
1

Improving the Dependability of Machine
Learning Applications

Christian Murphy and Gail Kaiser, Member, IEEE

Abstract—As machine learning (ML) applications become prevalent in various aspects of everyday life, their dependability takes on
increasing importance. It is challenging to test such applications, however, because they are intended to learn properties of data sets
where the correct answers are not already known. Our work is not concerned with testing how well an ML algorithm learns, but rather
seeks to ensure that an application using the algorithm implements the specification correctly and fulfills the users’ expectations. These
are critical to ensuring the application’s dependability. This paper presents three approaches to testing these types of applications.
In the first, we create a set of limited test cases for which it is, in fact, possible to predict what the correct output should be. In
the second approach, we use random testing to generate large data sets according to parameterization based on the application’s
equivalence classes. Our third approach is based on metamorphic testing, in which properties of the application are exploited to define
transformation functions on the input, such that the new output can easily be predicted based on the original output. Here we discuss
these approaches, and our findings from testing the dependability of three real-world ML applications.

Index Terms—Machine Learning, Software Dependability, Software Testing, Quality Assurance, Metamorphic Testing, Random
Testing, Non-Testable Programs, Oracle Problem.

F

1 INTRODUCTION

MAKING machine learning (ML) applications de-
pendable presents a challenge because conven-

tional software testing processes do not always apply:
in particular, it is difficult to detect subtle errors, faults,
defects or anomalies in the ML applications of interest
because there is no reliable “test oracle” to indicate what
the correct output should be for arbitrary input. The
general class of software systems with no reliable test
oracle available is sometimes known as “non-testable
programs” [1]. These ML applications fall into a category
of software that Davis and Weyuker describe as “Pro-
grams which were written in order to determine the answer in
the first place. There would be no need to write such programs,
if the correct answer were known” [2]. Formal proofs of an
ML algorithm’s optimal quality (e.g., its ability to predict
well) do not guarantee that an application implements or
uses the algorithm correctly, and therefore software test-
ing is needed. Thus, testing these types of applications
does not seek to determine whether an ML algorithm
learns well, but rather to ensure that an application using
the algorithm correctly implements the specification and
fulfills the users’ expectations.

As machine learning applications become more and
more prevalent in various aspects of everyday life [3],
it is clear that the dependability of machine learning
software takes on increasing importance, whether the
tasks are simple things like getting a recommendation
for a DVD, or critical tasks like helping doctors perform
a medical diagnosis or enabling weather forecasters to

• The authors are members of the Programming Systems Lab, Department
of Computer Science, Columbia University, New York NY 10027. E-mail:
{cmurphy, kaiser}@cs.columbia.edu

more accurately predict the paths of hurricanes. Our
concern, then, is in improving the dependability of such
applications through software testing. Improved testing
of these types of applications can increase availability
and reliability, not to mention confidence in correctness,
and thus make the applications more dependable.

Here we discuss a methodology for testing ML appli-
cations. Of course, in any software testing, it is possible
only to show the presence of bugs but not their absence.
Usually when input or output equivalence classes are
applied to developing test cases, however, the expected
output for a given input is known in advance. Our
research seeks to address the issue of how to devise test
cases that are likely to reveal bugs, and how one can
indeed know whether a test actually is revealing a bug,
given that we do not know what the output should be
in the general case. In other words, although we cannot
know for sure when the output is correct, we seek to
generate tests cases where we can easily detect in most
cases if the output is wrong.

Our methodology consists of three approaches. In
the first approach, we hand-craft simple data sets for
which we can, in fact, know whether the output that is
produced is correct. This is a very limited approach, of
course, given that there is no general test oracle for these
applications, but by creating a ”niche oracle” for a small
subset of the input domain, we can create a baseline of
test cases that at least must be passed before proceeding
on to any other testing.

The second approach is based on the notion of random
testing [4] [5]. In our approach, we use randomness to
generate large data sets, but use paramaterization to
guide it towards different equivalence classes for which
we can predict aspects of the application’s expected

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

behavior, though not the final output. The contribution
of this approach is a hybrid that couples the benefits of
using randomness with the necessary control over the
properties of the testing data.

In the third and final approach, we explore the use
of metamorphic testing [6] [7], which is a methodology
of reusing input test data to create additional test cases
whose outputs can be predicted. In metamorphic testing,
the input from test cases that did not reveal any defects
is modified in such a manner that it should produce an
expected output based on the original, and if it does not,
then a defect must exist. In our approach, although we
cannot know whether the initial test cases did or did not
reveal defects, we can in some circumstances modify the
input to create new test cases and then check whether
the new output matches our expectations, by use of a
built-in “pseudo-oracle” [2].

In this paper, we describe our methodology, and
present our findings from applying the approaches to
three machine learning applications: MartiRank [8], a
ranking implementation of the Martingale Boosting algo-
rithm [9]; an implementation of Support Vector Machines
(SVM) [10] called SVM-Light [11]; and the anomaly-
based network intrusion detection system PAYL [12]. We
have found previously-unknown defects and/or incon-
sistencies in all three applications, and demonstrate that
our work has potential to help improve their depend-
ability.

1.1 Motivation

This line of research began with work in which we ad-
dressed the dependability of an ML application commis-
sioned by a company for potential future experimental
use in predicting impending electrical device failures,
using historic data of past failures as well as static and
dynamic information about the current devices. Classifi-
cation in the binary sense (“will fail” vs. “will not fail”)
is not sufficient because, after enough time, every device
will eventually fail. Instead, a ranking of the propensity
of failure with respect to all other devices is more
appropriate. The application uses both the MartiRank
and SVM algorithms in its implementation. We do not
discuss the full application further in this paper; see [8]
for details.

The dependability of the implementation of this sys-
tem addresses real-world concerns, rather than just aca-
demic interest. Although it may be impossible to ac-
curately predict all power outages (which can be due
to weather, human error, etc.) there have been cases in
which outages might be prevented via timely mainte-
nance or replacement of devices that are likely to fail,
such as the 2008 blackout in Miami 1 and the 2005
blackout in Java and Bali.2 A dependable application in

1. http://www.cnn.com/2008/US/02/26/florida.power/index.html
2. http://www.thejakartapost.com/news/2005/08/19/massive-

blackout-hits-java-bali.html

this domain may save money and even lives if it can
accurately predict which devices are most likely to fail.

To generalize our findings to other types of machine
learning besides ranking algorithms, we also applied
our techniques to PAYL, which is an anomaly-based
intrusion detection system (IDS) that is currently used
in numerous real-world deployments. Systems such as
PAYL and other machine learning applications in the se-
curity domain must be dependable to prevent everything
from annoyances like spam mail and phishing attempts
to serious threats like denial-of-service attacks or system
break-ins.

Thus, it is clear that the implications of this
work are significant. Machine learning applications are
widespread in modern society, and to ensure their
dependability, we must first address their correctness.
Therein lies the challenge.

1.2 Forecast
The rest of this paper is organized as follows. Section
2 provides a brief background, including an overview
of the fundamentals of supervised machine learning
and ranking algorithms (for non-ML readership), and an
introduction to MartiRank and SVM-Light. In Section 3
we describe our methodology, including the analyses we
performed and the tools we created in order to facilitate
our testing. We then discuss in detail each of our three
approaches to testing machine learning applications:
Section 4 describes our testing based on a “niche oracle”
for limited test cases; Section 5 deals with random testing
and larger data sets; and Section 6 covers metamorphic
testing. To demonstrate that our approaches apply to
unsupervised machine learning applications, in Section
7 we address the results of our testing of PAYL. Next we
discuss and compare these three approaches in Section
8, and Section 9 describes related work in this field. Last,
in Section 10 we describe some of the limitations of our
approaches and possible future work, and conclude in
Section 11.

2 BACKGROUND

One complication in our work arose due to conflicting
technical nomenclature: “testing”, “regression”, “vali-
dation”, “model” and other relevant terms have very
different meanings to machine learning experts than
they do to software engineers. Here we employ the
terms “testing” and “regression testing” as appropriate
for a software engineering audience, but we adopt the
machine learning sense of “model”, as defined below.

2.1 Machine learning fundamentals
In general, data sets used in machine learning consist of
a collection of examples, each of which has a number of
attribute values. The examples can be thought of as rows
in a table, each of which represents one item from which
to learn, and the attributes are the columns of the table.



3

In supervised ML, a label indicates how the example is
categorized. In some cases the labels are binary: a label
of 1 is considered a positive example, and a 0 represents
a negative example. In the motivating device failure ap-
plication described above, though, the labels could be
any non-negative integer, indicating how may times the
device failed over a given period of time (devices may
fail, be repaired, and then fail again). Figure 1 shows a
small portion of a data set that could be used by such
applications. The rows represent examples from which
to learn, as comma-separated attribute values; the last
number in each row is the label.

Supervised ML applications execute in two phases.
The first phase (called the training phase) analyzes a
set of training data; the result of this analysis is a
model that attempts to make generalizations about how
the attributes relate to the label. In the second phase
(called the testing phase), the model is applied to another,
previously-unseen data set (the testing data) where the
labels are unknown. In a classification algorithm, the
system attempts to predict the label of each individual
example; in a ranking algorithm, the output of this phase
is a ranking such that, when the labels become known, it
is intended that the highest valued labels are at or near
the top of the ranking, with the lowest valued labels at
or near the bottom.

27,81,88,59,15,16,88,82,41,17,81,98,42, ..., 0
15,70,91,41, 5, 3,65,27,82,64,58,29,19, ..., 0
22,72,11,92,96,24,44,92,55,11,12,44,84, ..., 1
82, 3,51,47,73, 4, 1,99, 1,51,84, 1,41, ..., 0
57,77,33,86,89,77,61,76,96,98,99,21,62, ..., 1
...

Fig. 1. Example of part of a data set used by supervised
ML ranking algorithms such as MartiRank and SVM

2.2 Supervised ML applications investigated
Our testing involved two supervised machine learning
applications, both of which implement ranking algo-
rithms.

2.2.1 MartiRank
MartiRank [8] was developed by researchers at
Columbia University’s Center for Computational Learn-
ing Systems (CCLS) as a ranking implementation of the
Martingale Boosting algorithm [9] specifically with the
device failure application in mind.

In the training phase, MartiRank executes a number of
“rounds”. In each round the set of training data is broken
into sub-lists; there are N sub-lists in the Nth round,
each containing 1/Nth of the total number of positive
labels. For each sub-list, MartiRank sorts that segment by
each attribute, ascending and descending, and chooses
the attribute that gives the best “quality”. The quality is
assessed using a variant of the Area Under the Curve
(AUC) [13] calculation that is adapted to ranking rather
than binary classification. The model, then, describes for
each round how to split the data set and on which

attribute and direction to sort each segment for that
round. In the second (testing) phase, MartiRank applies
the segmentation and sorting rules from the model to the
testing data set to produce the ranking (the final sorted
order).

1.0000,61,d
0.4000,32,a;1.0000,12,d
0.2500,18,d;0.5555,55,d;1.0000,41,d

Fig. 2. Sample MartiRank model

Figure 2 shows a sample model created by MartiRank.
In the first “round”, shown on the first line, all of the
examples are sorted by attribute 61 (indicated by the
“61”) in descending order (indicated by the “d”). In the
second round, shown on the second line, the result of the
first round is then segmented. The first segment contains
40% of the examples in the data set (indicated by the
“0.4000”) and sorts them on attribute 32, ascending. The
rest of the data set is sorted on attribute 12, descending.
The two segments are then concatenated to reform the
data set, which is then segmented and sorted according
to the next line of the model, and so on. A typical
MartiRank model in the device failure application may
have anywhere from four to ten rounds.

2.2.2 SVM-Light
SVM-Light [11] is a C implementation of the Support
Vector Machines (SVM) algorithm [10] and was devel-
oped at University of Dortmund’s Fakultät für Infor-
matik; along with MartiRank, this program has been ap-
plied by researchers at CCLS to address the motivating
problem described above.

