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Abstract

In this paper we study systems that allocate different types of scarce resources to hetero-

geneous allocatees based on predetermined priority rules, e.g., the U.S. deceased-donor kidney

allocation system or the public housing program. We tackle the problem of estimating the wait

time of an allocatee who possesses incomplete system information with regard, for example,

to his relative priority, other allocatees’ preferences, and resource availability. We model such

systems as multiclass, multiserver queuing systems that are potentially unstable or in transient

regime. We propose a novel robust optimization solution methodology that builds on the as-

signment problem. For first-come, first-served systems, our approach yields a mixed-integer

programming formulation. For the important case where there is a hierarchy in the resource

types, we strengthen our formulation through a drastic variable reduction and also propose a

highly scalable heuristic, involving only the solution of a convex optimization problem (usually

a second-order cone problem). We back the heuristic with an approximation guarantee that

becomes tighter for larger problem sizes. We illustrate the generalizability of our approach by

studying systems that operate under different priority rules, such as class priority. Numerical

studies demonstrate that our approach outperforms simulation.

We showcase how our methodology can be applied to assist patients in the U.S. deceased-

donor kidney waitlist. We calibrate our model using historical data to estimate patients’ wait

times based on their kidney quality preferences, blood type, location and rank in the waitlist.
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1. Introduction

In this paper we deal with the problem of estimating wait times in systems that allocate scarce

resources of different types according to some predetermined priority rule, such as first-come, first-

served (FCFS). Allocatees are heterogeneous, differing in their preferences over resource types,

and possess incomplete system information with regard to their relative priority, other allocatees’

preferences, and/or resource availability. We take the perspective of an individual allocatee and

tackle the estimation problem of his wait time until he is allocated his preferred resources, based

on his available information. Technically, this corresponds to a wait time estimation problem for

a particular customer in a multiclass, multiserver (MCMS) queuing system for which primitive

information about queue populations, customer arrivals and/or service times is limited. We argue

that wait time estimation in such a context is highly relevant to practical problems and that it

requires development of a new methodological framework.

A concrete motivation for our research is the plight of patients suffering from end stage renal

disease, which is terminal, and for which only two treatment options, maintenance dialysis and

kidney transplantation, are available. The significant and growing number of patients seeking a

kidney transplant in the U.S. (currently 100,434, 110% higher than 15 years ago) register on a

national waitlist. Organs procured from donors are offered to blood-type-compatible wait-listed

patients according to a national allocation policy that closely resembles FCFS. In the face of often

long and variable wait times, accurate estimates of remaining wait time would be valuable to

patients for a number of reasons. One relates to the choice of appropriate treatment protocols,

since the timing of initiation and subsequent management of dialysis therapy both rely heavily on

estimates of wait time (Lee et al. 2008). The decision whether to accept or reject an offered kidney,

e.g., one of marginal quality from an old donor, also relies heavily on estimates of wait time until

the next offer, in particular, of a kidney of better quality (Zenios 2005). Apart from informing the

aforementioned decisions that could critically impact survivability, accurate wait time estimates

can also help improve patient quality of life. For example, reducing uncertainty around wait times

could mitigate patient anxiety and facilitate planning of life activities around dialysis treatment,

which roughly entails 12 hours of visits weekly to a dialysis center.

To the best of our knowledge, no tools exist for estimating wait times until offer of a kidney,

nevermind of a kidney of a particular quality.1 Our private communications with a number of

healthcare providers and physicians at major transplant centers in the New England area cor-

roborated this state of affairs, and attested to the hardship that faces these parties in advising

patients about likely wait times to offer of a kidney of acceptable quality. This is hardly surprising

1Currently, only historical estimates of wait times aggregated across all patients from registration to transplant

are available. Such estimates have little utility in practice, being agnostic to patient characteristics, such as blood
type and current rank in the wait list, that heavily influence actual wait time. Nor do they offer any guidance with
respect to wait time until offer of a kidney of a particular quality.
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considering the following challenges to deriving wait time estimates in this context. First, wait

times critically depend on the acceptance propensity of higher ranked patients, whose preferences

with respect to acceptable kidney qualities are unobservable. Second, the allocation system is nei-

ther stationary nor stable, with the number of wait-listed patients continually growing, already far

exceeding the supply of organs.

The challenges to estimating wait times are not unique to the kidney allocation system (KAS)

but are rather usually encountered in systems that allocate scarce goods, especially public ones.

Another such system is the U.S. Public Housing Program (PHP), which provides affordable rental

housing to low income families and individuals. The PHP operates in a similar fashion as the KAS:

eligible applicants register on waitlists and are offered housing options (that differ in the number of

bedrooms, wheelchair accessibility, etc.) as they become available. Specifically, the PHP operates

in an FCFS fashion, although some programs accommodate local variations (see Section 6). Wait

time estimates are valuable to applicants, because access to affordable housing can have important

financial life-planning consequences. Unfortunately, these estimates are equally hard to derive for

many of the same reasons as within the KAS, i.e., incomplete information and transient/unstable

system behavior (see Section 3 for details). Indeed, all of the housing offices we surveyed in the New

England area refrain from providing any but crude, wide-ranging estimates (the Boston housing

office, for example, quotes wait times ranging from ten weeks to more than five years).

Our research objective is to estimate wait times of allocatees based on their own preferences,

characteristics, and the limited information they might possess. That is, in this paper we take

the perspective of an individual allocatee, for whom we attempt to derive wait time estimates,

taking the underlying resource allocation mechanism as given. For example, we aim to estimate

wait times for patients in the KAS based on their own kidney quality preferences, current rank

on the waitlist, and blood type. We model the allocation system as an MCMS queuing system

serving customers (the allocatees) in which server multiplicity captures resource heterogeneity (for

example, kidneys of different quality) and class multiplicity captures customer heterogeneity (for

example, with respect to acceptable kidney qualities). In this setting, our research question deals

with the problem of estimating the wait time of a particular customer in a given class based on

limited information about queue populations, customer arrival times, and service times.

The large body of work in the queuing literature that deals with MCMS systems is not well suited

to our research question posed within systems plagued by incomplete information and/or charac-

terized by transient, potentially unstable behavior, i.e., queuing systems that accurately capture

intricacies often encountered in resource allocation in practice (see the discussions in Sections 1.1

and 2). We consequently utilize robust optimization tools known to cope well with information

incompleteness and to support the derivation of tractable optimization formulations.

In particular, we develop a new methodological framework for analyzing wait times of cus-

tomers served by potentially non-stationary or unstable MCMS systems that operate according
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to predetermined priority rules under incomplete information. Our framework does not postulate

probability distributions for the uncertain parameters and instead models stochasticity by means of

optimization variables that lie in uncertainty sets, which encompass all available limited informa-

tion, in the spirit of recent robust queuing theory. We quantify wait times through their worst-case

values, which we refer to as robust wait times.

The key challenge in analyzing MCMS systems, namely to capture the customer-server alloca-

tion dynamics implied by a specific priority rule, as we discuss later makes our analysis fundamen-

tally different from existing approaches in robust queuing theory. We address it by introducing

a modeling formulation that leverages assignment variables and affords the flexibility of dealing

with various priority rules that can be modeled as constraints on the assignment variables. We

base our analysis on MCMS FCFS systems, motivated by the KAS and PHP. We illustrate later

how our approach can accommodate alternative priority rules. Our formulations, by building on

top of assignment problems, exhibit enhanced computational performance. Although the use of

assignment variables is motivated by work in the stochastic server allocation and job scheduling

literature, the linkage between the robust queuing system and the assignment problem is novel—see

our discussion in Section 1.1.

Using our methodological framework, we first derive a mixed-integer programming (MIP) for-

mulation to compute robust wait times in a general MCMS system. We then focus on a subclass of

MCMS systems for which there is a hierarchy of resource types. This important subclass, termed

hierarchical MCMS (HMCMS), subsumes many practical systems, including the KAS. We leverage

the structure of HMCMS systems to strengthen our general MIP formulation through a drastic

variable and constraint reduction.

