1,392 research outputs found

    Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers

    Full text link
    In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the \emph{oracle problem} and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8\% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.Comment: 8 pages, AITesting 201

    Using Machine Learning to Generate Test Oracles: A Systematic Literature Review

    Get PDF
    Machine learning may enable the automated generation of test oracles. We have characterized emerging research in this area through a systematic literature review examining oracle types, researcher goals, the ML techniques applied, how the generation process was assessed, and the open research challenges in this emerging field.Based on a sample of 22 relevant studies, we observed that ML algorithms generated test verdict, metamorphic relation, and - most commonly - expected output oracles. Almost all studies employ a supervised or semi-supervised approach, trained on labeled system executions or code metadata - including neural networks, support vector machines, adaptive boosting, and decision trees. Oracles are evaluated using the mutation score, correct classifications, accuracy, and ROC. Work-to-date show great promise, but there are significant open challenges regarding the requirements imposed on training data, the complexity of modeled functions, the ML algorithms employed - and how they are applied - the benchmarks used by researchers, and replicability of the studies. We hope that our findings will serve as a roadmap and inspiration for researchers in this field

    Using Machine Learning to Generate Test Oracles: A Systematic Literature Review

    Get PDF
    Machine learning may enable the automated generation of test oracles. We have characterized emerging research in this area through a systematic literature review examining oracle types, researcher goals, the ML techniques applied, how the generation process was assessed, and the open research challenges in this emerging field. Based on a sample of 22 relevant studies, we observed that ML algorithms generated test verdict, metamorphic relation, and - most commonly - expected output oracles. Almost all studies employ a supervised or semi-supervised approach, trained on labeled system executions or code metadata - including neural networks, support vector machines, adaptive boosting, and decision trees. Oracles are evaluated using the mutation score, correct classifications, accuracy, and ROC. Work-to-date show great promise, but there are significant open challenges regarding the requirements imposed on training data, the complexity of modeled functions, the ML algorithms employed - and how they are applied - the benchmarks used by researchers, and replicability of the studies. We hope that our findings will serve as a roadmap and inspiration for researchers in this field.Comment: Pre-print. Article accepted to 1st International Workshop on Test Oracles at ESEC/FSE 202

    The Integration of Machine Learning into Automated Test Generation: A Systematic Mapping Study

    Get PDF
    Context: Machine learning (ML) may enable effective automated test generation. Objective: We characterize emerging research, examining testing practices, researcher goals, ML techniques applied, evaluation, and challenges. Methods: We perform a systematic mapping on a sample of 102 publications. Results: ML generates input for system, GUI, unit, performance, and combinatorial testing or improves the performance of existing generation methods. ML is also used to generate test verdicts, property-based, and expected output oracles. Supervised learning - often based on neural networks - and reinforcement learning - often based on Q-learning - are common, and some publications also employ unsupervised or semi-supervised learning. (Semi-/Un-)Supervised approaches are evaluated using both traditional testing metrics and ML-related metrics (e.g., accuracy), while reinforcement learning is often evaluated using testing metrics tied to the reward function. Conclusion: Work-to-date shows great promise, but there are open challenges regarding training data, retraining, scalability, evaluation complexity, ML algorithms employed - and how they are applied - benchmarks, and replicability. Our findings can serve as a roadmap and inspiration for researchers in this field.Comment: Under submission to Software Testing, Verification, and Reliability journal. (arXiv admin note: text overlap with arXiv:2107.00906 - This is an earlier study that this study extends

    A Systematic Literature Review on Cyberbullying in Social Media: Taxonomy, Detection Approaches, Datasets, And Future Research Directions

