahren benutzt statistische Informationen rĂ€umlicher Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren beruht auf einer kostenbasierten Zerlegung komplexer rĂ€umlicher Datenbank- Objekte. Diese beiden Verfahren ergĂ€nzen sich gegenseitig und können unabhĂ€ngig voneinander oder zusammen eingesetzt werden. In einer ausfĂŒhrlichen experimentellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten ermöglichen. Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle fĂŒr rĂ€um-liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionierende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlichkeitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft, durch große Datenmengen zu navigieren

    Heterogeneous Object Modeling for Rapid Prototyping

    Get PDF

    Coping With New Challengens for Density-Based Clustering

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining tasks and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. Beside many others, the density-based clustering notion underlying the algorithm DBSCAN and its hierarchical extension OPTICS has been proposed recently, being one of the most successful approaches to clustering. In this thesis, our aim is to advance the state-of-the-art clustering, especially density-based clustering by identifying novel challenges for density-based clustering and proposing innovative and solid solutions for these challenges. We describe the development of the industrial prototype BOSS (Browsing OPTICS plots for Similarity Search) which is a first step towards developing a comprehensive, scalable and distributed computing solution designed to make the efficiency and analytical capabilities of OPTICS available to a broader audience. For the development of BOSS, several key enhancements of OPTICS are required which are addressed in this thesis. We develop incremental algorithms of OPTICS to efficiently reconstruct the hierarchical clustering structure in frequently updated databases, in particular, when a set of objects is inserted in or deleted from the database. We empirically show that these incremental algorithms yield significant speed-up factors over the original OPTICS algorithm. Furthermore, we propose a novel algorithm for automatic extraction of clusters from hierarchical clustering representations that outperforms comparative methods, and introduce two novel approaches for selecting meaningful representatives, using the density-based concepts of OPTICS and producing better results than the related medoid approach. Another major challenge for density-based clustering is to cope with high dimensional data. Many today's real-world data sets contain a large number of measurements (or features) for a single data object. Usually, global feature reduction techniques cannot be applied to these data sets. Thus, the task of feature selection must be combined with and incooperated into the clustering process. In this thesis, we present original extensions and enhancements of the density-based clustering notion to cope with high dimensional data. In particular, we propose an algorithm called SUBCLU (density based SUBspace CLUstering) that extends DBSCAN to the problem of subspace clustering. SUBCLU efficiently computes all clusters that would have been found if DBSCAN is applied to all possible subspaces of the feature space. An experimental evaluation on real-world data sets illustrates that SUBCLU is more effective than existing subspace clustering algorithms because it is able to find clusters of arbitrary size and shape, and produces determine results. A semi-hierarchical extension of SUBCLU called RIS (Ranking Interesting Subspaces) is proposed that does not compute the subspace clusters directly, but generates a list of subspaces ranked by their clustering characteristics. A hierarchical clustering algorithm can be applied to these interesting subspaces in order to compute a hierarchical (subspace) clustering. A comparative evaluation of RIS and SUBCLU shows that RIS in combination with OPTICS can achieve an information gain over SUBCLU. In addition, we propose the algorithm 4C (Computing Correlation Connected Clusters) that extends the concepts of DBSCAN to compute density-based correlation clusters. 