Support Vector Machines attempt to find a hyperplane
that separates examples from different classes. In the
learning phase, SVM treats each example from the train-
ing data as a vector of N dimensions (since it has N
attributes), and attempts to segregate the examples with
a hyperplane of N-1 dimensions. Figure 3 demonstrates
a simple example.3 Hyperplane H3 does not separate the
two classes, but H1 does, with a small margin (average
distance of each data point from the hyperplane), and
H2 does with the maximum margin.

The type and shape of the hyperplane is determined
by the SVM’s “kernel”: here, we investigate the linear,
polynomial, and radial basis kernels. The goal is to find
the maximum margin (distance) between the “support
vectors”, which are the examples that lie closest to the
surface of the hyperplane; the resulting hyperplane is the
model. As SVM is typically used for binary classification,
ranking is done by classifying each individual example
(irrespective of the others) from the testing data accord-
ing to the model, and then recording its distance from
the hyperplane. The examples are then ranked according
to this distance. SVM-Light [11], which we used in our
testing, is an open-source implementation of SVM, and
also has a ranking mode.

3. http://en.wikipedia.org/wiki/Support vector machine



4

Fig. 3. Data points separated by hyperplanes in SVM

2.3 Potential impact

The impact of our research goes beyond the particular
application for which our investigations began. Over
fifty different real-world applications, ranging from fa-
cial recognition to computational biology, use SVM im-
plementations alone.4 Additionally, ranking is widely
used by Internet search engines (e.g., [14]), also ap-
parently using similarly non-testable algorithms. Thus,
ensuring the dependability of these sorts of applications
takes on importance even beyond our initial work.

3 METHODOLOGY

As is standard in software testing approaches, we begin
by performing an analysis of the algorithms and appli-
cations being tested, in order to determine equivalence
classes and to get an idea for the type of data sets
that will be needed. In this section, we describe the
particular types of analysis that we perform for the
two applications we tested in the domain of supervised
machine learning. We then briefly describe our three
approaches that are based on this analysis (these are
explained in much more detail in Sections 4, 5, and 6,
including our findings when applied to MartiRank and
SVM-Light), and the tools that we developed to enable
these approaches.

3.1 Analyses

All of the approaches described in this paper depend
on initial analysis of the algorithms and their respective
implementations. While this step is conventional, not
novel, a number of interesting issues arise when applied
to determining equivalence classes and creating data sets
for testing ML applications.

4. http://www.clopinet.com/isabelle/Projects/SVM/applist.html

We first analyzed the problem domain (in this case,
the prediction of electrical device failures) and the corre-
sponding data sets. We then considered the algorithm as
it is defined, and sought out imprecisions or likely places
where developers could make errors. Finally, we looked
at the implementation’s runtime options. We initially
outlined these analyses in [15]; here, we provide more
detail and describe how they are used to guide our
testing approaches.

3.1.1 Analyzing the problem domain
The first step is to consider the problem domain and try
to determine equivalence classes based on the properties
of real-world data sets. We particularly look for traits
that may not have been considered by the algorithm
designers, such as data set size, the potential ranges of
attribute and label values, etc.

The data sets of interest in our particular domain are
very large, both in terms of the number of attributes
(hundreds) and the number of examples (tens of thou-
sands). In the device failure application, the label could
be any non-negative integer, although it is typically
a 0 (indicating that there was no device failure) or 1
(indicating that there was), and rarely was higher than 5
(indicating five failures over a given period of time). As
would be expected in any large data set, many examples
may share the same value for the same attribute, i.e.,
the attribute value may be repeated, such as the year
in which the electrical device was installed; however, in
the real-world data, many values are also missing for
various reasons, raising the issues of handling unknowns
as well as breaking “ties” during sorting.

Though much of the real-world data of interest con-
sists of numerical values - including floating point dec-
imals, dates and integers - some of the data are in-
stead alphanumeric. Some ML ranking algorithms rely
on sorting, and while in principle lexicographic sorts
could be employed, non-numerical sorts do not seem
intuitively appealing as ML predictors; for instance, it
may not be meaningful to think of an electrical device
manufactured by “Westinghouse” as more or less likely
to fail than something made by “General Electric” just
because of their alphabetical ordering, and we certainly
cannot expect a device manufactured by “Honeywell” as
having a propensity to failure being between those two,
just because H is between W and G.

To solve this problem, the data sets are expanded by
the application during pre-processing to use categorical
data. Categorical data refers to attributes in which there
are K different distinct (non-numeric) values, but there
is no sorting order that would be appropriate for the
ranking algorithm. In these cases, a given attribute with
K distinct values is expanded to K different attributes,
each with two possible values: a 1 if the example has
the corresponding attribute value, and a 0 if it does
not. That is, amongst the K attributes, each example
should have exactly one 1 and K-1 0s. For instance,
rather than having an alphanumeric attribute called



5

“manufacturer”, multiple attributes would be created,
with names “manufacturer is Honeywell” or “manufac-
turer is Westinghouse”. A given example will have a
value of 1 for only one of these attributes, and the rest
will be 0s.

By understanding the traits of the data sets in this
problem domain, we are able to devise equivalence
classes that will be used in all aspects of our testing,
as described below.

3.1.2 Analyzing the algorithm as defined
The second element to our analysis was to look at the
algorithm as it is defined (in pseudocode, for instance)
and inspect it carefully for imprecisions, particularly
given what we knew about the real-world data sets as
well as plausible “synthetic” data sets. This would allow
us to speculate on areas in which flaws might be found,
so that we could create test sets to try to reveal those
flaws. Here, we are looking for imprecisions in the spec-
ification, not so much bugs in the implementation. For
instance, the algorithm may not explicitly explain how
to handle missing attribute values or labels, negative
attribute values or labels, etc.

Also, by inspecting the algorithm carefully, one can
determine how to construct “predictable” training and
testing data sets that should (if the implementation fol-
lows the algorithm correctly) yield a “predictable” model
or ranking; this is further explored in Section 4. This
is peculiar to non-testable programs, since normally all
outputs would be predictable from their inputs via the
test oracle. This analysis also provides us with insight as
to how the application should react when its input data
is modified, leading to the creation of the “metamorphic
properties” that are used in Section 6.

3.1.3 Analyzing the runtime options
The last part of the analysis is to look at the applications’
runtime options and see if those give any indication of
how the implementation may actually manipulate the in-
put data, and try to design data sets and tests that might
reveal flaws or inconsistencies in that manipulation.

For example, the MartiRank implementation that we
analyzed by default randomly permutes the order of
the examples in the input data so that it would not
be subject to the order in which the data happened
to be constructed; it was, however, possible to turn
this permutation off with a command-line option. We
realized, though, that in the case where none of the
attribute values are repeating, the input order should
not matter at all because all sorting would necessarily be
deterministic. This type of analysis allowed us to create
further “metamorphic properties” for use in Section 6.

3.2 Overview of testing approaches
After analyzing the MartiRank and SVM algorithms as
described above, we devised the following basic equiv-
alence classes: small vs. large data sets; repeating vs.

non-repeating attribute values; missing vs. non-missing
attribute values; repeating vs. non-repeating labels; neg-
ative labels vs. non-negative-only labels; predictable vs.
non-predictable data sets; and combinations thereof.
These equivalence classes were then used to guide the
generation of appropriate input data sets for the three
approaches.

Our first approach uses what we call a “niche oracle”.
This is a test oracle that only applies to a very small sub-
set of the input domain, for which the expected output
can, in fact, be known in advance. In this approach, we
hand-craft small “predictable” data sets, such that we
know that, if the application is correctly implementing
the algorithm, we should get a particular model or
ranking. Although these data sets are typically quite
trivial, an application must at the very minimum pass
these tests before any other testing can proceed; indeed,
this type of testing actually did reveal defects in both
MartiRank and SVM-Light. This approach is described
further in Section 4.

The second approach is called “parameterized random
testing”. In the absence of sufficient real-world data sets
for testing, random testing [4] [5] is an easy way to
generate large sets of input. This addresses a limitation
of the first approach (in that data sets were necessarily
small and often generated by hand), but without an
oracle, it is impossible to know what the expected output
should be. In this approach, we parameterize the ran-
domness that is used to generate large data sets, based
on the different equivalence classes that we intend to
test. Although there is no oracle, this approach allows us
to still reveal defects and inconsistencies in some cases.
We explain this in more detail in Section 5.

The third approach is based on the idea of “metamor-
phic testing” [6] [7]. Metamorphic testing is designed
as a general technique for creating follow-up test cases
based on existing ones, particularly those that have not
revealed any failure, in order to try to find uncovered
flaws. It is a methodology of reusing input test data to
create additional test cases whose outputs can be pre-
dicted. This allows the application to act as a “pseudo-
oracle” [2] for itself, by specifying the behavior that is
expected upon changes to the input. Of course, as with
the other approaches, this can only show the existence of
defects and cannot demonstrate their absence, since the
correct output cannot be known in advance (and even
if the outputs are as expected, both could be incorrect),
but metamorphic testing provides a powerful technique
to reveal defects in applications in this domain. Section
6 provides additional explanation.

It is important to note that we consider these ap-
proaches in combination, not as alternatives, as each
seeks to perform testing in a different manner. The first
approach is oracle-based and can be used to demon-
strate correctness on the limited set of inputs. The sec-
ond approach uses no oracle but can exercise different
equivalent classes and look for obvious errors. The last
approach cannot determine correctness but, by use of a



6

pseudo-oracle, can reveal defects that are not intuitively
recognizable. By using different testing approaches, we
hope to reveal different types of defects, and thus
provide a more powerful technique for improving the
dependability of ML applications.

3.3 Tools
To automate some parts of our testing, we devised a
framework that includes tools for generating data sets
and comparing results.

3.3.1 Data set generation
Although in our particular case real-world data sets
were available in abundance, in the general case these
data sets may not always be accessible and, even when
they are, may not necessarily contain all the equivalence
classes that proper testing demands. Hand-generation of
data is an option but is only useful for small tests, in
particular the types used in the niche oracle approach;
however, the applications we tested are used in the real
world on extremely large data sets.

In order to facilitate our testing, we developed a tool
that allowed us to create a suite of tests that separately
addressed different equivalence classes, or combinations
of classes. The tool allowed us to specify parameters such
as the number of examples, the number of attributes, and
the names of the output test data set files, and then used
a pseudo-random number generator to create data sets
in the appropriate file format. The motivation for this
tool is expanded upon in Section 5, in which we further
describe our parameterized random testing approach.

The data generation tool can be run with a flag that
ensures that no attribute values are repeated within the
data set. This option was motivated by the need to run
simple tests in which all values are different, so that
sorting would necessarily be deterministic (no “ties”).
It works as follows: for M attributes and N examples,
generate a list of integers from 1 to M*N and then
randomly permute them. The numbers are then placed
into the data set. If the flag is not used, then each value
in the data set is simply a random integer between
1 and M*N; the tool also ensures at least one set of
repeating numbers. The tool currently only generates
positive integers.

The utility is also given the percentage of “positive
examples” to include in the data set; positive examples
have a label of 1, and negative examples have a label
of 0. Similarly, a parameter specifies the percentage of
missing values. Our data generation framework has
been designed to guarantee that the number of positive
examples and the number of missing values come out
to be the right number, even though the values are
randomly placed (or omitted) throughout the data set.

Parameters can be provided for generating categorical
data (with K distinct values expanded to K attributes
as described above). For creating categorical data, the
input parameter to the data generation utility is of the

format (a1, a2, ..., aK-1, aK, b), where a1 through aK
represent the percentage distribution of those values
for the categorical attribute, and b is the percentage
of unknown values. The utility also allows for having
multiple categorical attributes, or for having none at all.