We further develop a heuristic approach to compute approximate robust wait times in HMCMS

systems that involves solving only a convex optimization problem (usually a second-order cone

program) with a small number of variables. Critically, we derive an approximation guarantee to

back our heuristic that becomes tighter as problem size increases. We demonstrate the performance

of our formulations in terms of accuracy and solution times by conducting extensive numerical

studies using simulated data for realistic problem sizes.

We put our methodology into practice in a case study of the KAS. Using highly detailed histor-

ical data on wait-listed patients and donated organ offers, we calibrate our model to predict wait

times based on patients’ waitlist rank and blood type.

We subsequently demonstrate how our methodology can be applied to systems that prioritize

customers based on priority rules other than FCFS (see Section 6). In particular, we extend our

MIP formulation, heuristic approach, and its approximation guarantee to systems in which priority

is driven by customer class.

Our work contributes to the following literature streams. First, it builds on and extends nascent

robust queuing theory in a significant way by capturing multiple customer classes. This additional
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modeling component enables the incorporation of customer heterogeneity. Because, from a technical

perspective, this relies on introducing customer allocation dynamics to servers, existing robust

queuing theory tools are of little use. We show how, by capturing these dynamics via a novel

assignment approach, moderately sized MIP formulations and efficient heuristics that afford a

priori error bounds can be derived. Second, our work contributes to the broader queuing literature

by providing an estimation procedure for wait times in MCMS systems that are potentially unstable

and/or in a transient regime, that is tractable and accurate under incomplete information. Third,

the present work adds to the operations research literature that deals with organ allocation by

developing the first method for estimating wait times in the KAS.

1.1. Literature Review

Robust Queuing Theory. This nascent literature stream deals with queuing systems under un-

certainty in arrival and service times. Xie et al. (2011) use an approach based on the Stochastic

Network Calculus framework to propose bounds on the delays in internet networks in transient

regime. Bandi et al. (2015a,b) model networks of single-class queues using a robust optimization

approach via uncertainty sets and obtain bounds on the waiting times using a worst case analysis

approach. These papers deal with single-class, homogeneous customers which allows them to build

their analysis using the standard Lindley recursion or extensions thereof. Our work is inspired by

the use of robust optimization for queuing systems analysis. However, our dealing with customer

heterogeneity introduces highly non-linear dynamics with regards to customer-server routing ac-

cording to priority rules. These dynamics invalidate the Lindley recursion and consequently the

techniques presented in the aforementioned papers.

Multiclass Multiserver Queuing Theory under Transient Regime. MCMS queuing systems have

been a major topic of study given their varied applications. The vast majority of papers in this

stream focus on optimal control or stability analysis. Optimal control deals with the derivation of

priority rules that optimize certain performance metrics such as throughput, delays, etc., see e.g.,

Harrison and Van Mieghem (1997), Jiang and Walrand (2010), Plambeck and Ward (2006). Stabil-

ity analysis examines conditions and priority rules under which queuing systems are stable; related

findings are clearly and elegantly summarized in the survey paper by Bramson (2008). A subclass of

MCMS systems that is closer to the ones we consider in this paper, is that of parallel-server networks

for which, Bell and Williams (2001), Harrison and López (1999), and Mandelbaum and Stolyar

(2004) again address optimal control and stability issues. In contrast, we deal with systems that

(a) operate under predetermined priority rules and (b) are inherently unstable and in transient

regime, such as the KAS and the PHP.

Transient analysis of queuing systems began with the analysis of M/M/1 queues, for which

Karlin and McGregor (1958) showed that it involved an infinite sum of Bessel functions. The

analysis was further extended (Abate and Whitt 1987, 1988, 1998, Choudhury and Whitt 1995,
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Choudhury et al. 1994) to obtain additional insights on the queue length process. In view of the

insurmountable tractability challenges even for stable Markovian queues (see, e.g., the discussion

in Gross et al. (2008), Heyman and Sobel (2003), Keilson (1979), Odoni and Roth (1983)) several

approximation techniques have been proposed, such as the ones by Grassmann (1977, 1980), Kotiah

(1978), Moore (1975), Rider (1976), Rothkopf and Oren (1979), and others. All such approaches we

are aware of have focused on developing numerical techniques for single class queues and queuing

networks and do not generalize to multiclass queuing systems of the type we study in this paper.

To the best of our knowledge, all papers in this literature stream consider primitive informa-

tion regarding system dynamics, arrivals, and service durations to be known and specified using

distributions. We deal with problems where (pieces of) such information is (are) unavailable.

Optimization Approaches in Multiserver Queuing Systems. A growing stream of research pro-

poses to employ linear and integer optimization for queuing and scheduling problems. Gurvich et al.

(2010) consider the problem of jointly optimizing staffing levels and priority rules in a queuing sys-

tem with uncertain arrivals. To optimize over the priority rule, they treat the number of jobs

assigned to each server as optimization variables. Similarly, integer optimization variables are

routinely employed in scheduling problems to determine a schedule (or job-to-server assignment)

that optimizes a certain objective, see, e.g., Pinedo (1995) or the survey by Queyranne and Schulz

(1994). More recently, Deng and Shen (2016) use an assignment-style formulation to derive op-

timal appointment schedules. Although our assignment-style formulations are motivated by the

referenced work here, our work highlights the linkage between the assignment problem and robust

queuing system analysis. Furthermore, note that in all referenced work the job-to-server assignment

variables are used to determine an optimal priority rule. Our work differs in that the assignment

variables are used to describe the system’s evolution under a predetermined priority rule. Conse-

quently, appropriate constraints need to be devised so that feasible assignments respect each given

priority rule. From this standpoint, our work mimics Bodur and Luedtke (2016), where the authors

use job-to-server assignment variables to capture dynamics under the shadow-tandem priority rule.

In contrast, we study a robust queuing setting and focus on FCFS and class priority rules.

Model-Based Organ Allocation. This literature comprises two streams. Papers in the first stream

take the perspective of policy makers and devise organ allocation policies that would improve upon

the status quo. Zenios (2005) provides an excellent survey of earlier work in this stream, whereas

more recent papers include Akan et al. (2012), Bertsimas et al. (2013), Kong et al. (2010) and

Su and Zenios (2006). Our approach is very different as we consider the U.S. national allocation

policy in place and estimate patient wait times.

Papers in the second stream take the patients’ perspective and study the accept/reject decision

that they face when offered an organ, by modeling it as an optimal stopping problem in an MDP

framework. The key insight from these papers is that patients follow threshold-type policies, i.e.,

each patient has a threshold on organ quality and accepts (rejects) organs if they are above (below)
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this threshold. See again the survey by Zenios (2005) for earlier papers and Alagoz et al. (2007),

Sandıkçi et al. (2008, 2013) for recent work. Our work takes a different angle: we borrow the

key insight of these papers, that is we take as given that the patients’ accept/reject behavior is

threshold-type and focus on characterizing the time until the next offer. This angle is in some sense

complementary to the existing papers, which take as given a characterization of the time until the

next offer and focus on the accept/reject decision problem.

1.2. Notation

We denote sets (resp. random variables) using uppercase blackboard bold (resp. uppercase script)

typeface style. Superscripts affixed to vectors are used for element indexing, e.g., if xij ∈ Rk, then

xℓ
ij is its ℓth element. We denote the indicator function with I (·). Finally, e is the vector of all

ones, and ei is the vector with its ith element equal to one and all other elements equal to zero.

2. Model

We begin by developing a queuing model that can be used to analyze wait times in first-come first-

served (FCFS) resource allocation systems, e.g., the kidney or public housing allocation systems

discussed in the Introduction. In order to obtain a general purpose model that can be widely

applicable, we omit capturing particularities of specific applications. We next present the model,

followed by a discussion of how it can be applied to tackle our research questions.

Consider a multiclass, multiserver (MCMS) queuing system where a set of M distinct servers,

indexed by j = 1, . . . , M , serve K customer classes, similarly indexed by i = 1, . . . , K. Associated

with the ith customer class, there is an infinitely-sized queue that is populated by all customers of

that class, which we shall refer to as i-customers. Customers of each class can only be served by

a fixed subset of servers. Let S(i) ⊂ {1, . . . , M} be the (non-empty) set of servers eligible to serve

i-customers. Correspondingly, let Q(j) ⊂ {1, . . . , K} be the set of queues or customer classes for

which the jth server is eligible. Figure 1 provides an illustrative example.