4C benefits from an innovative, well-defined and effective clustering model, outperforming related approaches in terms of clustering quality on real-world data sets.Knowledge Discovery in Databases (KDD) ist der Prozess der (semi-)automatischen Extraktion von Wissen aus Datenbanken, das gĂŒltig, bisher unbekannt und potentiell nĂŒtzlich fĂŒr eine gegebene Anwendung ist. Der zentrale Schritt des KDD-Prozesses ist das Data Mining. Eine der wichtigsten Aufgaben des Data Mining ist Clustering. Dabei sollen die Objekte einer Datenbank in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters möglichst Ă€hnlich und Objekte verschiedener Cluster möglichst unĂ€hnlich zu einander sind. Das dichtebasierte Clustermodell und die darauf aufbauenden Algorithmen DBSCAN und OPTICS sind unter einer Vielzahl anderer Clustering-AnsĂ€tze eine der erfolgreichsten Methoden zum Clustering. Im Rahmen dieser Dissertation wollen wir den aktuellen Stand der Technik im Bereich Clustering und speziell im Bereich dichtebasiertes Clustering voranbringen. Dazu erarbeiten wir neue Herausforderungen fĂŒr das dichtebasierte Clustermodell und schlagen dazu innovative Lösungen vor. ZunĂ€chst steht die Entwicklung des industriellen Prototyps BOSS (Browsing OPTICS plots for Similarity Search) im Mittelpunkt dieser Arbeit. BOSS ist ein erster Beitrag zu einer umfassenden, skalierbaren und verteilten Softwarelösung, die eine Nutzung der Effizienzvorteile und die analytischen Möglichkeiten des dichtebasierten, hierarchischen Clustering-Algorithmus OPTICS fĂŒr ein breites Publikum ermöglichen. Zur Entwicklung von BOSS werden drei entscheidende Erweiterungen von OPTICS benötigt: Wir entwickeln eine inkrementelle Version von OPTICS um nach einem Update der Datenbank (EinfĂŒgen/Löschen einer Menge von Objekten) die hierarchische Clustering Struktur effizient zu reorganisieren. Anhand von Experimenten mit synthetischen und realen Daten zeigen wir, dass die vorgeschlagenen, inkrementellen Algorithmen deutliche Beschleunigungsfaktoren gegenĂŒber dem originalen OPTICS-Algorithmus erzielen. Desweiteren schlagen wir einen neuen Algorithmus zur automatischen Clusterextraktion aus hierarchischen ReprĂ€sentationen und zwei innovative Methoden zur automatischen Auswahl geeigneter ClusterreprĂ€sentaten vor. Unsere neuen Techniken erzielen bei Tests auf mehreren realen Datenbanken im Vergleich zu den konkurrierenden Verfahren bessere Ergebnisse. Eine weitere Herausforderung fĂŒr Clustering-Verfahren stellen hochdimensionale FeaturerĂ€ume dar. Reale DatensĂ€tze beinhalten dank moderner Verfahren zur Datenerhebung hĂ€ufig sehr viele Merkmale. Teile dieser Merkmale unterliegen oft Rauschen oder AbhĂ€ngigkeiten und können meist nicht im Vorfeld ausgesiebt werden, da diese Effekte jeweils in Teilen der Datenbank unterschiedlich ausgeprĂ€gt sind. Daher muss die Wahl der Features mit dem Data-Mining-Verfahren verknĂŒpft werden. Im Rahmen dieser Arbeit stellen wir innovative Erweiterungen des dichtebasierten Clustermodells fĂŒr hochdimensionale Daten vor. Wir entwickeln SUBCLU (dichtebasiertes SUBspace CLUstering), ein auf DBSCAN basierender Subspace Clustering Algorithmus. SUBCLU erzeugt effizient alle Cluster, die gefunden werden, wenn man DBSCAN auf alle möglichen TeilrĂ€ume des Datensatzes anwendet. Experimente auf realen Daten zeigen, dass SUBCLU effektiver als vergleichbare Algorithmen ist. RIS (Ranking Interesting Subspaces), eine semi-hierarchische Erweiterung von SUBCLU, wird vorgeschlagen, das nicht mehr direkt die Teilraumcluster berechnet, sondern eine Liste von TeilrĂ€umen geordnet anhand ihrer Clustering-QualitĂ€t erzeugt. Dadurch können hierarchische Partitionierungen auf ausgewĂ€hlten TeilrĂ€umen erzeugt werden. Experimente belegen, dass RIS in Kombination mit OPTICS ein Informationsgewinn gegenĂŒber SUBCLU erreicht. Außerdem stellen wir den neuartigen Korrelationscluster Algorithmus 4C (Computing Correlation Connected Clusters) vor. 4C basiert auf einem innovativen und wohldefinierten Clustermodell und erzielt in unseren Experimenten mit realen Daten bessere Ergebnisse als vergleichbare Clustering-AnsĂ€tze