Figure 4 shows two data sets created by the data
generation tool, using the same parameters (10 examples,
10 attributes, 40% positive examples, 20% missing, re-
peats allowed); question marks indicate missing values,
and the last number in each row is the label. Although
the parameters for generating the data are the same,
randomness comes into play in the placement of missing
values, deciding which examples have labels of 1, etc.

27,81,88,59, ?,16,88, ?,41, ?,0
15,70,91,41, ?, 3, ? ,?, ?,64,0
82, ?,51,47, ?, 4, 1,99, ?,51,0
22,72,11, ?,96,24,44,92, ?,11,1
57,77, ?,86,89,77,61,76,96,98,1
76,11, 4,51,43, ?,79,21,28, ?,0
6,33, ?, ?,52,63,94,75, 8,26,0

77,36,91, ?,47, 3,85,71,35,45,1
?,17,15, 2,90,70, ?, 7,41,42,0
8,58,42,41,74,87,68,68, 1,15,1

35, 3,20,41,91, ?,32,11,43, ?,1
19,50,11,57,36,94, ?,96, 7,23,1
24,36,36,79,78,33,34, ?,32, ?,0
?,15, ?,19,65,80,17,78,43, ?,0

40,31,89,50,83,55,25, ?, ?,45,1
52, ?, ?, ?, ?,39,79,82,94, ?,0
86,45, ?, ?,74,68,13,66,42,56,0
?,53,91,23,11, ?,47,61,79, 8,0

77,11,34,44,92, ?,63,62,51,51,1
21, 1,70,14,16,40,63,94,69,83,0

Fig. 4. Two data sets generated with same parameters

The data generation tool also includes a function to
permute the order of the examples in an existing data
set; this was used in the metamorphic testing approach.

3.3.2 Comparing models and rankings
For situations in which we wanted to compare two out-
puts, for instance in the metamorphic testing approach
(Section 6), we developed a tool that would tell us if two
models were the same, and would also compare the final
rankings of the testing data.

A simple tool like “diff” could be used to look for
differences in the models, since the models are just text
files, but for MartiRank we created a utility that com-
pares the models and reports on the differences in each
round: specifically, where the segment boundaries are
drawn, the attribute chosen to sort on, and the direction.
Typically, however, any difference between models in
an earlier round would necessarily affect the rest of the
models, so only the first difference is of much practical
importance. For SVM, the model file contains (among
other things not relevant to our testing) the coordinates
of the support vectors, and we created a tool that would
report any differences between them.

Note that the metamorphic testing approach does not
necessarily call for the outputs (models or ranking) to be



7

exactly the same. In some cases, changes to the output
are expected. At this point, however, the comparison tool
only checks for equality, but we are currently devising
a technique for specifying at a high level what the
expected changes would be, so that they may be checked
automatically.

3.3.3 Tracing options
The final part of the testing framework is a tool for ex-
amining the differences in the trace outputs produced by
different test runs. Because we had access to the source
code of both MartiRank and SVM-Light, we were able
to add runtime options to report significant intermittent
values that arise during the algorithm’s execution. In
MartiRank, for example, this included the ordering of
the examples before and after attempting to sort each
attribute for a given segment, and the AUC calculated
upon doing so; this would then allow us to see how
the examples are being sorted (there may be bugs in the
sorting code), what AUC values are determined (there
may be bugs in the calculations), and which attribute the
code is choosing as best for each segment/round (there
may be bugs in the comparisons). This is extremely
useful in debugging differences in the creation of models
and rankings in the cases when they are not as expected
(as in the “niche oracle” approach) or where two outputs
are expected to be the same, as in the metamorphic
testing approach.

4 NICHE ORACLE-BASED TESTING

It is impossible to know whether the output of these
applications is correct for arbitrary input, because there
is no general test oracle to cover all cases. However, in
some trivial cases, it is possible to know what the correct
output should be, based on analysis of the algorithm
and understanding how it should perform under certain
conditions. In this section, we define a “niche oracle” as
one that will indicate correctness or incorrectness in an
otherwise non-testable program, but only for a limited
set of test cases. This is the only area of our work in
which we can say that there is a correct output that
should be produced by the ML algorithm.

As a simple example purely for demonstrative pur-
poses, consider a classification algorithm in which all
the examples in the training data have a label of 1. Any
example in the testing data, regardless of its attribute
values, should also be classified as having a label of 1,
because there is no reason for the algorithm to think
otherwise; all it knows is that everything has a label of
1. Thus, in this case, it is possible to predict what the
correct output should be.

For SVM, we know that in the training phase it
seeks to separate the examples into categories. In the
simplest case, we could have labels of only 1s and 0s,
and then construct a data set such that, for example,
every example with a given attribute equal to a specific
value has a label of 1, and every example with that

attribute equal to any other value has a label of 0.
Another approach would be to have a set or a region
of attribute values mapped to a label of 1, for instance
“anything with the attribute set to 5, 6 or 7” or “anything
with the attribute between 3 and 8” or “anything with
the attribute above 6”. Depending on the kernel that is
used, if the testing data then exhibits similar properties,
it should be possible to predict which examples will be
ranked at the top, and which will be at the bottom.

Creating predictable data sets for MartiRank is a bit
more complicated because of the sorting and segmen-
tation. We created each predictable data set by setting
values in such a way that the algorithm should choose a
specific attribute on which to sort for each segment for
each round, and then divided the distribution of labels
such that the data set will be segmented as we would
expect; this should generate a model that, when applied
to another data set showing the same characteristics,
would yield the expected ranking.

Figure 5 shows an example of a data set for which it
should be possible to predict the “correct” model. In each
round of execution, MartiRank seeks to find an attribute
to sort, either ascending or descending, so that most of
the positive examples (examples with a label of 1; the
label is the last value in each row) are towards the top,
i.e., it has the highest AUC value. In this case, it should
choose to sort the first attribute in ascending order; that
gives a better result than sorting it in descending order,
or sorting either of the other two attributes in either
order.

0,3,1,1
1,5,4,1
5,4,5,0
7,6,6,0
2,7,7,1
3,0,9,1
4,2,3,0
6,1,2,1
8,8,0,1
9,9,8,0

Fig. 5. Data set that should yield a predictable model
in MartiRank, based on the relationship between the
attributes and the labels

Although these test cases may seem trivial, they have
merit in determining the dependability of the appli-
cation, because they provide a baseline for minimum
requirements that must be passed before any other, more
rigorous testing can proceed.

4.1 Findings
This section describes the testing we performed on Mar-
tiRank and SVM-Light, in which we manually created
simple data sets for which the correct output could be
predicted. The creation of these data sets was guided by
the analysis we performed (as described above in Section
3) and the ensuing equivalence classes and test cases.



8

4.1.1 Testing of MartiRank
By inspecting the MartiRank algorithm and consider-
ing any potential vagueness, we developed test cases
that showed that different interpretations could lead
to different results. Specifically, because MartiRank is
based on sorting, we questioned what would happen
in the case of repeating values; in particular, we were
interested to see whether “stable” sorting was used, so
that the original order of elements with the same value
would be maintained. Although we did have access to
the source code and to the MartiRank developers, the
sorting routine used a third-party library that had been
developed elsewhere.

We constructed data sets such that, if a stable sort
were used, a predictable ranking would be achieved
because examples in the testing data with the same value
for a particular attribute would be left in their original
order; however, if the sort were not stable, then the
ranking would not necessarily be predictable because
the examples could be out of order. Our testing showed
that the sorting routine was not, in fact, stable. Though
this was not specified in the algorithm, the developers
agreed that it would be preferable to have a stable sort
for deterministic results - so they substituted another,
“stable” sorting routine.

In another simple test, we wanted to see what would
happen if sorting on two different attributes gave the
same AUC. For instance, if sorting on attribute 3 ascend-
ing would give the same AUC as sorting on attribute
10 descending, and either provided the best AUC for
this segment, which would the code pick? Our assump-
tion was that the implementation should choose an
attribute/direction for sorting only when it produces a
better AUC than the best so far, starting with attribute 0
(leftmost in the data file) and going up to attribute N-1
(rightmost), as specified in MartiRank. We thus created
test data input such that two attributes, when sorted,
gave the same AUC, and we expected in this case that
the model would include the leftmost one.

In some of these test cases, the MartiRank imple-
mentation acted as expected, but in others it did not,
particularly when the two attributes that should provide
the same AUC upon sorting were to be chosen after
the first round. We designed a data set such that we
expected MartiRank to choose one particular attribute in
the first round, and then in the second round, for one of
the segments, there would be two attributes that yielded
the same AUC upon sorting. We expected the model to
contain the leftmost attribute, but in some cases it did
not.

This led to the interesting discovery that the Marti-
Rank implementation was doing the segmentation (sub-
list splits) differently from our expectations. By using
the framework’s model analysis tool, we found that in
the second round it was not choosing the attribute we
thought it would because at the end of the first round
the percentage of the data set in each segment was not
as we expected.

It appeared (and we confirmed using the tracing anal-
ysis tool) that the difference was that the implementation
was taking enough failure examples (labeled as 1s) to
fill the segment with the appropriate number, and then
taking all non-failure examples (0s) up to the next failure
(1). In contrast, the algorithm’s designers (who were not
the same people who developed the implementation)
told us that it would only take enough failures to fill
the segment and stop there.

For example, Figure 6(a) shows a sequence of labels
that would appear after the first round of sorting. In
the second round, two segments would be created, each
having 1/2 of the failures. The algorithm designers
intended the segmentation to appear as in Figure 6(b),
in which the pipe represents the break between the two
segments; however, the implementation segmented as in
Figure 6(c).

(a) 1 1 0 0 1 0 0 1 0 0
(b) 1 1|0 0 1 0 0 1 0 0
(c) 1 1 0 0|1 0 0 1 0 0

Fig. 6. (a) A set of labels to be split such that 1/2 of the
1s are in each segment. (b) The expected segmentation,
indicated by the pipe. (c) The actual segmentation.

Both are “correct” because the algorithm merely says
that, in the Nth round, each segment should contain
1/Nth of the failures, and here each segment indeed
contains two of the four. The algorithm does not specify
where to draw the boundaries between the non-failures.
This was one instance we found in which the MartiRank
algorithm did not address an implementation-specific
issue, thus affecting the result.

In another test case, we sought to explore the pos-
sibility of having predictable rankings, as opposed to
predictable models as described above. We created a data
set with some repeating attribute values and applied it
to a particular model that sorted based on that attribute,
expecting that the examples with the same attribute
values would stay in the same relative order. In some
cases, though, the final ranking was not as expected.

Using the tracing utility to see how the examples were
being ordered during each sorting round, we found that
the “stability” of the sorting (by which we mean, items
with the same value stay in their original order with
respect to one another after the sorting is complete) in
the MartiRank implementation was based on the initial
ordering from the original data set, and not from the
sorted ordering at the end of the previous round. That
is, when a list that contained repeating values was to be
sorted, we expected that MartiRank would leave those
examples in their relative order as they stood at the end
of the previous round, but the implementation left them
in the relative order as they stood in the original data
set. The developer informed us that it was designed this
way to make it faster, by “remembering” the sort order
for each attribute at the very beginning of the execution,
and not having to re-sort in each round.



9

Since this was not explicitly addressed in the Mar-
tiRank algorithm, we contacted the original algorith
designers, who decided that remembering the order
from the previous round was more in the spirit of the
algorithm since it would take into account its execution
history, rather than just the somewhat-randomness of
how the examples were ordered in the original data set.
As in the case of the segmentation issue, this is not a
defect in the implementation per se, but the output of
the application deviates from what would be expected,
and could certainly affect the results in a real-world
application.

4.1.2 Testing of SVM-Light

We also created small data sets by hand that should
yield a predictable ranking in SVM-Light. In one case,
for the first attribute, every example that had a value
less than X (where X is some integer) had a label of one;
everything else had a label of zero. There were two other
columns of random noise. All three kernels we tested
(linear, polynomial, and radial basis) correctly ranked the
examples.