At time t = 0, there is a (random) number N of customers waiting for service in the system,

with Ni of them being i-customers. We index customers by ν = 1, . . . , N so that {1, . . . , N1} are

1-customers, {N1 +1, . . . , N1 +N2} are 2-customers, etc. Customers are served according to FCFS.

Let σ be a permutation of {1, . . . , N } that produces the order in which the N customers arrived.

In particular, σ(ν) is the order in which the νth customer arrived—and thus his service priority as

well. The system is closed after t = 0, i.e., no more customers arrive.2 Subsequently to receiving

service by any eligible server, customers exit the system.

We assume without loss that all servers are busy at t = 0. Service times of the jth server are

i.i.d.—in particular, independent of customer class—and are denoted by {X ℓ
j }ℓ∈N. Specifically,

2As we shall see, this assumption is without loss as future arrivals do not affect existing customers under FCFS.
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Figure 1: Illustration of a multiclass multiserver queuing system with M = 2 servers and K = 3 classes
(queues), for which S(1) = {1, 2}, S(2) = {2}, S(3) = {1} and Q(1) = {1, 3}, Q(2) = {1, 2}.

after t = 0 the jth server becomes available for service for the first time at t = X 1
j , it then begins

servicing another customer, becoming available again at t = X 1
j + X 2

j , etc. Let µj be the average

service rate of the jth server and 1
µj

its average service time. Service times are also assumed

independent across servers and independent of queue populations.

Once a server becomes available, it immediately starts servicing the highest priority customer

among the remaining ones for which the server is eligible. To formalize this, let Li(t) be the set of

i-customers waiting in the ith queue at time t. For example, as per our aforementioned indexing

convention, we have that L1(0) = {1, . . . , N1}. Suppose that the jth server becomes available

at time t. The server then starts servicing customer ν⋆ ∈ argmin{ σ(ν) : ν ∈ ⋃
i∈Q(j) Li(t) }.

Subsequently, customer ν⋆ leaves the queue i⋆ he waited in, i.e., if ν⋆ ∈ Li⋆(t), we have Li⋆(t+) =

Li⋆(t) \ {ν⋆}. If there are no customers waiting at time t for which the jth server is eligible, i.e.,
⋃

i∈Q(j) Li(t) = ∅, then the server remains idle.

In this setting, the clearing time for the ith queue is defined as the time at which it first empties

Wi(N1, . . . , NK , σ, {X
ℓ

1 }ℓ∈N, . . . , {X
ℓ

M }ℓ∈N) := inf{ t ≥ 0 : |Li(t)| = 0 }

and is a complex function of the state of the system at time t = 0, described by the queue

populations N1, . . . , NK , the priority mapping σ and the service times {X ℓ
1 }ℓ∈N, . . . , {X ℓ

M }ℓ∈N.

The focal point of our subsequent analysis is to quantify the clearing times of queues in the model

described above. Before presenting the analyis, we illustrate how this will allow us to tackle the

main research problem we outlined in the Introduction. In particular, consider an FCFS multiclass,

multiserver queuing system. The wait time of an existing, particular customer corresponds then to

the clearing time of the queue he belongs to in an appropriately specified instance of our model.

The statistics of the queue populations, the priority order and the service times in our model can be

calibrated so as to reflect the (partial) characterization of the state of the system that is available.

It is important to note here that we do not require the original queuing system one would want
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to analyze to be closed. For example, the queuing system underlying kidney allocation in the U.S.

is open and unstable, i.e., patients arrive at a higher rate than kidneys. Since wait times of existing

customers in FCFS systems are not affected by future arrivals, however, a closed queuing system

model suffices for our purposes.

3. Robust Optimization Framework for Multiclass Multiserver Systems

The analysis of MCMS queuing systems like the one we introduced in the previous section has

attracted a lot of attention in the queuing theory literature. While this theory offers a considerable

arsenal of analysis tools for such systems, the vast majority of them either (a) address alternative

questions to ours, or (b) rely on assumptions that would be prohibitive for us to make in our setting.

Specifically, the focal points in the MCMS queuing theory literature have been establishing sta-

bility of such systems and/or optimizing over priority or control mechanisms (see Section 1.1). For

our purposes however, the key quantity of interest is clearing or wait times under a predetermined

priority rule (e.g., FCFS). Among the studies closer to ours that quantify wait times, the majority

of them obtain general purpose averages from a system’s perspective. Our focus is on estimating

wait times for particular customers in the system who might have already been waiting for some

time, based on the unique, limited, and idiosyncratic information they might possess.

Furthermore, studies in the literature quantifying wait times for MCMS systems usually assume

that there is complete information, that the system is stable, and that it starts with empty queues.

Unfortunately, all these assumptions are in contrast with the following practical considerations

underlying the resource allocation systems we are interested in analyzing:

1. Incomplete information: Resource allocation systems of public goods are often plagued by lack

of information. For example, patients’ preferences pertaining to acceptable organ quality are

private information and unobservable in the kidney allocation system (see Section 5). In the

public housing allocation system, while candidates submit their housing preferences at reg-

istration, their true preferences might again be unobservable because candidates might not

be fully incentivized to reveal them, or because they might change over time. In addition,

construction rate of new housing developments could also be hard to estimate due to lim-

ited historical data in developing regions and their dependence on fluctuating socio-economic

factors. From a modeling perspective, this means that probabilistic models of queue popula-

tions and/or service distributions might be simply unavailable, or very hard to estimate, to

the extent that postulating specific distributional forms might compromise predictive ability.

2. Instability and transient behavior : The queuing systems underlying practical resource allocation

systems are often unstable, or do not reach steady state during their lifetime, consequently

remaining in transient state. For instance, the kidney supply scarcity is well documented,
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with the number of registered patients waiting for a kidney transplant rising by at least 1, 650

every single year since 1995, and on average by 4, 750 per year, resulting in ever increasing wait

times (Abouna 2008, Horvat et al. 2009). Similarly, wait times in overloaded public housing

programs could exceed five years. Such systems, even when they are stable, are unlikely to

reach steady state because house availability and new constructions are likely to be heavy

tailed and/or time varying due, for example, to fluctuating socioeconomic and policy factors

during these long periods (Barabási 2005).

3. Non-zero initial queues: The systems we consider do not start from empty, but with a certain

queue population in each class already waiting for service. This non-zero initial condition

usually leads to analytical intractability when traditional approaches are used for analysis

(Kaczynski et al. 2012, Kelton and Law 1985).

All the reasons outlined in the discussion above motivate us to consider the use of robust opti-

mization tools as an alternative modeling approach to tackle our research questions. In particular,

we develop a solution approach inspired by the very recent robust queuing theory (RQT) surveyed

in Section 1.1. This theory being limited to single-class queuing systems, we extend the methodol-

ogy in multiple ways to adequately address MCMS systems—more details on how our work builds

on and extends RQT are included in Section 1.1.

3.1. Our Model of Uncertainty

As in RQT, we treat random quantities, e.g., service times, as decision variables in an optimization

problem. These variables are constrained to lie in uncertainty sets that reflect fundamental known

properties that the original random quantities would satisfy with high probability.

To this end, let xℓ
j be the variable corresponding to the ℓth service time of the jth server

and ni the variable corresponding to the number of i-customers in the system—previously denoted

by the random variables X ℓ
j and Ni, respectively. We also let n :=

[
n1 · · · nK

]⊤
and, for

all j = 1, . . . , M , we let xj :=
[

x1
j · · · x

ℓ̄j

j

]⊤
, where ℓ̄j is an upper bound on the number of

customers served by the jth server (we elaborate on how to compute ℓ̄j ’s later).

In line with RQT and several other recent papers in the robust optimization literature, we

constrain the deviations of sums of service times from their means using bounds dictated by the

Generalized Central Limit Theorem (GCLT). In particular, we make the following assumption.