    TREE-D-SEEK: A Framework for Retrieving Three-Dimensional Scenes

    Get PDF
    In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The strategy is to retrieve 3D scenes based on a unified approach for indexing content from disparate information sources and information levels. The TREE-D-SEEK framework implements the proposed strategy for retrieving 3D scenes and is capable of indexing content from a variety of corpora at distinct information levels. A semantic annotation model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The semantic annotation model is based on an ontology for rapid prototyping of 3D virtual worlds. With ongoing improvements in computer hardware and 3D technology, the cost associated with the acquisition, production and deployment of 3D scenes is decreasing. As a consequence, there is a need for efficient 3D retrieval systems for the increasing number of 3D scenes in corpora. An efficient 3D retrieval system provides several benefits such as enhanced sharing and reuse of 3D scenes and 3D content. Existing 3D retrieval systems are closed systems and provide search solutions based on a predefined set of indexing and matching algorithms Existing 3D search systems and search solutions cannot be customized for specific requirements, type of information source and information level. In this research, TREE-D-SEEK—an open, extensible framework for retrieving 3D scenes—is proposed. The TREE-D-SEEK framework is capable of retrieving 3D scenes based on indexing low level content to high-level semantic metadata. The TREE-D-SEEK framework is discussed from a software architecture perspective. The architecture is based on a common process flow derived from indexing disparate information sources. Several indexing and matching algorithms are implemented. Experiments are conducted to evaluate the usability and performance of the framework. Retrieval performance of the framework is evaluated using benchmarks and manually collected corpora. A generic, semantic annotation model is proposed for indexing a 3D scene. The primary objective of using the semantic annotation model in the TREE-D-SEEK framework is to improve retrieval relevance and to support richer queries within a 3D scene. The semantic annotation model is driven by an ontology. The ontology is derived from a 3D rapid prototyping framework. The TREE-D-SEEK framework supports querying by example, keyword based and semantic annotation based query types for retrieving 3D scenes

    MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion

    Full text link
    Robots and other smart devices need efficient object-based scene representations from their on-board vision systems to reason about contact, physics and occlusion. Recognized precise object models will play an important role alongside non-parametric reconstructions of unrecognized structures. We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision. Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves, and performs joint optimization to estimate consistent, non-intersecting poses for multiple objects in contact. We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video. We demonstrate a real-time robotics application where a robot arm precisely and orderly disassembles complicated piles of objects, using only on-board RGB-D vision.Comment: 10 pages, 10 figures, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 202

    Local Color Voxel and Spatial Pattern for 3D Textured Recognition

    Get PDF
    3D textured retrieval including shape, color dan pattern is still a challenging research. Some approaches are proposed, but voxel-based approach has not much been made yet, where by using this approach, it still keeps both geometry and texture information. It also maps all 3D models into the same dimension. Based on this fact, a novel voxel pattern based is proposed by considering local pattern on a voxel called local color voxel pattern (LCVP). Voxels textured is observed by considering voxel to its neighbors. LCVP is computed around each voxel to its neighbors. LCVP value will indicate uniq pattern on each 3D models. LCVP also quantizes color on each voxel to generate a specific pattern. Shift and reflection circular also will be done. In an additional way, inspired by promising recent results from image processing, this paper also implement spatial pattern which utilizing Weber, Oriented Gradient to extract global spatial descriptor. Finally, a combination of local spectra and spatial and established global features approach called multi Fourier descriptor are proposed. For optimal retrieval, the rank combination is performed between local and global approaches. Experiments were performed by using dataset SHREC'13 and SHREC'14 and showed that the proposed method could outperform some performances to state-of-the-art

    Shape completion with a 3D Convolutional Neural Network for multi-domain O&M activities in offshore wind farms.

    Get PDF
    An autonomous vehicle needs to understand its surrounding environment to plan routes and avoid collisions. For that purpose, they are equipped with appropriate sensors which allow them to capture the necessary information. The maritime environment presents additional which make it hard to have a clear picture of the nearby structures. In this work, the goal is to use the available sensor information to infer the complete shape of nearby structures. The approach is divided into three main components: clustering, classification, and registration. The clustering is used to detect sizeable structures and remove irrelevant ones. The resulting data is voxelized, and classified, by a 3D CNN, as one of the studied structures. Finally, a hybrid PSO-ICP registration method is used to fit a complete CAD model on the observed data
    • 

    corecore