In another test, however, we changed the labels so
that they were all different - simply equal to the value
of that example’s first attribute incremented by 1. We
expected this to be predictable because the examples
with larger values for that attribute would be farther
away from the hyperplane, and thus would be ranked
accordingly. The linear and radial basis kernels found the
predictable ranking but the polynomial kernel did not.
This difference is, after all, the motivation for multiple
kernels, but from our perspective it shows that what is
predictable for one kernel is not always predictable for
another.

4.2 Discussion

Despite being limited to a very small subset of test cases,
the “niche oracle” approach was successful in that it
helped us discover discrepancies from the stated algo-
rithms and deviations from user expectations, improving
the dependability of MartiRank in particular (all the
issues were fixed by the developers). By inspecting the
algorithms, we could create predictable data sets that
should yield expected results and indicate whether the
algorithm was implemented correctly for those basic
cases. Even though this approach cannot aid in provid-
ing a general test oracle for these non-testable programs,
demonstrating that the implementations pass these tests
at least increases confidence and provides a foundation
for further testing of dependability.

We also discovered that tracing of intermediate state
can be useful, because even though we may not know
what the final output should be, inspection of the al-
gorithm could indicate what to expect from certain
intermediate results. In the case of MartiRank, we could
inspect the rankings at the end of each round and see

how the examples were being sorted; this led us to
discover the segmentation issue.

Possibly the most important thing we discovered is
that what is “predictable” for one algorithm will not
necessarily lead to a predictable ranking in another.
For instance, in some (but not all) SVM kernels it is
possible to achieve a predictable outcome in cases when
the examples with a 1 label have a particular attribute
whose value is in the middle of a range. However, this
is difficult in MartiRank because it sorts the attributes
ascending and descending in linear order, so values in
the middle of a range will never be at the very top or
the very bottom. 5 The impact of this observation is that
predictable data sets may not necessarily be useful across
different algorithms, or even amongst all variations of
the same algorithm. However, the use of predictable data
sets, even for a single application, does help to address
issues related to its dependability.

5 PARAMETERIZED RANDOM TESTING

Although the “predictable” data sets were useful in re-
vealing some inconsistencies in the applications that we
tested, these data sets needed to be created by hand, and
creating anything more than small, trivial sets proved
to be quite laborious. Additionally, we were not able to
cover all the different equivalence classes: for instance,
none of the tests in the “niche oracle” approach included
missing attribute values, because we could not predict
how they would be handled by SVM-Light.

Random testing [4] [5] could be an alternative in these
cases: in random testing, rather than create test data
sets based on equivalence partitions, the data sets are
generated randomly, the idea being that it is fast and
easy to create numerous and large test input data sets
this way, as long as there is a reliable oracle to determine
whether the outputs are correct. However, given that
machine learning applications fall under the category
of “non-testable programs”, this approach may not be
suitable. In fact, Hamlet even points out that “Random
testing cannot be attempted without an effective oracle. A
vast number of test points are required, and they cannot be
trivialized to make things easier for a human oracle.”[5] Thus
pure random testing may not be completely applicable
in these cases.

To address this limitation, we introduce a technique
that we call “parameterized random test data genera-
tion”, which we originally proposed in [17]. In order to
obtain data sets that provide the different combinations
of equivalence classes, or the desired separation and
isolation of equivalence classes, it is necessary to auto-
matically generate random data sets, but parameterized
to control the range and characteristics of those random
values. This hybrid testing approach couples the benefits

5. In fact, this very issue actually came up as a hypothetical problem
in the device failure application. Some devices installed in the 1970s
tended to fail more than those installed in the 1960s or 1980s, and it
was observed that the installation date attribute may conceivably not
be selected in the model because of the linear sorting [16].



10

of using randomness with the necessary control over the
properties of the testing data, in order to create data sets
that can be used in testing the dependability of these
types of applications.

5.1 Findings
It is important to note that, in the general case, without a
reliable test oracle, it is only possible to test for obvious
and egregious errors, such as core dumps and runtime
errors. However, it is not possible to detect minor issues
or even tell if the output is correct. Although this seems
to limit the effectiveness of this particular approach, it
does allow us to exercise different equivalence classes to
look for these types of defects, and create data sets that
could be used in other oracle or pseudo-oracle based
approaches. Here, we discuss these types of findings for
MartiRank and SVM.

5.1.1 Testing of MartiRank
Some of our test cases for MartiRank simply dealt with
data set size, regardless of whether the values in the
data set were repeating, missing, categorical, etc. The
MartiRank implementation did not have any difficulty
handling large numbers of examples (hundreds of thou-
sands), but for more than 200 or so attributes, the
program reproducibly crashed. Analyzing the tracing
output and then inspecting the code, we found that
some code that was only required for one of the runtime
options was still being called even when that flag was
turned off - but the internal state was inappropriate
for that execution path, and some pointers were being
overwritten. When the implementation attempted to cal-
culate the AUC at the end of each round and there
was a large number of attributes, these pointer values
were referring to garbage, thus causing the segmentation
violation. The MartiRank developers refactored the code
and the failures disappeared. Although for these large
data sets, we could not tell if the output was actually
correct (due to the absence of a general test oracle), the
fact that the application was crashing was clearly not the
intended behavior.

We also considered test data sets that had missing
values. We used the data generation framework to create
large, randomly-generated (but non-repeating) data sets,
this time with the percent of missing values specified
as a parameter. We noticed that multiple invocations
of MartiRank, even with the same input data, were
yielding different results, which should not be the case
because we had explicitly disabled the runtime options
dealing with randomization and expected the output to
be deterministic (if not predictable).

Upon analyzing the tracing outputs with the frame-
work tools, we noticed that the implementation - even
with all optimizations turned off - was still performing
randomizations in the case of missing values. In par-
ticular, when trying to sort a list of numbers that con-
tained some missing values, it kept the missing values

in the same relative order but placed them randomly
throughout the list. For instance, Figure 7(a) shows a
series of numbers, with A, B, and C representing the
missing values; Figure 7(b) shows possible results of this
technique of sorting the known values and randomly
placing the missing ones amongst them.

(a) 4 A 5 6 2 1 0 B C 3
(b) 0 1 2 A 3 B 4 C 5 6
(b) 0 A 1 2 B C 3 4 5 6
(b) A 0 1 2 3 B 4 5 C 6
(c) 0 A 1 2 3 4 5 B C 6

Fig. 7. (a) A set of data to be sorted, with A, B, and C rep-
resenting the missing values. (b) Three possible outputs
in which the missing values stay in their relative order but
are randomly placed in the set. (c) A deterministic output
in which the missing values stay in place.

After we brought up this issue with the ML re-
searchers who had devised the algorithm, they decided
that the sorting should be “stable” with respect to miss-
ing values in that examples with a missing attribute
value should remain in the same position, with the other
examples (with known values) sorted “around” them, as
shown in Figure 7(c) [18]. Other deterministic options for
handling this case (such as putting all missing values at
the end) were considered, but keeping the examples with
missing values consistent with respect to any previous
sort order was deemed to be most in the MartiRank
spirit. The developers then changed the implementation,
to allow for determinism that may be needed to assist
later testing.

Because categorical data provides a combination of
necessarily repeating (all values are either 0s or 1s,
so if there are more than two non-missing, there will
necessarily be a repeat) and sometimes missing values,
we created data sets with categorical attributes as part of
our test data. We used a data set that included categorical
data to discover a bug in the implementation whereby
the incorrect use of a global variable in the calculation
of the AUC led to a reported value that was greater than
1, which is clearly wrong (since the AUC is normalized).
More importantly, though, this bug did not surface when
testing only with repeating values or only with missing
values; it was the data sets that combined these two
equivalence classes that allowed the bug to be revealed.

5.1.2 Testing of SVM-Light

Whereas MartiRank crashed when given a training data
set with a large number of attributes, SVM-Light would
crash when given a training data set with a large number
of examples. Data sets of about 10,000 examples caused
SVM-Light to give an “out of memory” error, even when
there were very few attributes and the system had 16GB
of free memory. Ironically, SVM-Light had no problem
handling the cases that had few examples but many
attributes (over 10,000, which is more than two orders



11

of magnitude greater than what caused the analogous
failure in MartiRank).

5.2 Discussion
Our contribution here is to have demonstrated how
random testing and partition testing can work together,
instead of as alternatives, and also to show that this
hybrid approach can be useful in applying the princi-
ples of random testing to “non-testable programs”, thus
improving their dependability. We have demonstrated
defects in both MartiRank and SVM, as well as further
issues related to the interpretation of the MartiRank algo-
rithm. In addition, in this approach we created numerous
test data sets that could be used in the other approaches,
as well as regression testing, too.

By combining parameterization and randomness, we
gained the ability to control the properties of very large
data sets, which was critical for limiting the scope of
individual tests and for pinpointing specific issues in
how the code was handling different equivalence classes.
The data generation tool proved to be preferable to
alternative approaches we considered, such as culling
real-world data, which would be time consuming and
more prone to error.

Additionally, the tool could be used for the testing of
any ML ranking algorithm, not just MartiRank or SVM;
it could also be used for supervised ML classification al-
gorithms. The data generator supports plug-replaceable
modules for creating data set files in whatever format is
needed. Two such modules are currently implemented,
one for MartiRank implementations (csv files) and the
other for SVM-Light (a “sparse” attribute-value pair
representation for data sets with a high ratio of missing
values).

6 METAMORPHIC TESTING

Despite the usefulness of the first two approaches in
detecting defects and inconsistencies in the implemen-
tations we tested, they are both somewhat limited by
design. Although the “niche oracle” approach is able to
demonstrate correctness to a (very) limited degree, the
creation of data sets is time-consuming and only a small
number of test cases can be used, and generally only
for a specific application. The parameterized random
testing approach eases the creation of the data sets and
of covering different equivalence classes, but without a
general test oracle, only obvious errors can be detected.

One approach to investigating the dependability of
such “non-testable programs” has been to use a pseudo-
oracle [2], in which multiple implementations of an
algorithm process an input and the results are compared,
as in N-Version Programming [19]; if the results are
not the same, then at least one of the implementations
contains a defect. This is not always feasible, though,
since multiple implementations may not exist, or they
may have been created by the same developers, or by
groups of developers who are prone to making the

same types of mistakes [20]. In the absence of multiple
implementations 6, however, metamorphic testing [6] can
be used to produce a similar effect. The approach we
describe in this section is based on metamorphic testing,
applied to this particular domain.

6.1 Background
Metamorphic testing is a methodology of reusing input
test data to create additional test cases whose outputs
can be predicted. The definition of metamorphic testing
is as follows: if input x produces an output f(x), the func-
tion’s so-called “metamorphic properties” can then be
used to guide the creation of a transformation function
t, which can then be applied to the input to produce
t(x); this transformation then allows us to predict the
output f(t(x)), based on the (already known) value of f(x).
If the output is not as expected, then a defect must exist.
We demonstrate that, in particular, this approach can be
applied with success to the domain of machine learning
applications.

A simple example (outside the domain of ML applica-
tions) of a function to which metamorphic testing could
be applied would be one that calculates the standard
deviation of a set of numbers. Certain transformations
of the set would be expected to produce the same result.
For instance, permuting the order of the elements should
not affect the calculation; nor would multiplying each
value by -1, since the devation from the mean would
still be the same (think about the values being “flipped”
around the origin on the number line).

Furthermore, we know that there are other transfor-
mations that will alter the output, but in a predictable
way. For instance, if each value in the set is multipled
by 2, then the standard deviation should be twice as
much as that of the original set, since the values on the
number line are just “stretched out” and their deviation
from the mean becomes twice as great. Thus, given one
set of numbers, we can create three more sets (one with
the elements permuted, one with each multiplied by -1,
and another with each multiplied by 2), and get a total
of four test cases; moreover, given the output of only
the first test case, we can predict what the other three
should be.