Assumption 1. The service times xj of the jth server belong to the uncertainty set

Xj :=

{
xj ∈ R

ℓ̄j

+ :
ℓ∑

k=1

xk
j ≤ ℓ

µj
+ ΓX

j (ℓ)1/αj , ℓ = 1, . . . , ℓ̄j

}
, j = 1, . . . , M,

where ΓX
j ≥ 0 controls the degree of conservatism and αj ∈ (1, 2] is a heavy tail parameter.
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We refer the interested reader to Appendix A and to Bandi and Bertsimas (2012) for a more

elaborate motivation and justification of Assumption 1. To streamline our analysis and ease nota-

tion, we denote the completion times of the jth server (assuming it processes ℓ̄j customers) with

cj :=
[

c1
j · · · c

ℓ̄j

j

]⊤
, where cℓ

j :=
∑ℓ

k=1 xk
j , and the uncertainty set they belong to with

Cj :=

{
cj ∈ R

ℓ̄j

+ : cℓ
j =

ℓ∑

k=1

xk
j , ℓ = 1, . . . , ℓ̄j , xj ∈ Xj

}
, j = 1, . . . , M.

While the GCLT-based structure of the uncertainty sets Xj (Cj) is standard in the robust

optimization literature, the structure of an uncertainty set for queue populations could be different

and highly context specific. In particular, such a set would need to capture the idiosyncratic

information that is available. To preserve generality and tractability, we only assume the following.

Assumption 2. The queue populations n ∈ NK belong to a bounded polyhedral uncertainty set P.

The family of linear inequalities is rich enough to capture a vast variety of information pieces that

might be available to characterize P. For example, if a patient in the kidney waitlist knows with

certainty that there are 10 patients with higher priority ahead of him, the constraint
∑K

i=1 ni = 10

could capture this information. In Section 5 and for the purposes of our detailed case study on the

kidney allocation system, we exemplify how such a set could be constructed in practice.

We do not impose any constraints on the (random) permutation of customers σ that determines

service priority. That is, given queue populations n ∈ NK , σ could be any permutation of numbers

1, 2, . . . ,
∑K

i=1 ni. We denote the set of all such possible permutations with Σ(n).

3.2. Solution Methodology

We introduce the concept of the robust wait time or robust clearing time of the ith queue, denoted

by Wi, defined as the maximum (worst-case) clearing time subject to the random quantities lying

in their uncertainty sets. That is, Wi is the optimal value of the optimization problem

maximize Wi(n1, . . . , nK , σ, x1, . . . , xM )

subject to n ∈ P ∩ NK

σ ∈ Σ(n)

xj ∈ Xj , j = 1, . . . , M.

(1)

As we shall see, and in line with recent papers in the robust optimization literature, by picking

appropriate values for the conservatism parameters ΓX
j , one can use Wi as a way to estimate different

statistics of the clearing time Wi, e.g., its average, its 95-, 97-percentiles, etc. As a technical remark,

we henceforth assume that there exists a population vector n for which the ith class is populated,

i.e., ni ≥ 1, since otherwise Wi = 0.
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Before we proceed with the solution of (1), it is important to note that the worst-case esti-

mates this approach can produce are of high practical relevance in the context of service/resource

allocation systems. As a matter of fact, in many service systems where demand outstrips supply,

managers prefer to provide service guarantees to their customers, instead of average wait time

estimates (Aufderheide (1999), Davis et al. (2014), Matas et al. (2015)). In healthcare, patients

being typically risk-averse, worst-case estimates are highly valued and are often used for treatment

planning (Elwyn et al. (2001), Entwistle et al. (1998), Vincent and Coulter (2002)).

An Assignment Formulation

Problem (1) is hard to solve, as formalized in our first result.

Proposition 1. The optimization problem (1) is N P-hard.

All proofs are included in Appendix F. Deriving a tractable formulation for (1) is challenging,

because there is no analytical expression for Wi. Note that in single-queue settings, Lindley’s equa-

tions can be used to characterize Wi. For example, the analysis of networks of single-server queues

by Bandi et al. (2015a,b) is based entirely on these equations. In an MCMS setting however, the

presence of multiple queues and heterogeneous customers make the system dynamics significantly

more complicated. This is because customers waiting in queues need to be routed to servers accord-

ing to a priority rule (e.g., FCFS). Lindley’s equations are insufficient to capture such dynamics

and, consequently, an alternative line of attack is needed.

We introduce a novel approach to solve Problem (1). The main idea is to model the routing

process as an assignment problem, where customers are assigned to servers. Put differently, any

permutation σ in Problem 1 that determines service/routing priority induces a particular solution

to our assignment formulation. The key is that our formulation allows for the reverse as well: by in-

cluding appropriate constraints on the assignment variables, we ensure that any feasible assignment

abides by the FCFS priority discipline under some permutation σ.

Our modeling choice enables us to cast (1) as a mixed-integer optimization problem (MIP). The

main decision variables of the MIP are the assignment variables yℓ
kj , which indicate whether the

12



ℓth service that the jth server provides is to a k-customer. Consider the MIP

maximize wi (2.1)

subject to
∑

k∈Q(j)

yℓ
kj ≤ 1, ℓ = 1, . . . , ℓ̄j , j = 1, . . . , M (2.2)

∑

ℓ=1,...,ℓ̄j

j∈S(k)

yℓ
kj ≤ nk, k = 1, . . . , K (2.3)

∑

k′∈Q(j)

yℓ
k′j ≥ f ℓ

kj , k ∈ Q(j), ℓ = 1, . . . , ℓ̄j , j = 1, . . . , M (2.4)

wk ≤ cℓ
j + ζ̄f ℓ

kj , k ∈ Q(j), ℓ = 1, . . . , ℓ̄j , j = 1, . . . , M (2.5)

wk ≥ cℓ
j − ζ̄

(
1 − yℓ

kj

)
, k ∈ Q(j), ℓ = 1, . . . , ℓ̄j , j = 1, . . . , M (2.6)

cj ∈ Cj , j = 1, . . . , M (2.7)

yℓ
kj , f ℓ

kj ∈ {0, 1}, k ∈ Q(j), ℓ = 1, . . . , ℓ̄j , j = 1, . . . , M (2.8)

(n + ei) ∈ P ∩ NK , (2.9)

with variables w, n ∈ RK , y, f ∈ {0, 1}
∑M

j=1
|Q(j)|ℓ̄j , c ∈ R

∑M

j=1
ℓ̄j , where ζ̄ is an upper bound on Wi.

Theorem 1. The optimal value of the MIP (2) is equal to Wi, i = 1, . . . , K.

Apart from the assignment variables y and their associated completion times c, we use the

auxiliary variables f to indicate whether a customer class is filled, or has emptied: f ℓ
kj = 1 if

at the time the ℓth service of the jth server begins, the k-customers’ class is still populated.

Constraints (2.2)-(2.3) are assignment constraints. Constraint (2.4) ensures that the jth server will

be assigned to customers once it becomes available, unless all classes Q(j) it is eligible for have

emptied. Constraint (2.5) can be active only if the kth customer class has emptied, yielding an upper

bound on the clearing time of the kth queue. Constraint (2.6) provides a non-trivial lower bound on

the clearing time of the kth queue whenever an assignment is made to that queue. Constraints (2.7)

and (2.9) ensure that the completion times and queue populations lie in their respective uncertainty

sets.3 Finally, parameters ℓ̄j and ζ̄i can be readily calculated as ℓ̄j = max{∑k∈Q(j) nk : n ∈ P∩NK}
and ζ̄ = maxj{ ℓ̄j

µj
+ ΓX

j (ℓ̄j)1/αj }. For more details, see the proof of Theorem 1.

The main appealing features of our methodology are as follows.

1. Tractability: The use of assignment variables allow us to capture the complex MCMS dynamics

using an MIP formulation, which can be solved via available solvers. More importantly, at

the heart of our formulation lies an assignment problem, which is known for its tractability

properties. As a matter a fact, the required computational times we recorded in our numerical

3As we show in the proof of Theorem 1, formulation (2) produces the time the last customer in the ith queue
leaves the system. Since, we are interested in the time he receives service, we offset ni by one.
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studies (presented below) demonstrate that instances of practical relevance can be solved

in less than few minutes. Furthermore, when dealing with specific applications, one could

potentially leverage their structure to strengthen formulation (2), as Section 4 exemplifies.

