445 research outputs found

    A Worst-Case Approximate Analysis of Peak Age-of-Information Via Robust Queueing Approach

    Full text link
    A new timeliness metric, called Age-of-Information (AoI), has recently attracted a lot of research interests for real-time applications with information updates. It has been extensively studied for various queueing models based on the probabilistic approaches, where the analyses heavily depend on the properties of specific distributions (e.g., the memoryless property of the exponential distribution or the i.i.d. assumption). In this work, we take an alternative new approach, the robust queueing approach, to analyze the Peak Age-of-Information (PAoI). Specifically, we first model the uncertainty in the stochastic arrival and service processes using uncertainty sets. This enables us to approximate the expected PAoI performance for very general arrival and service processes, including those exhibiting heavy-tailed behaviors or correlations, where traditional probabilistic approaches cannot be applied. We then derive a new bound on the PAoI in the single-source single-server setting. Furthermore, we generalize our analysis to two-source single-server systems with symmetric arrivals, which involves new challenges (e.g., the service times of the updates from two sources are coupled in one single uncertainty set). Finally, through numerical experiments, we show that our new bounds provide a good approximation for the expected PAoI. Compared to some well-known bounds in the literature (e.g., one based on Kingman's bound under the i.i.d. assumption) that tends to be inaccurate under light load, our new approximation is accurate under both light and high loads, both of which are critical scenarios for the AoI performance.Comment: Published in IEEE INFOCOM 202

    A QoS-aware workload routing and server speed scaling policy for energy-efficient data centers: a robust queueing theoretic approach

    Full text link
    Maintaining energy efficiency in large data centers depends on the ability to manage workload routing and control server speeds according to fluctuating demand. The use of dynamic algorithms often means that management has to install the complicated software or expensive hardware needed to communicate with routers and servers. This paper proposes a static routing and server speed scaling policy that may achieve energy efficiency similar to dynamic algorithms and eliminate the necessity of frequent communications among resources without compromising quality of service (QoS). We use a robust queueing approach to consider the response time constraints, e.g., service level agreements (SLAs). We model each server as a G/G/1G/G/1 processor sharing (PS) queue and use uncertainty sets to define the domain of random variables. A comparison with a dynamic algorithm shows that the proposed static policy provides competitive solutions in terms of energy efficiency and satisfactory QoS

    Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems

    Get PDF
    In this paper, we study systems that allocate different types of scarce resources to heterogeneous allocatees based on predetermined priority rules-the U.S. deceased-donor kidney allocation system or the public housing program. We tackle the problem of estimating the wait time of an allocatee who possesses incomplete system information with regard, for example, to his relative priority, other allocatees' preferences, and resource availability. We model such systems as multiclass, multiserver queuing systems that are potentially unstable or in transient regime. We propose a novel robust optimization solution methodology that builds on the assignment problem. For first-come, first-served systems, our approach yields a mixed-integer programming formulation. For the important case where there is a hierarchy in the resource types, we strengthen our formulation through a drastic variable reduction and also propose a highly scalable heuristic, involving only the solution of a convex optimization problem (usually a second-order cone problem).We back the heuristic with an approximation guarantee that becomes tighter for larger problem sizes. We illustrate the generalizability of our approach by studying systems that operate under different priority rules, such as class priority. Numerical studies demonstrate that our approach outperforms simulation. We showcase how our methodology can be applied to assist patients in the U.S. deceased-donor kidney waitlist. We calibrate our model using historical data to estimate patients' wait times based on their kidney quality preferences, blood type, location, and rank in the waitlist

    Routing and Staffing when Servers are Strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by the system's routing and staffing policies. This observation has consequences when modeling service system performance, and our objective is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate in order to maximize a trade-off between an "effort cost", which captures the idea that servers exert more effort when working at a faster rate, and a "value of idleness", which assumes that servers value having idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time. We find that the system must operate in a quality-driven regime, in which servers have idle time, in order for an equilibrium to exist, which implies that the staffing must have a first-order term that strictly exceeds that of the common square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance.Comment: First submitted for journal publication in 2014; accepted for publication in Operations Research in 2016. Presented in select conferences throughout 201
    • …
    corecore