Metamorphic testing generally would not be needed
for this trivial example, but clearly can be very useful
in the absence of an oracle: regardless of the values
in the data set, and even if the correct output of an
application or function could not be known in advance,
if the different outputs for the different inputs are not as
expected, then there must be a defect in the implemen-
tation. Although the use of these simple identities for
testing numerical functions is not unique to metamor-
phic testing (e.g., testing based on algebraic properties
[21]), the approach can be used on a broader domain

6. There are, in fact, numerous implementations of the SVM algo-
rithm but we sought a generally-applicable approach that does not
rely on having such pseudo-oracles.



12

of any functions that display metamorphic properties,
including machine learning applications. Additionally,
metamorphic testing can treat the application under test
as a black box, and does not require access to source
code.

6.2 Findings

In this approach, we enumerated and categorized the
different types of metamorphic properties, and then used
these principles in our testing. We used the analysis of
both the MartiRank and SVM algorithms (from Section
3) to determine these properties, and then tested the
implementations using the metamorphic properties as
our guidelines. Note that this approach does not re-
quire access to the source code of the application under
test, but rather only requires an understanding of the
algorithm. Since it does not require the source, it could
in principle be used by an organization that contracted
out development of a system, to gain confidence in de-
pendability during acceptance testing prior to releasing a
product into production. We first outlined this approach
in [22]; here, we present additional findings and detail.

6.2.1 Metamorphic properties

We begin by describing our observations of the meta-
morphic properties of both MartiRank and SVM. We
first considered metamorphic relationships that should
not affect the output: either the model that is created
as a result of the training phase, or the ranking that is
produced at the end of the testing phase. For the training
phase, if training data set input D produces model M,
then we looked for transformation functions Td on the
data sets, so that input Td(D) would also produce model
M. Additionally, if testing data set input K and model L
produce ranking r(K, L) = R, then we looked for transfor-
mation functions Td on the data sets and transformation
functions Tm on the model so that the combinations
r(Td(K), L), r(K, Tm(L)) and r(Td(K), Tm(L)) all produce
R as well. That is, we identify transformations of the
input data, the model, or both so that the ranking is
unchanged.

For both MartiRank and SVM - as well as, based
on our knowledge of the domain, most other ranking
and classification algorithms - it should certainly be the
case that changing the order of the examples should not
affect the model (in the first phase) or the ranking (in
the second); we describe this as having a permutative
metamorphic property. For MartiRank, though, this is
only true under certain conditions. As MartiRank is
based on sorting of attributes, in the cases where all
the values for a given attribute are distinct, it is clear
that the sorted order should still be the same regardless
of the original input order. However, since MartiRank
uses stable sorting with respect to repeating and missing
attribute values, and also using the sorted order from the
previous “round” rather than the original (as a result of

our findings in Sections 4 and 5), permuting the order
may change the result.

Additionally, based on our analysis of the algorithms,
we noticed that it is not the actual values of the attributes
that are important, but it is the relative values that are
used. In MartiRank, adding a constant value to every
attribute, or multiplying each attribute by a positive
constant value, should not affect the model because the
model only concerns how the examples relate to each
other (based on sorting), and not the particular values
of the examples’ attributes. The model declares which
attributes to sort to get the best ordering of the labels:
if the values in any column were all increased by a
constant, or multiplied by a positive constant, then the
sorted order of the examples would still be the same,
so the same attribute would be chosen as the best to
sort on, thus the model would not change. Additionally,
applying a given model to two data sets, one of which
has been created based on the other but with each
attribute value increased by a constant, would generate
the same ranking, based on the same line of reasoning.
Thus, MartiRank exhibits metamorphic properties that
we can classify as both additive and multiplicative:
modifying the input data by addition or multiplication
by a positive constant should not affect the output.

SVM displays these properties, too, though only in the
ranking phase, and not in the generation of the model.
If a training data set were transformed using an additive
or multiplicative transformation, then the corresponding
model (hyperplane) would be affected by being shifted
or expanded in the N dimensions; however, if the testing
data set also had the same transformation(s) applied, the
resulting ranking of the new model applied to the new
data set would be the same as the original model applied
to the original data set, because each example (or point
in N dimensions) would similarly be moved, and the
relative distances from the hyperplane would stay the
same.

We then considered metamorphic relationships that
would affect the output, but in a predictable way. For
the training phase, if training data set input D produces
model M, then we looked for transformation functions
Td on the data set so that input Td(D) would produce
model M’, where M’ could be predicted based on M.
Additionally, if testing data set input K and model L
produce ranking r(K, L) = R, then we looked for transfor-
mation functions Td on the data set and transformation
functions Tm on the model, so that r(Td(K), L), r(K,
Tm(L)) and r(Td(K), Tm(L)) all can be predicted based
on R. That is, we identify transformations of the testing
data, the model, or both so that the ranking can be
predicted, but is not necessarily exactly the same as the
original. Keep in mind that in order to perform testing,
we need to be able to have a predictable output based
on R because we cannot know it in advance otherwise,
since there is no test oracle, aside from the very limited
set of niche cases.

We mentioned above that multiplying all attributes



13

by a positive constant should not affect the model in
MartiRank. On the other hand, multiplying by a neg-
ative constant clearly would have an effect, because
sorting would now result in the opposite ordering. The
effect on the MartiRank model, however, could easily be
predicted, because the model not only specifies which
attribute to sort on, but which direction (ascending or
descending) as well. Consider that, if one were to sort a
group of numbers in ascending order, then multiply all
the values in the original (unsorted) set by a negative
constant, and sort in descending order, the resulting
order of the examples in the ranking should be the same.
In MartiRank, if in the original data set a particular
attribute is deemed to be the best one to sort on, and
a new data set is created by multiplying every attribute
value by a negative constant, then that particular at-
tribute will still be the best one to sort on, but in the
opposite direction. The only change to the model will
be the sorting direction. Thus, MartiRank displays an
invertive metamorphic property, wherein it is possible
to predict the output based on taking the “opposite” of
the input. We mention here again that this property only
holds in the case where all values are distinct.

This invertive property can also be seen in the testing
phase. For data set input K, we define K’ as its inverse,
i.e., all attribute values multiplied by a negative constant.
For model L, we define L’ as its inverse, i.e. the sorting
directions all changed. We also define R = r(K, L) as the
ranking produced on data set K and model L, and R’ as
the inverse ranking, where the examples are ranked in
“backwards” order. Based on the explanation above, we
can expect that if r(K, L) = R, then r(K’, L’) is also equal
to R, because sorting the positive values ascending will
yield the same ordering as sorting the negative values
descending. It follows, then, that r(K’, L) and r(K, L’)
should both be equal to R’, in which the ranking is the
same but in the opposite direction.

SVM also demonstrates this invertive property, but
only if it is applied to the entire data set, as opposed to an
individual attribute. In the training phase, for example,
if each value in the training data set is multipled by -
1, then one can think of the model being “flipped” or
“rotated” about the origin in N-dimensional space.

1.0000,61,d
0.4000,32,a;1.0000,12,d
0.2500,18,d;0.5555,55,d;1.0000,41,d

Fig. 8. Sample MartiRank model

Furthermore, once we know the model, it is easy to
add an example to the set of testing data so that we can
predict its final place in the ranking. Take, for example,
the MartiRank model shown in Figure 8. In the first
round, it sorts on attribute 61 in descending order; if
we add an example to a testing data set such that the
example has the greatest value in attribute 61, it will
end up at the top of the sorted list. In the second round,
the model sorts the top 40% (which would include our

added example) on attribute 32 in ascending order; if we
modify our added example so that it has the smallest
value for attribute 32, it will stay at the top of the list.
And so on. Knowing the model, we can thus construct
an example, add it to the data set, and expect it to appear
first in the ranking. We can thus say that MartiRank
has an inclusive metamorphic property, meaning that
a new element can be included in the input and the
effect on the output is predictable. Similarly, MartiRank
also shows an exclusive metamorphic property: if an
example is excluded from the testing data, the resulting
ranking should stay the same, but without that particular
example, of course.

Because in its ranking mode, SVM considers each
example in the testing data independently and ranks
according to the distance from the hyperplane, SVM also
demonstrates the exclusive property: if an example is
removed, it would not affect the final ranking. Similarly,
SVM demonstrates the inclusive property, though in a
simpler form than MartiRank. In the ranking phase, re-
gardless of the model, by looking at the numerical values
in the testing data one can construct a new example with
attribute values that are significantly greater than the
others; thus, that example is going to be very far away
from the hyperplane, and will be ranked highest.

6.2.2 Testing of MartiRank
After identifying the metamorphic properties of Marti-
Rank, we used the equivalence classes from the analyses
described in Section 3 and the test cases from the testing
described in Section 5 to create data sets for use in this
approach (in some cases we also used real-world data
sets). We then applied the metamorphic transformations,
and were able to detect a defect in the implementation
that was not detected earlier using the other approaches.
Another of MartiRank’s invertive properties is that if
all of the labels (as opposed to the attributes) in the
training data are multiplied by -1, the final ranking of
the testing data should be the same but in opposite
order from the original, since what was the “worst”
would now be considered “best”. However, because the
particular implementation we were testing was designed
specifically to rank the likelihood of device failures,
the labels in the training data (which represented the
number of failures over a given period of time) would
never be negative in practice, so this was not consid-
ered during development. During metamorphic testing,
the implementation produced inconsistent results when
a negative label existed, and we confirmed this bug
upon inspection of the code, in which a logical flaw
existed in the way the examples were being segmented
during training. In principle a general-purpose ranking
application should allow for negative labels (-1 vs. +1 is
sometimes used in other applications).

6.2.3 Testing of SVM-Light
With respect to the SVM implementation we tested, the
most relevant finding is that randomly permuting the



14

order of the examples in the training data caused it
to generate different results. The practical implication
is that the order in which the data happens to be
assembled can have an effect on the final outcome. The
SVM algorithm theoretically should produce the same
result regardless of the input data order; however, an
ML researcher familiar with SVM-Light told us that
because it is inefficient to run the quadratic optimization
algorithm on the full data set all at once, the implemen-
tation performs “chunking” whereby the optimization
algorithm runs on subsets of the data and then merges
the results [18]. Numerical methods and heuristics are
used to quickly converge toward the optimum; however,
the optimum is not necessarily achieved, but instead this
process stops after some threshold of improvement. Here
the implementation deviates from the expected behavior.

6.3 Discussion
We have identified six metamorphic properties that we
believe exist in many machine learning applications: ad-
ditive, multiplicative, permutative, invertive, inclusive,
and exclusive. Although these are likely not the only
metamorphic properties that can exist in a machine
learning algorithm, they provide a foundation for deter-
mining the relationships and transformations that can be
used for conducting metamorphic testing.

Most importantly, we have demonstrated that this
approach can reveal defects in the applications of in-
terest, by allowing for the creation of built-in pseudo-
oracles, even without access to the source code. As we
have demonstrated in [23], these properties can also be
applied to classification algorithms as well, and in fact
we used these properties and this approach to discover
defects in popular open-source ML libraries. When used
in conjunction with the other two approaches described
previously, this provides a powerful mechanism for eval-
uating the dependability of applications in this domain.

7 APPLYING TO UNSUPERVISED LEARNING

In addition to demonstrating the feasibility of our ap-
proach in the domain of supervised machine learning
applications (particularly ranking algorithms), we also
wanted to show its effectiveness in unsupervised ma-
chine learning as well.