2. Generalizability: While a vast number of MCMS queuing applications follow FCFS and can

consequently be analyzed using formulation (2), other priority rules are encountered in prac-

tice as well. We argue that our modeling approach is generalizable and offers the potential

to capture priority rules other than FCFS. In particular, this would be made possible by

imposing appropriate constraints on the assignment variables that would reflect the desired

rules. In Section 6, we study a system where a class-priority (CP) rule is followed instead of

FCFS, as well as a “hybrid” system where some of the servers follow FCFS and others follow

CP. Under CP, the study of open systems becomes relevant and our framework is extended

accordingly to capture customer arrivals.

Furthermore, we emphasize that formulation (2) does not rely on the GCLT-based structure

of the service time uncertainty sets imposed via Assumption 1. In particular, Theorem 1

applies as long as Xj are non-empty, bounded polyhedra (see Appendix A).

3. Robustness: By relying on a worst-case analysis, our solution approach works very well under

a wide range of uncertainty scenarios that could realize in practice and is thus robust to

misspecifications of underlying distributions/primitives. For further evidence we refer the

reader to the numerical studies that follow.

3.3. Performance

We performed a wide range of numerical studies to evaluate the accuracy and computational speed

of our solution approach in estimating different statistics of clearing/wait times in our model. In

particular, we randomly generated multiple instances under different system sizes (varying from

K = M = 5 to 500), different service distributions (varying from exponential to normal distributions

with coefficients of variation between 20% and 40%, to Pareto distributions with parameter α

between 1.3 and 1.7) and different average queue populations (varying from 5 to 500).

For all instances, we used our formulation (2) to estimate the average, 95-, 97- and 99-percentiles

of clearing times. We then used a standard simulation approach to approximate these statistics.

Assuming that simulation produced the statistics’ true values, we measured the average absolute

relative error of our estimates as

1

# iterations
·

# iterations∑

k=1

∣∣∣∣
(our estimate)k − (simulation estimate)k

(simulation estimate)k

∣∣∣∣× 100%.

To evaluate the robustness of our estimates to misspecifications of the queue populations’ distribu-

tions, we also considered cases where the true distributions were different from the ones assumed

14



Table 1: The average absolute relative errors of our clearing time statistics’ estimates across all instances
for which the true distributions were known.

Clearing time statistics Average 95-percentile 97-percentile 99-percentile

Avg. absolute relative error 6.52% 2.64% 2.55% 3.41%

Table 2: The average absolute relative errors of the simulation’s and our approach’s estimates for the
average clearing time across all instances for which the assumed queue population distribution was
different from the true one, for different average queue populations.

Avg. queue population 5 100 500

Simulation’s avg. absolute relative error 21% 15% 12%
Our avg. absolute relative error 13% 9% 7.5%

by the models. In these cases, we used the simulation approach to produce its own estimates under

the assumed distribution and measured its errors in a similar fashion as with our approach. Finally,

we recorded the required computational times to solve formulation (2) for all generated instances.

We next present only a summary of our results; a detailed description of our experiments and

findings is included in Appendix B. Table 1 reports the average absolute relative errors of our

approach in estimating different statistics of the clearing times. While these figures are averages

across all instances, we note that performance was relatively uniform across different problem

sizes and distributions. With regards to computational times, the majority of instances solved

within a matter of few seconds, while all instances solved in less than 3 minutes. In case the

true distributions were different from the ones assumed, we found that the relative errors of both

our and the simulation approach depended more strongly on the queue population sizes. Table 2

includes the average relative errors we recorded for both approaches for different queue population

sizes when the true distributions were different from the ones assumed.

Our numerical studies showcase that our methodology provides accurate estimates of clearing

time statistics. For practical situations where distributions are unavailable or there is a discrepancy

between the assumed and the actual ones, our studies suggest that our methodology would provide

far superior estimates compared to simulation, illustrating its usefulness.

4. Hierarchical Service Systems

Before applying our methodology to quantify wait times in the U.S. kidney allocation system

(KAS), we study an important subclass of MCMS queuing systems that subsumes a vast number

of practical applications (including KAS). We leverage structural properties of this subclass to

strengthen the MIP formulation (2). We also derive a heuristic to estimate wait times that involves
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Figure 2: Illustration of a hierarchical multiclass multiserver queuing system with K = 3. Server 1 (3)
provides the highest (lowest) service level. Customers in class 1 (2 or 3) seek service at level 1 (2 or 3)
and above.

the solution of a scalable convex optimization problem, and back it with a performance guarantee.

In particular, in this section we study MCMS queuing systems whereby there is a hierarchy

across the service that the different servers provide, and customers seek service that meets or

exceeds a particular rank, or level, in this hierarchy. To make this precise, we assume that the jth

server provides the jth highest service level, e.g., server 2 provides the second highest service level.

Correspondingly, i-customers are seeking service level i or higher, e.g., servers 1 and 2 are the only

servers eligible for 2-customers; K-customers seek service of any level. From a modeling standpoint,

under this hierarchy we have as many customer classes as servers, K = M , and the sets S and Q

have a particular “nested” structure

S(i) = {1, . . . , i}, i = 1, . . . , K

Q(j) = {j, . . . , K}, j = 1, . . . , K.

We shall refer to such systems as hierarchical service systems or hierarchical multiclass, multiserver

systems (HMCMS). Figure 2 provides an illustrative example for K = 3.

Note that despite being a special case, HMCMS systems arise very frequently in practice, for

example, when there are different quality levels of a particular service that is provided. Some

concrete examples include (a) kidney allocation, where donated organs have different quality based

on donor characteristics,4 (b) healthcare services, where different technology generations are used

with newer ones typically outperforming older ones, e.g., conventional, intensity-modulated or

proton radiation therapy services, (c) transportation services, where different travel classes are

offered. In such contexts, it is natural to assume that “customers” who are willing to accept a

specific quality service level, will also be willing to accept all higher quality levels; in other words,

customer heterogeneity stems only from different quality level thresholds the customers have. This

threshold-type customer heterogeneity gives rise to the nested structure of HMCMS systems.

4There is a well accepted scoring system for measuring kidney quality, the kidney donor profile index, which is
also used in the current national allocation policy (see Section 5).
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In the remainder of this section and for the case of hierarchical service systems, we leverage

their structural properties to strengthen the general formulation (2) so as to compute wait time for

service (of any level) in a more efficient manner. We also devise a highly scalable heuristic approach

that approximates robust wait times and is backed by a strong approximation guarantee.

4.1. Service Wait Time

An important quantity in the context of hierarchical service systems is the wait time to receive

service of any level. This quantity, denoted by WK in our framework, corresponds to the wait time

a customer will experience if he were to abolish any quality/service level threshold he may have

and is a commonly reported metric in hierarchical service systems in practice. For example, the

medical reporting website of the government of Alberta, Canada,5 provides wait time statistics

for service of any level for all reported medical procedures (e.g., imaging services, interventions,

surgical services) and does not provide a breakdown based on the quality of service or technology

used. Similarly, in its Cancer Waiting Times Annual Report,6 the English National Health Service

only reports wait time statistics for cancer services of any level. For example, wait time statistics

reported for radiotherapy treatment are agnostic to technology generations. The practical relevance

of the quantity WK is not surprising: by abstracting away from preferences, it constitutes a baseline

measure for wait times as individual preferences could only lead to increased waiting.

Calculating the worst-case WK in an HMCMS system remains a hard problem. However, in

what follows we leverage its structure to strengthen our formulations.

Proposition 2. Calculating WK for HMCMS systems is an N P-hard problem.

The MIP formulation (2) we proposed to estimate wait times for general MCMS systems involves

two sets of key decisions: customer assignment to servers and completion times (captured by

variables y and c, respectively). While the former correspond to variables and constraints that

appear in assignment problems, which are known to scale well, the latter variables and constraints

make formulation (2) deviate from a classical assignment problem, and are thus harder to deal with

from a computational standpoint. It turns out that for HMCMS and WK , completion, or service

times can be fixed to their worst-case values in our formulation. This allows us to considerably

simplify it, by eliminating the associated variables and constraints.

