7 research outputs found

    Using SINR as Vertical Handoff Criteria in Multimedia Wireless Networks

    Get PDF
    In the next generation multimedia wireless network environment that consists of heterogeneous access technologies, we need to offer the end user with multimedia QoS inside each access network as well as during vertical handoff between them. The vertical handoff algorithm have to be QoS aware, which cannot be achieved by using the traditional RSS as the vertical handoff criteria. In this paper, we propose a new vertical handoff algorithm using the receiving SINR from various access networks as the handoff criteria. By converting the different receiving SINR values, the handoff algorithm can have the knowledge of achievable bandwidths from both access networks, and make handoff decisions with multimedia QoS consideration. Analysis results confirms that the new SINR based vertical handoff algorithm is able to consistently offer the end user with maximum available bandwidth during vertical handoff comparing with the RSS based vertical handoff, whose performance differs under different network conditions

    Applying ANFIS Model in Decision-making of Vertical Handover between Macrocell and Femtocell Integrated Network

    Full text link
    [EN] One of the most challenging tasks in communication networks is to maintain seamless mobility and service continuity during a vertical handover. This paper provides the case of handover decision making between femtocell and macrocell integrated network considering several input parameters, namely SINR, bandwidth and energy consumption. We have simulated and proposed a vertical handover based on adaptive neuro-fuzzy inference system (ANFIS) to achieve a goal of having an intelligent handover and to predict the best destination network. The simulation results show that the approach based on ANFIS leads to a reduction of unnecessary handovers and a minimization of the energy consumption as compared to the existing approaches.Benaatou, W.; Latif, A.; Pla, V. (2019). Applying ANFIS Model in Decision-making of Vertical Handover between Macrocell and Femtocell Integrated Network. Journal of Telecommunication, Electronic and Computer Engineering. 11(1):57-62. http://hdl.handle.net/10251/159152S576211

    User-centric based vertical handover decision algorithm for telecardiology application in heterogeneous networks

    Get PDF
    The traditional telecardiology system which is integrated with a single wireless technology is unable to guarantee the patient always get connected to the telecardiology service provider. To overcome this problem, an adaptive user-centric based vertical handover algorithm is proposed to allow the telecardiology system operates in heterogeneous wireless technologies. The proposed algorithm guarantees the quality of service and maintains the user’s satisfaction at the highest level. The algorithm was compared with traditional quality of service based and cost based vertical handover algorithms. The results show that proposed algorithm is performed better than the traditional algorithms

    Network selection mechanism for telecardiology application in high speed environment

    Get PDF
    The existing network selection schemes biased either to cost or Quality of Service (QoS) are not efficient enough for telecardiology application in high traveling speed environment. Selection of the candidate network that is fulfilling the telecardiology service requirements as well as user preference is a challenging issue. This is because the preference of telecardiology user might change based on the patient health condition. This research proposed a novel Telecardiology-based Handover Decision Making (THODM) mechanism that consists of three closely integrated algorithms: Adaptive Service Adjustment (ASA), Dwelling Time Prediction (DTP) and Patient Health Condition-based Network Evaluation (PHCNE). The ASA algorithm guarantees the quality of telecardiology service when none of the available networks fulfils the service requirements. The DTP algorithm minimizes the probability of handover failure and unnecessary handover to Wireless Local Area Network (WLAN), while optimizing the connection time with WLAN in high traveling speed environment. The PHCNE algorithm evaluates the quality of available networks and selects the best network based on the telecardiology services requirement and the patient health condition. Simulation results show that the proposed THODM mechanism reduced the number of handover failures and unnecessary handovers up to 80.0% and 97.7%, respectively, compared with existing works. The cost of THODM mechanism is 20% and 85.3% lower than the Speed Threshold-based Handover (STHO) and Bandwidth-based Handover (BWHO) schemes, respectively. In terms of throughput, the proposed scheme is up to 75% higher than the STHO scheme and 370% greater than the BWHO scheme. For telecardiology application in high traveling speed environment, the proposed THODM mechanism has better performance than the existing network selection schemes

    Algorithme de transfert intercellulaire vertical pour les réseaux sans fil hétérogènes basé sur le filtrage de Kalman

    Get PDF
    Les standards de la quatrième génération assurent l'interopérabilité entre différentes technologies d'accès sans fil. Ceci est en partie permis par le transfert intercellulaire vertical (VHO) qui assure une continuité de service lorsqu’on change de technologie d'accès (par exemple à partir d'un réseau local sans fil (WLAN) à un réseau cellulaire (CN) et vice-versa). Dans cet article, nous proposons un algorithme de décision de transfert intercellulaire vertical basée sur le filtrage de Kalman scalaire. Des critères tels que la probabilité de transfert intercellulaire, le nombre de faux transferts intercellulaire et la position des transferts intercellulaires sont utilisés pour évaluer et comparer notre travail avec des algorithmes de transfert intercellulaire basés sur des techniques de filtrage existants. Dans le pire des cas, nous avons démontré que notre algorithme diminue de 40 pour cent la probabilité des faux transferts intercellulaire par rapport à d'autres algorithmes de transfert intercellulaire
    corecore