7.1 Unsupervised ML and PAYL
Like supervised ML, unsupervised ML applications also
execute in training and testing phases, but in these cases,
the training data sets necessarily do not have labels
(as opposed to supervised ML, in which the labels in
the training data are known). Rather than attempt to
find a relationship between attribute values and labels,
as in supervised ML, an unsupervised ML application
seeks to learn properties of the examples on its own,
such as the numerical distribution of attribute values
or how the attributes relate to each other. This model

Fig. 9. Sample payload byte distribution

is then applied to testing data, to determine to what
extent the same properties hold. Data mining [24] and
collaborative filtering [25] are two well-known examples
of unsupervised learning.

To apply our approach to an unsupervised machine
learning application, we investigated PAYL [12], an
anomaly-based network intrusion detection system (IDS)
that was developed by members of Columbia Uni-
versity’s Intrusion Detection Systems Lab for purposes
unrelated to the device failure application. Many such
systems are primarily signature-based detectors, and
while these are effective at detecting known intrusion
attempts and exploits, they fail to recognize new attacks
and some variants of old exploits. However, anomaly-
based systems like PAYL are used to model normal or
expected behavior in a system, and detect deviations
of interest that may indicate a security breach or an
attempted attack.

PAYL’s training data simply consists of a set of TCP/IP
network packets (streams of bytes), without any associ-
ated labels or classification. During its training phase,
it computes the mean and variance of the byte value
distribution for each payload length (the payload can be
thought of as the “message” inside the network packet)
in order to produce a model; Figure 9 shows an example
of such a distribution [12]. During the second (“detec-
tion”) phase, each incoming packet is scanned and the
distribution of the byte values in its payload is com-
puted. This new payload distribution is then compared
against the model (for that payload length) using the
Mahalanobis distance [26], which is a way of comparing
two sets of data taking into account their correlations; if
the distribution of the bytes in the new payload is above
some configurable threshold of difference from the norm,
PAYL flags it as anomalous and generates an alert.

Although PAYL can act as a standalone application, it
has been incorporated within a commercial product that
has been deployed in a number of corporate network en-
vironments [27]. Intrusion detection systems are clearly
becoming more and more common as mission-critical
data is stored online and attackers seek to access it or
gain control of systems, so ensuring the dependability of
such IDS applications has taken on immense importance.

7.2 Analysis of PAYL
Whereas we did have access to the MartiRank and SVM-
Light source code, we did not have such a luxury for
PAYL, and needed to treat it as a black box. However,



15

based on our understanding of the algorithm from the
literature and from discussing it with the developers,
we were able to analyze the algorithm and determine
its equivalence classes.

Unlike the data sets used for the ranking algorithms,
particularly in the device failure application, the data
sets used by PAYL had much less flexibility, which
somewhat limited the number of test cases we could
create by analyzing the problem domain. In the ranking
algorithms, the data sets consisted of rows and columns
of numbers, but in this domain, each data element
needed to conform to the TCP/IP standard, otherwise it
would be rejected as bad data by the underlying TCP/IP
analysis tool (jpcap [28]) and would not be useful in
testing. For example, if the value in the “packet length”
field did not match the actual packet length, or if any
part of the packet were missing, the packet would be
ignored.

Also, in the data sets for the ranking algorithms, the
number of attributes was configurable in the test data
generation tool; in this case, though, there are only three
attributes of importance: the length of the payload, the
intended port, and the data inside the payload. Thus, the
tool to generate random data would need to take only
four parameters: the number of examples (packets); and
whether or not to allow for repeated payload lengths,
port numbers, and payload data values.

Our analysis of the algorithm as defined mostly fo-
cused on the types of alerts it could generate. As men-
tioned above, PAYL would raise an alert if the byte
distribution of the payload of an incoming packet were
anomalous according to the model (we refer to these
as “anomalous-distribution alerts”). Additionally, PAYL
may also raise an alert in other circumstances, for in-
stance if the payload length had never been seen before
in the training data (“length-never-before-seen alerts”),
or if the packet was intended for a port that had never
previously received any traffic (“port-never-before-seen
alerts”). By understanding the various types of alerts,
we could then create equivalence classes that sought to
produce these different types of outputs.

While PAYL can perform “online learning”, in which
the model is constructed and updated piecemeal in the
training phase as new packets arrive on the network
interface, as opposed to reading them all at once, it also
has a batch mode in which it can read all the packets
from a text file, created by a tool such as tcpdump [29].
This was possible for the detection phase, too, in which
all the packets in the file would be flagged as anomalous
if deemed as such. Thus, we did not need to simulate real
input data by sending actual packets over the network,
but rather we created data sets in plain text.

After our analysis of PAYL, we devised equivalence
classes including the following: all payload lengths the
same vs. distinct payload lengths vs. some repeating
payload lengths; all port numbers the same vs. distinct
port numbers vs. some repeating payload lengths; all
payload values the same vs. distinct payload values

vs. some repeating payload values; small vs. large data
sets; and combinations thereof. These equivalence classes
guided the testing we performed on PAYL, using the
three approaches described previously, enabling us to
detect defects and increase its dependability.

7.3 Niche oracle-based testing of PAYL
Using the results of our analysis, we devised simple test
cases for which we could know the expected result, i.e.,
that given a set of training data and/or a model, we
would be able to know whether a particular incoming
packet should be flagged as anomalous or not, and in
particular which type of alert it should raise.

In one of the test cases in which the incoming packet
was expected to be anomalous, the training data con-
sisted of payloads where all the bytes were set to 0x00,
and the payload in the packet in the testing data had all
bytes set to 0xFF. Because this value is as “far away” as
possible from what should be considered “normal”, the
incoming packet should be flagged as anomalous. In test
cases where we would not expect the incoming packet to
be labeled as anomalous, the values in its payload would
also be set to 0x00, so that it should exactly match what
was in the training data and should definitely not be
seen as different.

Another type of alert that PAYL could raise would be
one in which the payload length in the incoming packet
had not been seen in the training data. In a simple test,
we would expect PAYL to raise this alert by creating
training data in which all the payloads were of length
X, and the payload in the testing data would be of length
X+1; in the test in which we did not expect this type of
alert, the testing data payload length would also be X.

We did not discover any defects in the PAYL imple-
mentation using this testing approach, but the fact that
we were able to develop simple test cases shows that
the “niche oracle” approach can apply to unsupervised
machine learning applications as well as supervised.

7.4 Parameterized random testing of PAYL
Our testing using the parameterized random testing
approach did reveal some unexpected behavior in PAYL.
In one test case, PAYL raised both an anomalous-
distribution alert and a length-never-seen-before alert for
a payloads of a length 1448 bytes (the actual value is
not important, but is used here for illustrative purposes),
which theoretically should never happen, since the byte
distribution can only be considered anomalous if a pay-
load of that length had actually been seen before in the
training data. Upon further investigation, we determined
that PAYL actually should only have raised the length-
never-seen-before alert, since there were no payloads
of that length in the training data. Note that this only
occurred intermittently (but was reproducible), and not
for all test cases.

The developers of the software determined that this
unexpected outcome was occurring because, depending



16

on the amount of training data, PAYL would sometimes
group packets of similar payload length together when
determining the byte distribution in the model. That
is, the model might be for a range of payload lengths,
not just for one single value. In this case, there was
no payload of length 1448 in the training data, so a
length-never-seen-before alert was the correct response.
The anomalous-distribution alert was raised because the
packet was compared to a model for lengths “around”
1448 (for instance, in the range 1440-1454), and that par-
ticular packet was deemed to be anomalous compared
to the normal distribution for payloads in that range.
Although this behavior was by design, and is not a bug
per se, the application did not behave as expected by
raising two alerts that one would think would never
appear in conjunction.

7.5 Metamorphic testing of PAYL

Last, we applied the metamorphic testing approach to
PAYL. Because the model generated by PAYL in the
training phase represents the distribution of byte values
in the TCP/IP payload (see Figure 9), it is clear that
it exhibits the additive and multiplicative properties,
as described in Section 6. Adding a constant value to
each byte would shift the distribution, and multiplying
by a constant would stretch it. Therefore, it would be
easy to predict the effect on the model. Additionally, the
categorization (as anomalous or not) of a packet in the
testing phase would not change if it, too, had its bytes
modified in the same manner.

Much of our analysis of PAYL focused on its permu-
tative properties, primarily because some attackers may
try to hide a worm or virus by permuting the order of the
bytes, so as to trick a signature-based intrusion detection
system. Of course, the model created by PAYL does not
consider the order of the bytes, only their distribution,
so a permutation should still result in the same model.
At a higher level, because the model is created from a
number of packets (not just a single one), permuting the
order of the packets in the training data stream should
also result in the same model.

PAYL also has an invertive property. An “inverse”
of the distribution can be obtained by subtracting each
byte value from the maximum (0xFF), so that frequently-
seen values become less frequent, and vice-versa. If the
same treatment is then applied to the payloads in the
testing data as well, then the same alerts should be
raised as before, since these values will still appear to
be anomalous.

Aside from considering the distribution of byte values
in creating its model, PAYL also considers the existence
(or absence) of payloads of certain lengths, and thus
certainly has inclusive metamorphic properties. For in-
stance, consider a model that generates an alert on a
new payload because its length had never before been
seen. If the particular payload were then included in
the training data, it should no longer be considered

anomalous. We would similarly expect PAYL to have
exclusive metamorphic properties: if all payloads of a
certain length were removed from the set of training
data, then any messages of that length in the testing data
would thus be considered anomalous because they had
not previously been seen. The same holds true for port
numbers, in addition to payload length.

After analyzing PAYL’s metamorphic properties, we
conducted testing of PAYL by generating data sets using
parameterized random testing, and then modifying them
according to these metamorphic relationships. By using
the exclusive metamorphic property, we were able to
detect another defect in PAYL. We started with training
data that had payloads of various sizes, including 274
bytes (the actual value here too is used for illustrative
purposes), and created a model that was applied to a
set of testing data, which also included a payload of 274
bytes; we could not in advance know whether PAYL
should raise an anomalous-distribution alert, but we
expected from our “niche oracle” testing that it should
not raise a length-never-seen-before alert. In this case,
PAYL raised no alerts.

We then removed all payloads of 274 bytes from the
training data and applied the new model to the same
(unmodified) testing data, expecting that the payload of
274 bytes in the testing data would now cause PAYL
to raise a length-never-seen-before alert, since it was
not in the training data. However, PAYL only raised an
anomalous-distribution alert instead. As we discovered
previously, this could happen if the payload length is
contained in a model for a range of lengths, but this
turned out to be a different situation from the issue
found in the parameterized random testing approach.
In that case, both the anomalous-distribution and length-
never-before-seen alerts were raised; in this case, only
one alert was raised, and it was of the wrong type.
Regardless of whether or not that payload had an
anomalous distribution, the length had not been seen
before and that alert should have been raised.

Our key result, though, was that we were able to verify
that PAYL exhibits the same six metamorphic properties
as do the supervised ML algorithms, and then use these
properties to drive metamorphic testing and identify a
previously-unknown defect in PAYL.

7.6 Discussion

We were very encouraged by the fact that our test-
ing approaches translated very easily to the domain
of unsupervised machine learning (or, at least, to this
particular application in that domain). Although the data
sets are structured differently from those in supervised
machine learning, and there are no labels or classifica-
tions in the training data, it is still possible to develop
equivalence classes based on analysis of the algorithm,
and then design simple test cases that should yield
predictable results, as well as more complex test cases
that take advantage of parameterized random testing



17

and demonstrate whether the implementation maintains
its expected metamorphic properties. As PAYL is used
in many real-world situations for important business
purposes, helping to improve its dependability is indeed
a welcome result.

8 EVALUATION
Clearly the three approaches are designed to work in
conjunction, as we have demonstrated here. However,
on their own, the approaches have individual merits and
drawbacks.

Although some issues could be detectable by all three
approaches, metamorphic testing seemed to have the
most potential for revealing more interesting and impor-
tant defects, primarily because it most closely mimics
the pseudo-oracle approach. In particular, the defect
we discovered in PAYL most likely would not have
been detected using the other approaches; it only came
about when using more than one set of inputs and
comparing their results. This observation may also be
a result of the fact that we developed the metamorphic
testing approach last, however, and used our experiences
from the other testing approaches when devising the
metamorphic properties.