Before we present more details, we argue that in the computation of Wi, service times need not

take their worst-case values in general—even if the system has a hierarchical structure, but i < K.

We prove this via an example showing that shorter service times could lead to longer wait times.

Example 1. Consider a hierarchical service system with K = M = 2 queues, each of which is

populated by a single customer, i.e., P = {(1, 1)}. We are interested in the clearing time W1

5http://waittimes.alberta.ca/
6https://www.england.nhs.uk/statistics/2013/07/19/cancer-waiting-times-annual-report-2012-13/
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of the first queue, i.e., the waiting time for the 1-customer. The servers have equal parameters

ΓX
1 = ΓX

2 = 1 and α1 = α2 = 2, however, the first has a lower service rate than the second, in

particular, µ1 = 0.8 < 1 = µ2. Clearly, in the worst case the 2-customer has service priority.

Suppose first that all service times attain their worst-case values. In particular, servers 1 and 2

become available for service for the first time at c1
1 = x1

1 = 1
µ1

+ ΓX
1

√
1 = 2.25 and c1

2 = x1
2 =

1
µ2

+ΓX
2

√
1 = 2, respectively. Then, at t = 2 server 2 starts servicing the 2-customer and at t = 2.25

the 1-customer receives service. In other words, under worst-case service times, W1 = 2.25.

Suppose now that the service times of server 1 are lower than their worst-case values. Specifi-

cally, server 1 takes c1
1 = x1

1 = 1.8 to become available for the first time. Then, at t = 1.8, server 1

starts servicing the 2-customer. At t = 2, server 2 will become available for service, but will remain

idle, being ineligible to serve the 1-customer. If server 1’s time to serve the 2-customer takes its

worst-case value such that c2
1 = x1

1 + x2
1 = 2

µ1
+ ΓX

1

√
2 = 2.5 +

√
2, the 1-customer will be served

precisely at that time and W1 = 2.5 +
√

2 > 2.25.

The intuition behind the counter-example is that while on one hand shorter service times make

the servers available earlier and could thus reduce wait times, on the other hand they could also

change the service sequence of customers, thus potentially increasing wait times for some customer

classes. Our next result shows that the structure of hierarchical service systems precludes this

latter possibility for customers waiting for service of any level.

Lemma 1. For a hierarchical MCMS system, the clearing time WK is increasing in the service

times. In particular, Problem (1) admits an optimal solution for which completion times take their

worst-case values, i.e.,

cℓ
j = x1

j + . . . + xℓ
j =

ℓ

µj
+ ΓX

j (ℓ)1/αj , j = 1, . . . , K, ℓ = 1, . . . , ℓ̄j .

Based on Lemma 1, we now fix the completion times to take their worst-case values. We

introduce the following notation. Consider the set of all worst-case completion times for all servers,

i.e., {cℓ
j = ℓ

µj
+ΓX

j (ℓ)1/αj : j = 1, . . . , K, ℓ = 1, . . . , ℓ̄j},7 and let ℓ̄ := ℓ̄1 + . . .+ ℓ̄K be its cardinality

7To streamline exposition, we assume the worst-case completion times of all servers to be distinct. Our analysis
can be readily extended otherwise, at the cost of isolating and discussing degenerate cases.

18



and cℓ its ℓth smallest element, ℓ = 1, . . . , ℓ̄. Consider the MIP

maximize
∑

ℓ=2,...,ℓ̄

cℓ(f ℓ−1 − f ℓ) (3.1)

subject to
∑

k=j,...,K

yℓ
kj ≤ 1, ℓ = 1, . . . , ℓ̄j , j = 1, . . . , K (3.2)

∑

(j,ω):cω
j

≤cℓ

yω
Kj ≤ nK − f ℓ, ℓ = 1, . . . , ℓ̄ (3.3)

∑

j=1,...,k
ℓ=1,...,ℓ̄j

yℓ
kj ≤ nk, k = 1, . . . , K − 1 (3.4)

∑

(j,ω):cω
j =cℓ

k=j,...,K

yω
kj ≥ f ℓ, ℓ = 1, . . . , ℓ̄ (3.5)

f ℓ−1 ≥ f ℓ, ℓ = 2, . . . , ℓ̄ (3.6)

f ℓ ∈ {0, 1}, ℓ = 1, . . . , ℓ̄ (3.7)

yℓ
kj ∈ {0, 1}, j = 1, . . . , K, k = j, . . . , K, ℓ = 1, . . . , ℓ̄j (3.8)

n ∈ P ∩ NK , (3.9)

where y ∈ {0, 1}Kℓ̄1+(K−1)ℓ̄2+...+ℓ̄K and n ∈ NK are assignment and class population variables,

respectively; f ∈ {0, 1}ℓ̄ are indicators of whether the Kth customer class is filled, or has cleared.

Theorem 2. For a hierarchical MCMS system, the optimal value of the MIP (3) is equal to WK .

Formulation (3) presents a structure that closely mimics an assignment problem. Constraints

(3.2) are classical assignment constraints. Constraints (3.3)-(3.4) are capacity constraints. The

main departure from an assignment problem stems from the variable f ℓ, which indicates whether the

Kth customer class is filled, or has cleared, at the ℓth completion time, or equivalently, assignment.

When that class clears, f ℓ takes the value 0 (and retains it due to (3.6)), allowing (3.3) to be

binding with nK assignments to the Kth class, and the objective (3.1) to attain the associated

clearing time. Finally, (3.5) forces assignment unless the Kth class has cleared, similarly to (2.4).

Owing to its simpler structure and significantly fewer variables/constraints, we expect formula-

tion (3) to yield significant computational advantages over the general formulation (2). We compare

the two approaches in terms of their computational performance in Section 4.3, alongside a third

heuristic approach, which we present next.

4.2. Service Wait Time Approximation

Both the formulation (2) for general MCMS and the more efficient formulation (3) for HMCMS

systems have a number of variables that depends on the customer classes’ populations. Intuitively,
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this is because the presence of more customers would require a higher number of server-to-customer

assignments. Algebraically, as the population uncertainty set P includes higher-valued vectors n, the

parameters ℓ̄j increase and so do the numbers of variables y and f . This dependence would increase

computational burden for heavily overloaded systems. To overcome this, we devise a heuristic to

approximate WK with significantly reduced computational requirements that are independent of

n. More importantly, we back the heuristic with an approximation guarantee that becomes tighter

as n grows, i.e., precisely when the heuristic’s computational gains become worthwhile.

Consider the following optimization problem

maximize w

subject to w ≤ mj

µj
+ ΓX

j sj , j = 1, . . . , K

(sj)αj ≤ mj , j = 1, . . . , K
K∑

k=j

mk ≤
K∑

k=j

nk + K − j, j = 1, . . . , K

n ∈ P.

(4)

It can be readily seen that Problem (4) is convex. In particular, for any rational value of αj

(including the important case where the service times do not exhibit heavy tails, i.e., for αj = 2),

Problem (4) reduces to a second-order cone program (SOCP) (Alizadeh and Goldfarb 2001, Section

2.3). An interpretation of its variables and constraints is as follows. The variables m ∈ RK represent

the numbers of customers assigned to/served by each server by the time the Kth class has cleared,

which in turn corresponds to variable w ∈ R. Variables s ∈ RK are auxiliary and n ∈ RK are

class populations as before. At optimality, it can be readily seen that the first two constraints are

equivalent with w ≤ mj

µj
+ ΓX

j (mj)1/αj , i.e., w is upper-bounded by the worst-case time it takes the

jth server to serve its mj assigned customers, for all j = 1, . . . , K. The third constraint bounds the

number of customers assigned to a subset of servers by the population of customer classes these

servers are eligible for, plus a correction term. Note that all variables are continuous and, as such,

approximations of the quantities we just discussed.

In contrast with both our previous formulations, (4) can be interpreted as taking an “aggregate

view” of the system, in that it only deals with the total number of customers served by each server,

and not with which precise customer classes and in what order this occurred. Consequently, for-

mulation (4) affords a drastic complexity reduction, falling into the category of conic optimization

problems, namely SOCP, that are efficient to solve at very high scale using standard solvers. Addi-

tionally, (4) involves only 3K + 1 variables and a number of constraints that does not increase with

the class populations n—unlike our previous formulations. Hence, in applications where n could

take high enough values that render (3) impractical to solve, (4) provides an alternative approach.