    Get PDF
    In the area of Natural Language Processing, sentiment analysis, also called opinion mining, aims to extract human thoughts, beliefs, and perceptions from unstructured texts. In the light of social media's rapid growth and the influx of individual comments, reviews and feedback, it has evolved as an attractive, challenging research area. It is one of the most common problems in social media to find toxic textual content.  Anonymity and concealment of identity are common on the Internet for people coming from a wide range of diversity of cultures and beliefs. Having freedom of speech, anonymity, and inadequate social media regulations make cyber toxic environment and cyberbullying significant issues, which require a system of automatic detection and prevention. As far as this is concerned, diverse research is taking place based on different approaches and languages, but a comprehensive analysis to examine them from all angles is lacking. This systematic literature review is therefore conducted with the aim of surveying the research and studies done to date on classification of  cyberbullying based in textual modality by the research community. It states the definition, , taxonomy, properties, outcome of cyberbullying, roles in cyberbullying  along with other forms of bullying and different offensive behavior in social media. This article also shows the latest popular benchmark datasets on cyberbullying, along with their number of classes (Binary/Multiple), reviewing the state-of-the-art methods to detect cyberbullying and abusive content on social media and discuss the factors that drive offenders to indulge in offensive activity, preventive actions to avoid online toxicity, and various cyber laws in different countries. Finally, we identify and discuss the challenges, solutions, additionally future research directions that serve as a reference to overcome cyberbullying in social media

    An Empirical Study on Large Language Models in Accuracy and Robustness under Chinese Industrial Scenarios

    Full text link
    Recent years have witnessed the rapid development of large language models (LLMs) in various domains. To better serve the large number of Chinese users, many commercial vendors in China have adopted localization strategies, training and providing local LLMs specifically customized for Chinese users. Furthermore, looking ahead, one of the key future applications of LLMs will be practical deployment in industrial production by enterprises and users in those sectors. However, the accuracy and robustness of LLMs in industrial scenarios have not been well studied. In this paper, we present a comprehensive empirical study on the accuracy and robustness of LLMs in the context of the Chinese industrial production area. We manually collected 1,200 domain-specific problems from 8 different industrial sectors to evaluate LLM accuracy. Furthermore, we designed a metamorphic testing framework containing four industrial-specific stability categories with eight abilities, totaling 13,631 questions with variants to evaluate LLM robustness. In total, we evaluated 9 different LLMs developed by Chinese vendors, as well as four different LLMs developed by global vendors. Our major findings include: (1) Current LLMs exhibit low accuracy in Chinese industrial contexts, with all LLMs scoring less than 0.6. (2) The robustness scores vary across industrial sectors, and local LLMs overall perform worse than global ones. (3) LLM robustness differs significantly across abilities. Global LLMs are more robust under logical-related variants, while advanced local LLMs perform better on problems related to understanding Chinese industrial terminology. Our study results provide valuable guidance for understanding and promoting the industrial domain capabilities of LLMs from both development and industrial enterprise perspectives. The results further motivate possible research directions and tooling support

    Automatic System Testing of Programs without Test Oracles

    Get PDF
    Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance of applications that do not have test oracles, i.e., for which it is difficult or impossible to know what the correct output should be for arbitrary input. In metamorphic testing, existing test case input is modified to produce new test cases in such a manner that, when given the new input, the application should produce an output that can be easily be computed based on the original output. That is, if input x produces output f (x), then we create input x' such that we can predict f (x') based on f(x); if the application does not produce the expected output, then a defect must exist, and either f (x) or f (x') (or both) is wrong. In practice, however, metamorphic testing can be a manually intensive technique for all but the simplest cases. The transformation of input data can be laborious for large data sets, or practically impossible for input that is not in human-readable format. Similarly, comparing the outputs can be error-prone for large result sets, especially when slight variations in the results are not actually indicative of errors (i.e., are false positives), for instance when there is non-determinism in the application and multiple outputs can be considered correct. In this paper, we present an approach called Automated Metamorphic System Testing. This involves the automation of metamorphic testing at the system level by checking that the metamorphic properties of the entire application hold after its execution. The tester is able to easily set up and conduct metamorphic tests with little manual intervention, and testing can continue in the field with minimal impact on the user. Additionally, we present an approach called Heuristic Metamorphic Testing which seeks to reduce false positives and address some cases of non-determinism. We also describe an implementation framework called Amsterdam, and present the results of empirical studies in which we demonstrate the effectiveness of the technique on real-world programs without test oracles
    • …
    corecore