All three approaches require some domain knowledge
regarding the application under test, but testing can still
be conducted by software test engineers who are not
the developers (as in our case, since our background
is in software engineering and not machine learning).
In the analysis step, it was necessary to understand the
problem domain and the corresponding data sets, the
algorithm being implemented, and the implementation’s
runtime options, and our testing of MartiRank did bene-
fit from working closely with the developers and having
access to source code. However, this is not necessarily
a requirement: although the SVM-Light implementation
is open-source, we did not need to inspect the code in
order to devise equivalence classes or test cases. In fact,
we had very little knowledge of the SVM algorithm upon
commencing our testing, nor did we communicate with
its developers regarding our testing, and we did not even
have access to the PAYL source.

In the metamorphic testing approach, the tester would
need to know the algorithm well enough to understand
the effects of changes on input, but these could conceiv-
ably be specified by the algorithm designer, and not the
developer who codes the implementation. It may also
be possible to detect these metamorphic properties au-
tomatically, in a similar way to how program invariants
[30] and algebraic specifications [31] are, though this
would require access to the source code. In our own
testing of PAYL, we did not have access to the source
code, and as described here, the metamorphic testing
approach is purely “black-box” and can be conducted by
anyone who is familiar with how the application should
react upon changes to its input.

Although we did find discrepancies (differences from
expectations) that might or might not be considered

defects, we did not encounter any false positives in our
testing. Since each approach relies heavily on analysis
of the algorithm, however, if the tester’s analysis is
incorrect then defects could be reported erroneously.
In the case of metamorphic testing, though, it may be
acceptable if the set of specified metamorphic properties
is not sound, i.e., not true for all inputs. Others have
demonstrated that, at the risk of false positives, when us-
ing model-based testing approaches, an unsound model
(or, in our case, metamorphic properties) may reveal
defects that more restrictive sound properties would not
[32]. For instance, in MartiRank, we pointed out that
permuting the order of the input data should not affect
the output, but only assuming that the values in the
input are all distinct (because MartiRank now uses stable
sorting). However, we can remove this assumption and
concede that although this metamorphic property is not
sound (because for some inputs, it will not be true), the
new output will in general be approximately equal to the
original, based on some metric of comparing rankings,
such as the number of elements ranked differently, the
Manhattan distance, or the Euclidean distance in N-
dimensional space. At the expense of revealing false
positives, this property may also reveal actual defects
that may not be detected if we included the original
constraint that all values must be distinct.

Of the three approaches, the metamorphic testing
approach is the only one suitable for runtime testing in
the production environment (“the field”). As we have
explored in [23], the metamorphic properties could con-
ceivably be checked as the program is running in the
live environment, assuming they are expressed in some
executable specification format.

A desirable side effect of our testing has been to
create a suite of data sets that can then be used for
regression testing purposes, further helping to increase
the dependability of the applications. The development
of the device failure application was done in conjunction
with our testing, and our input data sets together with
previously recorded outputs were used successfully to
find newly-introduced bugs. For example, after a de-
veloper refactored some repeated code and put it into
a new subroutine, regression testing showed that the
resulting models were different than in the previous
version. Inspection of the code revealed that a global
variable was incorrectly being overwritten, and after
the bug was fixed, regression testing showed that the
same results (prior to refactoring) were once again being
generated.

Last, all three approaches could be used for other types
of machine learning applications: we have demonstrated
their feasibility for ranking algorithms and anomaly-
based intrusion detection systems, but they could also be
used with classification algorithms, as we have explored
in [23]. Although new plug-in modules would need to
be created to tailor the testing framework to particular
input data formats and model formats, the approaches
themselves would still be able to reveal defects, even



18

without test oracles.

9 RELATED WORK

9.1 Testing ML applications

Although there has been much work that applies ma-
chine learning techniques to software engineering in
general and software testing in particular (e.g., [33], [34],
[35], etc.), we are not currently aware of any work in
the reverse sense: applying software testing techniques
to machine learning applications, particularly those that
have no reliable test oracle.

Orange [36] and WEKA [37] are two of several frame-
works that aid ML developers, but the testing function-
ality they provide is focused on comparing the quality
of the results in terms of how well the application can
learn or predict, and not evaluating the “correctness”
of the implementations. An ML application may appear
to be predicting well but still have defects, of course.
Repositories of “reusable” data sets have been collected
(e.g., the UCI Machine Learning Repository [38]) for the
purpose of comparing result quality, but not for the
software engineering sense of testing and for ensuring
dependability.

Testing of intrusion detection systems [39] [40], intru-
sion tolerant systems [41], and other security systems
[42] has typically addressed quantitative measurements
like overhead, false alarm rates, or ability to detect
zero-day attacks, but does not seek to ensure that the
implementation is free of defects, as we do here. An
IDS with very few or no false alarms could still have
bugs that prevent it from detecting many (or any) actual
intrusions, making it completely undependable.

9.2 Random testing

There has been past research into the generation of test
data sets [43] [44]; however, whereas much of the early
work in random test data generation [45] [46] started
in the area of compilers, we are looking at a way of
creating parameterized random test data specifically for
ML algorithms. Of course, even purely random test data
is somehow “parameterized”, but this generally refers to
specifying the data type or range of acceptable values.
The term “parameterized random testing” appears in
circuit design literature [47] but refers to parameterizing
the distribution of input values, and does not address
parameterizing according to equivalence classes or par-
titions, which we present here.

Wichmann [48] proposes something similar to our
random testing-based approach in his recommendations
to the British Computer Society Specialist Group in Soft-
ware Testing. He notes the role that randomization can
have even within the “limitations” of partition testing
when it comes to randomly selecting testing data for
a given equivalence class. However, his work in this
area has only focused on software components, whereas
we are investigating approaches to system-level testing.

More importantly, our work addresses the particular
issues that arise in the domain of non-testable programs.

Our work in random testing is also similar to that of
Thévenod-Fosse et al. [49], who labeled their approach
“structural statistical testing” in that random input are
selected according to given criteria, particularly related
to path selection. Our approach differs, though, in that
we are focused on the equivalence classes of the input
data for black-box system testing, and not for coverage
testing. Our work also differs from what they call “uni-
form statistical testing” because although we do select
random data over a uniform distribution, we parame-
terize it according to equivalence classes.

Mayer et al. [50] have investigated the use of random
testing with applications that have no test oracle, and
Wildman et al. [51] have looked at testing Java com-
ponents in the face of non-determinism caused by con-
currency issues. However, while these two works deal
with randomization in the software (either by design
or by concurrency), the ML applications we investigate
are deterministic (when non-determinism options are
disabled) but, of course, the correct results still cannot
be known a priori.

9.3 Metamorphic testing

Applying metamorphic testing to situations in which
there is no test oracle has previously been studied by
Chen et al [52]. In some cases, these works have looked
at situations in which there cannot be an oracle for
a particular application [53]; in others, the work has
considered the situation in which the oracle is simply
absent or difficult to implement [54]. Our work builds
on theirs by applying metamorphic testing to a specific
application domain (machine learning) and looking for
the metamorphic relationships within those types of
applications. Additionally, whereas their work has pri-
marily focused on functions with simple numerical input
domains [55], we are considering inputs that consist of
larger data sets, as a result of the types of applications
we are investigating.

Metamorphic properties are similar in some ways to
algebraic specifications [21], though algebraic specifica-
tions often declare legal sequences of function calls that
will produce a known result, typically within a given
data structure (e.g. pop(push(X)) == X in a Stack), but do
not describe how an arbitrary function or application
should react when its input is changed. The runtime
checking of algebraic specifications has been explored
in [56] and [57], though neither work considered the
specification of metamorphic properties, and the particu-
lar issues that arise from testing without oracles. Others
have looked at the automatic detection of algebraic
specifications, in particular [31], and also of program
invariants (e.g. DIDUCE [58], Daikon [30], Houdini [59],
etc.).

Even in the cases in which program invariants, al-
gebraic specifications, or formal specifications (using



19

languages such as Alloy [60], ANNA [61], Larch [62],
Z [63], etc.) are used to act as oracles (assuming they are
complete, which may be an undecidable problem [64]),
work to date has focused primarily on the creation of
testing frameworks [65] and on consistency checking of
abstract data types [64], and has not sought to create ora-
cles for applications and functions that do not otherwise
have them.

10 LIMITATIONS AND FUTURE WORK

Although our testing approach has been successful in
finding defects that had not been found by the devel-
opers prior to release of their systems, we have not
yet made efforts to determine the adequacy [66] of our
testing approach, particularly for any object-oriented
implementations [67] using inheritance [68], perhaps by
measuring path/statement coverage or percentage of
defects reliably found, and establishing success criteria.
Additionally, other areas of future work remain.

10.1 Expansion to complete ML applications

Our research to date has not yet addressed the use
of ML algorithm implementations in the context of
overall “systems”. That is, we have started looking at
the dependability of ML applications but so far have
studied only the “ML Engine”. Future work in this area
is to expand the methodology to encompass the entire
system, including for instance the decision support treat-
ment of ranking (or classification) results. The emerging
generation of ML ranking systems could take various
implementations of MartiRank, SVM and/or other ML
algorithms, generate multiple models, and then deter-
mine which is currently “best” for the dynamic data
sets at hand, and use that model for making real-time
predictions or rankings; this type of system is envisioned
for the motivating example (the device failure prediction
application) [69], which must be dependable. Similarly,
an anomaly-based IDS like PAYL could be incorporated
into a larger security system that might also include rule-
based intrusion detection.

It may be possible to extend the approaches to test
these kinds of large systems. Our ultimate goal is to
make our current and later expanded testing method-
ology useful outside this particular problem domain,
particularly to other ML researchers who rarely cross
paths with the software engineering community.

10.2 Addressing non-determinism

Some ML algorithms are intentionally non-deterministic
and necessarily rely on randomization, which makes
testing very difficult; our testing was assisted by the
fact that it is possible to “turn off” any randomization
options in the applications we investigated. More de-
tailed trace analysis may be needed for future work on
algorithms that depend on randomization.

10.3 Improvements to random data generation
In order to create test cases reminiscent of real-world
data, the test data generation framework could be ex-
tended to generate data sets that exhibit the same cor-
relations among attributes and between attributes and
labels as do real-world data, building upon [70]. Ideally
it could also be extended to generate arbitrarily large
data sets with repeating, missing and/or categorical
data such that an arbitrary ML ranking algorithm could
definitively enable a “predictable” ranking, i.e. where
there is a clear-cut “correct” output, in order to expand
the “niche oracle” approach. But this may be impossible
in the general case (we have noted in Section 4 that data
sets that yield predictable rankings in MartiRank do not
necessarily yield the same ranking in SVM).

10.4 Additional metamorphic properties
Further investigation could involve applying the meta-
morphic properties to other ML applications, as we
initially investigated in [23], and looking to classify other
properties. Additionally, as we have defined our proper-
ties independent of the actual numerical values used in
the data sets, future work could consider how to initially
create new data sets such that further application-specific
metamorphic properties can also be revealed.

11 CONCLUSION

We have presented a methodology consisting of three
approaches for testing a particular class of algorithm
implementations for which there is no reliable test oracle
applying to all inputs in the general case. Particularly in
machine learning applications, where there is often no
precise input/output specification, it can be very difficult
to determine the “correct” answer. But the methodology
and approaches make it possible to detect defects in the
implementations and discrepancies in interpretations of
the algorithm, even without relying on multiple imple-
mentations.

Addressing the testing of applications without oracles
has been identified as a future challenge for the software
testing community [71], and as ML applications that
fall into this category become more and more prevalent
and mission-critical, ensuring their dependability gains
the utmost importance. We hope that our methodology
and results here help others who are also concerned
with the quality and dependability of such non-testable
programs.