Another implication of the aggregate system view of (4) is that it only provides an approximation
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to the quantity WK we want to calculate. Fortunately, we are able to provide the following guarantee

to the approximation fidelity. Specifically, the optimal value of (4), denoted by ŴK , approximates

WK within an additive constant that depends only on the maximum service time among all servers

χ := max
j=1,...,K

{
1

µj
+ ΓX

j

}
.

In particular, for x ∈ X we have that xℓ
j ≤ χ for all j = 1, . . . , K and ℓ = 1, . . . , ℓ̄j .

Theorem 3. For a hierarchical MCMS system,

WK ≤ ŴK ≤ WK + 2χ.

A very important property of our approximation guarantee is that it becomes tighter as the class

populations n increase, i.e., exactly for the problem instances formulation (4) would be mostly

useful. To see this, note that as n increases, ceteris paribus, WK also naturally increases as servers

have to serve more customers. However, χ remains constant.

We next confirm by way of numerical studies that our heuristic approach yields significant

computational benefits at essentially no cost in accuracy, as our approximation guarantee suggests.

4.3. Performance

We conclude the treatment of HMCMS systems with an evaluation of the two formulations we pre-

sented by way of numerical studies. In particular, we quantify, first, the required computation times

of MIP (3) and the heuristic SOCP (4) (for αj = 2), relative to the general MIP formulation (2),

and, second, the relative approximation error of the heuristic, ŴK−WK

WK
× 100%.

We used a similar approach as in Section 3.3, randomly generating multiple problem instances of

HMCMS systems of varying classes and population sizes. For a detailed discussion, see Appendix C.

Tables 3 and 4 summarize our findings. Specifically, Table 3 reports the average computation

times of the three formulations under consideration for different problem sizes (as measured by the

average total population sizes). Our results suggest that MIP (3) reduces computation times by a

factor of 3 to 4, approximately, compared to the general MIP formulation (2). The heuristic SOCP

formulation provides a further reduction by a factor higher than 10.

Table 4 reports the average relative approximation errors we recorded for varying problem sizes.

Evidently, our heuristic is almost exact and becomes tighter as population sizes grow.

Together, our findings from Tables 3 and 4 suggest that for problem sizes involving less than

10, 000 customers, the exact MIP formulations can be used to produce solutions in a matter of two

minutes. For problems involving a higher number of customers, the SOCP formulation retains the

low computation times, with an approximation error of less than 0.1%.
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Table 3: Approximate average computation times of our different formulations for HMCMS systems
with varying number of customers.

Computation times
Avg. total number of customers MIP (2) MIP (3) SOCP (4)

100 customers 1 sec 0.8 sec 0.8 sec
1,000 customers < 1 min < 1

2 min 1.2 sec
10,000 customers 6 min 2 min 5.4 sec
100,000 customers 40 min 10 min < 1 min

Table 4: Average relative approximation error of our SOCP heuristic (4) for HMCMS systems with
varying number of customers.

Avg. total number of customers Avg. relative error

50 customers 1.9%
100 customers 0.85%
200 customers 0.5%
400 customers 0.25%

1,200 customers 0.08%

In summary, the special structure of hierarchical service systems allowed us to sharpen our

formulations to compute the wait time for service WK . Formulation (3), by providing a speed

increase by a factor of 3 to 4, enables us to solve realistic-sized problems, for example in the context

of the kidney allocation system, involving ten classes and 1, 000 customers in approximately two

minutes. We also provided a powerful heuristic that further reduced computational burden by an

order of magnitude, and this allows to preserve low computation time requirements for much larger

instances, obtaining provably near-optimal solutions at the same time.

5. Patient Wait Times in the U.S. Kidney Allocation System

In this section, we investigate a real-world application of our MCMS analysis framework. In partic-

ular, we consider the estimation of patient wait times in the U.S. kidney allocation system (KAS).

We envision our methodology to enable transplant centers to develop software tools that would offer

wait time estimates to their patients. We first describe the KAS in some detail and demonstrate

that it effectively operates as a hierarchical service system. Then, we illustrate how our analysis

framework can be deployed to estimate wait times and conclude by performing a numerical case

study based on historical data.
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5.1. The U.S. Kidney Allocation System: an FCFS Hierarchical Service System

Kidney allocation in the U.S. is coordinated by the United Network for Organ Sharing (UNOS).

When a patient is in need of a kidney transplant, his medical information is added to UNOSNet,

a computerized system administered by UNOS. When a deceased-donor kidney is procured, the

donor’s information is also entered into the system. Subsequently, UNOSNet generates a match

run, i.e., a ranked list of patients, based on a set of allocation rules. The organ is then offered to

the highest ranked patient on the match run. If rejected, it is offered to the second highest ranked

patient, and so on. We next describe in some detail the allocation rules prevailing in the U.S. in

the period from January 1, 2007 to January 2, 2014, for which we were able to obtain match run

data. Note that some changes to the rules came in effect on December 4, 2014—these are discussed

in Section 6 together with an extension to our methodology that can cater for these changes.

In KAS, the U.S. is divided geographically into eleven regions, each of which consists of several

Organ Procurement Organizations (OPOs). There are a total of fifty eight OPOs of varying size.

Before generating a match run, UNOSNet first screens out all medically incompatible candidates

primarily based on blood type—other less frequent reasons could be height, weight or tissue type.8

Subsequently, the rank ordered list is generated as follows. First, kidneys are offered to any identical

tissue match candidates,9 although such matches are extremely rare. Then, they are offered in turn

to candidates in the same OPO as the donor, to candidates in the same region, and finally to all

remaining candidates nationally. Within each classification, candidates are ranked using a point-

based system, relying on (a) candidate wait time, (b) sensitization,10 and (c) tissue match strength.

Upon receiving an offer, a patient is given an hour to decide whether to accept or reject it.

Patients are more likely to reject lower quality organs, e.g., organs from elderly donors or with a

high creatinine level, because they would yield lower post-transplant survivability. In particular,

the accept/reject decision involves trading off the benefits of an immediate transplant of the offered

organ with the risks and benefits of waiting for future offers, whenever they might occur. In practice,

some patients may be obliged to reject an offer due to operational reasons (e.g., patient is too ill

for transplant, surgeon is unavailable, etc.); we shall refer to such patients as unavailable. Note

that patients are able to observe only their rank in the match run, alongside donor information.

Specifically, they have no information about any other candidate in the match run or the waitlist.

Modeling KAS as a Queuing System

The KAS can be reasonably approximated by a number of independent systems, each operating

as a hierarchical MCMS queuing system under an FCFS priority. We elaborate on these modeling

8Each candidate provides a list of Human Leukocyte Antigens (HLA) that would be unacceptable in a donor in
the sense that he has antibodies to such HLAs that would result in an organ rejection by his body. The probability of
a candidate having unacceptable HLAs with a donor is less than 5% in the U.S. (http://www.ustransplant.org/).

9When two candidates share the same HLA, they are said to be a match.
10Candidates are sensitized if they have unacceptable HLAs, see http://www.ustransplant.org/

23

http://www.ustransplant.org/
http://www.ustransplant.org/


choices below. Note that these choices are hardly new and are in line with the literature, as we

point out in the subsequent discussion and in our Literature Review section.

In particular, we consider the patients and donors in a specific OPO and of a specific blood

type as an independent system that we analyze separately. This is because patients predominantly

accept kidneys from donors that are from the same OPO and of the same blood type as they

are. Indeed, kidneys are offered almost exclusively to candidates with identical blood type due

to medical compatibility issues—exceptions arise in the extremely rare cases of identical tissue

matches. Furthermore, the vast majority of candidates accept kidneys from their own OPO (close

to 85%), finding kidneys from distant locations undesirable, owing to the procured organs’ limited

preservation times and their quality deterioration over (transport) time. Nonetheless, we illustrate

how our model can be extended to capture coupling between different OPOs in Section 6.

