1,690 research outputs found

    Establishing a framework for dynamic risk management in 'intelligent' aero-engine control

    Get PDF
    The behaviour of control functions in safety critical software systems is typically bounded to prevent the occurrence of known system level hazards. These bounds are typically derived through safety analyses and can be implemented through the use of necessary design features. However, the unpredictability of real world problems can result in changes in the operating context that may invalidate the behavioural bounds themselves, for example, unexpected hazardous operating contexts as a result of failures or degradation. For highly complex problems it may be infeasible to determine the precise desired behavioural bounds of a function that addresses or minimises risk for hazardous operation cases prior to deployment. This paper presents an overview of the safety challenges associated with such a problem and how such problems might be addressed. A self-management framework is proposed that performs on-line risk management. The features of the framework are shown in context of employing intelligent adaptive controllers operating within complex and highly dynamic problem domains such as Gas-Turbine Aero Engine control. Safety assurance arguments enabled by the framework necessary for certification are also outlined

    Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies

    Get PDF
    Maintenance is crucial for aircraft engines because of the demanding conditions to which they are exposed during operation. A proper maintenance plan is essential for ensuring safe flights and prolonging the life of the engines. It also plays a major role in managing costs for aeronautical companies. Various forms of degradation can affect different engine components. To optimize cost management, modern maintenance plans utilize diagnostic and prognostic techniques, such as Engine Health Monitoring (EHM), which assesses the health of the engine based on monitored parameters. In recent years, various EHM systems have been developed utilizing computational techniques. These algorithms are often enhanced by utilizing data reduction and noise filtering tools, which help to minimize computational time and efforts, and to improve performance by reducing noise from sensor data. This paper discusses the various mechanisms that lead to the degradation of aircraft engine components and the impact on engine performance. Additionally, it provides an overview of the most commonly used data reduction and diagnostic and prognostic techniques

    Neural nonlinear autoregressive model with exogenous input (Narx) for turboshaft aeroengine fuel control unit model†

    Get PDF
    none3noOne of the most important parts of a turboshaft engine, which has a direct impact on the performance of the engine and, as a result, on the performance of the propulsion system, is the engine fuel control system. The traditional engine control system is a sensor-based control method, which uses measurable parameters to control engine performance. In this context, engine component degradation leads to a change in the relationship between the measurable parameters and the engine performance parameters, and thus an increase of control errors. In this work, a nonlinear model predictive control method for turboshaft direct fuel control is implemented to improve engine response ability also in presence of degraded conditions. The control objective of the proposed model is the prediction of the specific fuel consumption directly instead of the measurable parameters. In this way is possible decentralize controller functions and realize an intelligent engine with the development of a distributed control system. Artificial Neural Networks (ANN) are widely used as data-driven models for modelling of complex systems such as aeroengine performance. In this paper, two Nonlinear Autoregressive Neural Networks have been trained to predict the specific fuel consumption for several transient flight maneuvers. The data used for the ANN predictions have been estimated through the Gas Turbine Simulation Program. In particular the first ANN predicts the state variables based on flight conditions and the second one predicts the performance parameter based on the previous predicted variables. The results show a good approximation of the studied variables also in degraded conditions.openDe Giorgi M.G.; Strafella L.; Ficarella A.De Giorgi, M. G.; Strafella, L.; Ficarella, A

    Optimization of aeroengine utilization through improved estimation of remaining useful life (RUL) of on condition (OC) parts

    Get PDF
    Gas Turbine Operators and Maintainers face the challenge of increasing the operationallife, availability, and reliability of Aero Engine during the operations amid the advancements in the technology for the speed, Power, SFC, and Comfort which led to closing in the safety margins and increasing in the failure rate of Aero Engines, and low serviceability of aero engines due to the rapid increase in demand and expansion of the aircraft fleet by the various airlines for various reasons which led to increase in downtime and lead time of serviceability of Aero Engines. This study focuses on the inherent Aero Engine deterioration caused due to various Gas Turbine Faults or Physical Problems and how Performance, Trend, and Systems Monitoring contain this deterioration and contribute to the optimization of aero engine utilization. The purpose of thispaper is to present the importance of accurate estimation of Remaining Useful Life (RUL) of On Condition (OC) Parts and how it optimizes aero engine life. The benefits associated with the introduction of a novel estimation of RUL of OC Parts are also presented. A Standardized Replacement Model (SRM), which improves the estimation of RUL of OC Parts, is proposed for optimization of Aero Engine Utilization

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    A review of variable-pitch propellers and their control strategies in aerospace systems

    Full text link
    The relentless pursuit of aircraft flight efficiency has thrust variable-pitch propeller technology into the forefront of aviation innovation. This technology, rooted in the ancient power unit of propellers, has found renewed significance, particularly in the realms of unmanned aerial vehicles and urban air mobility. This underscores the profound interplay between visionary aviation concepts and the enduring utility of propellers. Variable-pitch propellers are poised to be pivotal in shaping the future of human aviation, offering benefits such as extended endurance, enhanced maneuverability, improved fuel economy, and prolonged engine life. However, with additional capabilities come new technical challenges. The development of an online adaptive control of variable-pitch propellers that does not depend on an accurate dynamic model stands as a critical imperative. Therefore, a comprehensive review and forward-looking analysis of this technology is warranted. This paper introduces the development background of variable-pitch aviation propeller technology, encompassing diverse pitch angle adjustment schemes and their integration with various engine types. It places a central focus on the latest research frontiers and emerging directions in pitch control strategies. Lastly, it delves into the research domain of constant speed pitch control, articulating the three main challenges confronting this technology: inadequacies in system modeling, the intricacies of propeller-engine compatibility, and the impact of external, time-varying factors. By shedding light on these multifaceted aspects of variable-pitch propeller technology, this paper serves as a resource for aviation professionals and researchers navigating the intricate landscape of future aircraft development

    Overview of Remaining Useful Life prediction techniques in Through-life Engineering Services

    Get PDF
    Through-life Engineering Services (TES) are essential in the manufacture and servicing of complex engineering products. TES improves support services by providing prognosis of run-to-failure and time-to-failure on-demand data for better decision making. The concept of Remaining Useful Life (RUL) is utilised to predict life-span of components (of a service system) with the purpose of minimising catastrophic failure events in both manufacturing and service sectors. The purpose of this paper is to identify failure mechanisms and emphasise the failure events prediction approaches that can effectively reduce uncertainties. It will demonstrate the classification of techniques used in RUL prediction for optimisation of products’ future use based on current products in-service with regards to predictability, availability and reliability. It presents a mapping of degradation mechanisms against techniques for knowledge acquisition with the objective of presenting to designers and manufacturers ways to improve the life-span of components

    Machine Learning Methods for the Design and Operation of Liquid Rocket Engines -- Research Activities at the DLR Institute of Space Propulsion

    Get PDF
    The last years have witnessed an enormous interest in the use of artificial intelligence methods, especially machine learning algorithms. This also has a major impact on aerospace engineering in general, and the design and operation of liquid rocket engines in particular, and research in this area is growing rapidly. The paper describes current machine learning applications at the DLR Institute of Space Propulsion. Not only applications in the field of modeling are presented, but also convincing results that prove the capabilities of machine learning methods for control and condition monitoring are described in detail. Furthermore, the advantages and disadvantages of the presented methods as well as current and future research directions are discussed.Comment: Submitted as conference paper to the Space Propulsion 2020+1 Conferenc
    • …
    corecore