12 ACKNOWLEDGMENTS

The authors would like to thank Marta Arias, Hila
Becker, T.Y. Chen, Wei Chu, Gabriela Cretu, Phil Gross,
Bert Huang, Phil Long, Rocco Servedio, Swapneel Sheth,
Yingbo Song, Sal Stolfo, David Waltz, and Leon Wu for
their guidance and assistance. John Gallagher, Lifeng Hu,
and Dokyun Lee all contributed to the development of
the testing frameworks. The authors are members of the



20

Programming Systems Lab, funded in part by NSF CNS-
0717544, CNS-0627473 and CNS-0426623, and NIH 1 U54
CA121852-01A1.

REFERENCES

[1] E. J. Weyuker, “On testing non-testable programs,” Computer
Journal, vol. 25, no. 4, pp. 465–470, November 1982.

[2] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable
programs,” in Proc. of the ACM ’81 Conference, 1981, pp. 254–257.

[3] T. Mitchell, Machine Learning: An Artificial Intelligence Approach,
Vol. III. Morgan Kaufmann, 1983.

[4] J. Duran and S. Ntafos, “An evaluation of random testing,” IEEE
Trans. on Soft. Eng., vol. 10, pp. 438–444, 1984.

[5] D. Hamlet, “Random testing,” Encyclopedia of Software Engi-
neering, pp. 970–978, 1994.

[6] T. Y. Chen, S. C. Cheung, and S. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” Department of Com-
puter Science, Hong Kong University of Science and Technology,
Tech. Rep. HKUST-CS98-01, 1998.

[7] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic testing and its applications,” in Proc. of the
8th International Symposium on Future Software Technology (ISFST
2004), 2004.

[8] P. Gross et al., “Predicting electricity distribution feeder failures
using machine learning susceptibility analysis,” in Proc. of the 18th
Conference on Innovative Applications in Artificial Intelligence, 2006.

[9] P. Long and R. Servedio, “Martingale boosting,” in Proc. of the
18th Annual Conference on Computational Learning Theory (COLT),
2005, pp. 79–84.

[10] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer,
1995.

[11] T. Joachims, Making large-Scale SVM Learning Practical. Advances
in Kernel Methods - Support Vector Learning. MIT Press, 1999.

[12] K. Wang and S. Stolfo, “Anomalous payload-based network in-
trusion detection,” in Proc. of Recent Advances in Intrusion Detection
(RAID), Sept. 2004.

[13] J. A. Hanley and B. J. McNeil, “The meaning and use of the area
under a receiver operating characteristic (ROC) curve,” Radiology,
vol. 143, pp. 29–36, 1982.

[14] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in Proc of the seventh international conference
on World Wide Web, April 1998, pp. 107–117.

[15] C. Murphy, G. Kaiser, and M. Arias, “An approach to software
testing of machine learning applications,” in Proc. of the 19th inter-
national conference on software engineering and knowledge engineering
(SEKE), 2007, pp. 167–172.

[16] P. Gross, Personal communication, 2008.
[17] C. Murphy, G. Kaiser, and M. Arias, “Parameterizing random

test data according to equivalence classes,” in Proc of the 2nd
international workshop on random testing, 2007, pp. 38–41.

[18] R. Servedio, Personal communication, 2006.
[19] K. Goševa-Popstojanova and A. Grnarov, “N version program-

ming: An unified modeling approach.”
[20] J. Knight and N. Leveson, “An experimental evaluation of the

assumption of independence in multi-version programming,”
IEEE Transactions on Software Engineering, vol. 12, no. 1, pp. 96–109,
1986.

[21] W. J. Cody Jr. and W. Waite, Software Manual for the Elementary
Functions. Prentice Hall, 1980.

[22] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing,” in Proc of
the 20th international conference on software engineering and knowl-
edge engineering (SEKE), 2008, pp. 867–872.

[23] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications with-
out test oracles,” Columbia University Dept of Computer Science,
Tech. Rep. cucs-044-08, 2008.

[24] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, 2006.

[25] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: an open architecture for collaborative filtering of
netnews,” in Proc of the 1994 ACM conference on computer supported
cooperative work (CSCW), 1994, pp. 175–186.

[26] P. C. Mahalanobis, “On the generalised distance in statistics,”
Proceedings of the National Institute of Science of India, vol. 12, pp.
49–55, 1936.

[27] S. Stolfo, Personal communication, 2008.
[28] P. Charles, “jpcap: Network packet capture facility for Java,”

http://sourceforge.net/projects/jpcap.
[29] V. Jacobson, C. Leres, and S. McCanne, “tcpdump,”

http://www.tcpdump.org.
[30] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-

namically discovering likely programming invariants to support
program evolution,” in Proc. of the 21st International Conference on
Software Engineering (ICSE), 1999, pp. 213–224.

[31] J. Henkel and A. Diwan, “Discovering algebraic specifications
from Java classes,” in Proc. of the 17th European Conference on
Object-Oriented Programming ECOOP, 2003.

[32] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language
for building system-specific, static analyses,” in Proc of the ACM
SIGPLAN 2002 Conference on Programming language design and
implementation, 2002, pp. 69–82.

[33] L. Briand, “Novel applications of machine learning in software
testing,” in Proc of the Eighth International Conference on Quality
Software, 2008, pp. 3–10.

[34] T. J. Cheatham, J. P. Yoo, and N. J. Wahl, “Software testing: a
machine learning experiment,” in Proc. of the ACM 23rd Annual
Conference on Computer Science, 1995, pp. 135–141.

[35] D. Zhang and J. J. P. Tsai, “Machine learning and software
engineering,” Software Quality Control, vol. 11, no. 2, pp. 87–119,
June 2003.

[36] J. Demsar, B. Zupan, and G. Leban, “Orange: From ex-
perimental machine learning to interactive data mining,”
[www.ailab.si/orange], Faculty of Computer and Information
Science, University of Ljubljana.

[37] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd Edition. Morgan Kaufmann, 2005.

[38] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI repos-
itory of machine learning databases,” University of California,
Dept of Information and Computer Science, 1998.

[39] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An
overview of issues in testing intrusion detection systems,” Tech.
Report NIST IR 7007, National Institute of Standard and Technol-
ogy.

[40] J. P. Nicholas, K. Zhang, M. Chung, B. Mukherjee, and R. A.
Olsson, “A methodology for testing intrusion detection systems,”
IEEE Transactions on Software Engineering, vol. 22, no. 10, pp. 719–
729, 1996.

[41] K. V. B. Madan, K. Goševa-Popstojanova and K. S. Trivedi, “A
method for modeling and quantifying the security attributes of
intrusion tolerant systems,” Performance Evaluation Journal, vol. 56,
no. 1-4, pp. 167–186, 2004.

[42] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in 2008 IEEE
Symposium on Security and Privacy, 2008, pp. 387–401.

[43] R. A. DeMillo and A. J. Offutt, “Constraint-based automated test
data generation,” IEEE Trans. on Soft. Eng., vol. 17, no. 9, pp. 900–
910, 1991.

[44] B. Korel, “Automated software test data generation,” IEEE Trans.
on Soft. Eng., vol. 16, no. 8, pp. 870–879, 1990.

[45] D. Bird and C. Munoz, “Automatic generation of random self-
checking test cases,” IBM Systems Journal, vol. 22, no. 3, pp. 229–
245, 1983.

[46] K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242–257, 1970.

[47] K. J. Lieberherr, “Parameterized random testing,” in Proc. of the
21st Design Automation Conference, 1984.

[48] B. A. Wichmann, “Some remarks about random testing.”
[49] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experi-

mental study on software structural testing,” in Proc. of the Twenty-
First International Symposium on Fault-Tolerant Computing, June
1991, pp. 410–417.

[50] J. Mayer and R. Guderlei, “Test oracles using statistical methods,”
in Proc. of the First International Workshop on Software Quality, 2004,
pp. 179–189.

[51] B. L. Luke Wildman and P. Strooper, “Dealing with non-
determinism in testing concurrent java components,” in Proc of
the 12th Asia-Pacific Software Engineering Conference, 2005, pp. 393–
400.



21

[52] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without
the need of oracles,” Information and Software Technology, vol. 44,
no. 15, pp. 923–931, 2002.

[53] ——, “Semi-proving: an integrated method based on global sym-
bolic evaluation and metamorphic testing,” in Proc. of the 2002
ACM SIGSOFT international symposium on software testing and
analysis (ISSTA), 2002, pp. 191–195.

[54] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “A metamorphic
testing approach for online testing of service-oriented software
applications,” International Journal of Web Services Research, vol. 4,
no. 1, pp. 60–80, April-June 2007.

[55] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Proc. of the International Workshop on
Software Technology and Engineering Practice (STEP), 2004, pp. 94–
100.

[56] I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L. S. Reis,
“Checking the conformance of java classes against algebraic spec-
ifications,” in In Proceedings of ICFEM06, volume 4260 of LNCS.
Springer-Verlag, 2006, pp. 494–513.

[57] S. Sankar, “Run-time consistency checking of algebraic specifica-
tions,” in Proceedings of the 1991 international symposium on software
testing, analysis, and verification, 1991, pp. 123–129.

[58] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proc. of the 24th International
Conference on Software Engineering (ICSE), 2002, pp. 291–301.

[59] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for ESC/Java,” in Proc of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Produc-
tivity, 2001, pp. 500–517.

[60] D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Transactions on Software Engineering and Methodology, vol. 11,
no. 2, pp. 256–290, 2002.

[61] D. Luckham and F. W. Henke, “An overview of ANNA - a
specification language for ADA,” Stanford Univ, Tech. Rep. CSL-
TR-84-265, 1984.

[62] J. V. Guttag and J. J. Horning, Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993.

[63] J. R. Abrial, Specification Language Z. Oxford Univ Press, 1980.
[64] S. Sankar, A. Goyal, and P. Sikchi, “Software testing using alge-

braic specification based test oracles,” Stanford Univ., Tech. Rep.
CSL-TR-93-566, 1993.

[65] T. Miller and P. Strooper, “A framework and tool support for the
systematic testing of model-based specifications,” ACM Transac-
tions on Software Engineering and Methodology, vol. 12, no. 4, pp.
409–439, 2003.

[66] E. Weyuker, “Axiomatizing software test data adequacy,” IEEE
Trans. Software Eng., SE-12, pp. 1128–1138, December 1986.

[67] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, “Test order
for class-based integration testing of Java applications,” in Proc of
the 5th International Conference on Quality Software, 2005.

[68] D. E. Perry and G. E. Kaiser, “Adequate testing and object-
oriented programming,” Journal of Object-Oriented Programming,
vol. 2, no. 5, pp. 13–19, 1990.

[69] H. Becker and M. Arias, “Real-time ranking with concept drift
using expert advice,” in Proc. of the 13th International Conference
on Knowledge Discovery and Data Mining, Aug 2007.

[70] E. Walton, “Data generation for machine learning techniques,”
University of Bristol, 2001.

[71] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in Proc. of ICSE Future of Software Engineering
(FOSE), May 2007, pp. 85–103.

Christian Murphy is a PhD Candidate in the
Computer Science department at Columbia Uni-
versity. He is a member of the Programming
Systems Lab, and his research focuses on
software testing, computer science education,
and computer-supported cooperative work. He
earned a BS (summa cum laude) in Computer
Engineering from Boston University in 1995, and
an MS in Computer Science from Columbia Uni-
versity in 2006.

Gail Kaiser is a Professor of Computer Science
and the Director of the Programming Systems
Laboratory in the Computer Science Depart-
ment at Columbia University. She was named an
NSF Presidential Young Investigator in Software
Engineering and Software Systems in 1988, and
has published over 100 refereed papers in a
range of software areas. Prof. Kaiser received
her PhD and MS from CMU and her SB from
MIT.