The accept/reject decision making process of candidates allows us to model each subsystem of

an OPO-blood-type pair as a hierarchical MCMS queuing system. Specifically, there is a series of

papers in the literature that model the accept/reject decision problem facing transplant patients

as a stopping problem, where benefits from a current offer are traded off with risks of waiting and

benefits from future potential offers. In that context, it has been shown that patients make decisions

by following a threshold-based policy, i.e., they accept an offered kidney if and only if its quality

exceeds a certain threshold, which depends on the patients’ risk tolerance, health status, etc. (see

Section 1.1). We assume that patients follow a threshold policy in our setting. Consequently, by

clustering kidneys into levels 1, . . . , K of decreasing quality, we can model the underlying dynamics

with an HMCMS as follows: all waiting patients willing to accept service (kidneys) of quality level

i or higher are assigned to class i ∈ {1, . . . , K}. Correspondingly, there are K servers that capture

the arrival processes of donated kidneys, with the jth server “producing” kidneys of quality level

j and thus being eligible to serve patients of class i ≥ j. When the jth server starts servicing

a patient, this corresponds to a kidney of quality j being procured and accepted by the served

patient, who then leaves the system. The server’s service time corresponds to the time until the

next kidney of quality j is procured.

Finally, it is well accepted both by practitioners and academics that candidates are ranked

mostly in the order in which they joined the waitlist, i.e., the HMCMS queuing system in each

OPO-blood-type subsystem essentially operates under an FCFS priority (see, e.g., OPTNKTC

(2007), QD (2015), Su and Zenios (2005)). We note that while the KAS was originally designed

in the 1980s so as to balance fairness (FCFS) and efficiency (stronger tissue matching), medical

advances since the 1990s have drastically improved survivability under dialysis, to the extent that

candidates have accumulated a large number of points from wait time that far outweigh other

factors in the points computation and ultimately in their ranking (OPTNKTC 2007).

To summarize, the KAS can be credibly modeled as a collection of OPO-blood-type subsys-

tems, each operating as an HMCMS system under FCFS—with patients corresponding to customers
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seeking service (transplantation), servers capturing the donation process and service times corre-

sponding to kidney interarrival times.

We next argue that our robust MCMS analysis framework is an appropriate solution method to

adopt, because it accommodates practical considerations such as lack of information and instability.

We will also see that our framework is flexible to account for other KAS dynamics we have not

explicitly modeled, such as patient unavailability or removal from the waitlist due to death.

5.2. Using our MCMS Analysis Framework

We propose using the robust MCMS analysis framework we have developed to estimate patient

wait times in the KAS. By computing the clearing times for each queue, our model can essentially

provide patients with estimates for the required wait time until they are offered an organ of the

highest quality (W1), or an organ of quality i or better (Wi), or simply any organ (WK). More

importantly, our model is suitable to provide credible estimates for all the reasons we outlined in

Section 3: the KAS is inherently unstable and plagued by incomplete information. Having discussed

the former in Section 3, we elaborate on the latter below.

The key pieces of information that are unobservable in the KAS are the patients’ preferences

that drive accept/reject decisions, and these could significantly impact wait times. In particular, a

specific patient observes only his rank in the match run, which informs him about how many patients

are in front of him in the system. However, he is unable to know what organ qualities they would be

willing to accept. If all patients in front of him were willing to accept only top quality kidneys, he

would likely get an offer sooner (of a lower quality kidney); if they were willing to accept any kidney

quality, he would likely wait much longer. To make things worse, fitting probabilistic prediction

models of patient acceptance/rejection behavior has proved to be extremely challenging.11

In our terminology, while a patient could infer the aggregate queue population through his rank,

there is significant uncertainty of how the population is distributed across the different queues.

Our method is tailored to deal with this problem by taking a robust approach and by requiring the

calibration of an uncertainty set, which is significantly easier compared to a probabilistic model.

It is important to note that modeling the queue populations via an uncertainty set allows us to

capture other dynamics of the KAS that we do not explicitly model. For example, patients might

become unavailable or might leave the system, e.g., because of death or receipt of an organ from a

living donor. Also, patient preferences might change over time, e.g., again due to changes in their

health condition. Patient rank might also be slightly affected by tissue matching and sensitization,

resulting in fewer patients with higher priority. All these aforementioned dynamics would affect

the queue populations and could thus be subsumed by properly calibrated uncertainty sets.

11The most comprehensive study that leveraged all available UNOS data and experimented with a series of pre-
diction models, including logistic regression, SVMs, boosting, CART, and Random Forests, reported error rates that
varied between 21.2% and 47% (see Kim et al. (2015)) in the context of liver accept/reject decisions.
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Model Calibration. We cluster kidneys based on the well-accepted Kidney Donor Profile Index

(KDPI), a quality metric that UNOS has adopted.12 Although in practice physicians and patients

might be assessing quality in ways that deviate from KDPI slightly, Arıkan et al. (2012) brought

forth empirical evidence that accept/reject quality thresholds can be well approximated by KDPI.

With regards to the queue population uncertainty set, we specify the set in a way that it relies

only on parameters that can be estimated through available data, so as to retain practical relevance.

Consider a k-patient who observes his rank to be r, i.e., there are r − 1 patients in front of him.

Let Zν be the class the νth such patient belongs to, ν = 1, . . . , r − 1. In case the νth patient is

unavailable, we let Zν = 0. Let qi be the probability of a patient being of class i ∈ {1, . . . , K},

or being unavailable (i = 0). That is, Zν = i with probability qi, for all i = 0, 1, . . . , K and

ν = 1, . . . , r − 1. Assuming independence, a CLT-based approximation would then yield that

r−1∑

ν=1

Zν − (r − 1)µZ ≤ ΓσZ

√
r − 1,

where µZ =
∑K

i=1 iqi, σ2
Z

=
∑K

i=1 i2qi − µ2
Z

and Γ is a conservatism parameter. Noticing that
∑r−1

ν=1 Zν + k =
∑K

i=1 ini, we get that

P =

{
n ∈ RK :

K∑

i=1

ini − k ≤ (r − 1)µZ + ΓσZ

√
r − 1

}
. (5)

5.3. Numerical Case Study

In this study, we apply our robust MCMS (RMCMS) methodology to estimate wait times statistics

in dependence of rank for patients of blood type O in the PADV-OP1 Gift of Life Donor Program13

OPO. So as to test our methodology in a realistic setting, we obtained all historical data from

UNOS that would be available to patients and their physicians. We split the data into a training

set, used to fit model parameters, and a testing set, used to assess out-of-sample performance.

Data. Our data set covers the period from 5/2007 to 6/2013 and includes 7,388 patients and 438

donors. We use the data from 5/2007 to 5/2010 as our training set, and the remainder as our testing

set. The data set includes the following information pertaining to each procured deceased-donor

kidney: (a) procurement OPO, (b) procurement date and time, (c) donor blood type, (d) KDPI

score, and (e) all accept/reject decisions made, alongside reasons for rejection, e.g., due to quality

or unavailability.

It is important to note here that our data set also includes, for each offer made, patient iden-

tifiers. These identifiers enable us to reconstruct the entire sequence of offers received by each

patient, and thus to compute their individual wait times. However, due to confidentiality reasons,

12UNOS introduced the KDPI as standard way of measuring kidney quality in the early 2000s, in order to leverage
it in the KAS allocation policy, see Section 6.

13Gift of Life Donor Program serves the eastern half of Pennsylvania, southern New Jersey and Delaware.
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this information is made available by UNOS only for bona fide research purposes under institu-

tional review board oversight. In particular, it would not be available to patients or physicians

for consultation purposes. As such, we do not use this identifier information in any way in our

parameter fitting process. Instead, we only use it for purposes of evaluating our implementation’s

accuracy. In other words, our implementation here relies on publicly available data only and can

be replicated by transplant centers wishing to offer consultation to their patients.

This study used data from the Organ Procurement and Transplantation Network (OPTN). The

OPTN data system includes data on all donor, wait-listed candidates, and transplant recipients

in the US, submitted by the members of the Organ Procurement and Transplantation Network

(OPTN), and has been described elsewhere. The Health Resources and Services Administration

(HRSA), U.S. Department of Health and Human Services provides oversight to the activities of the

OPTN contractor.

Parameter Fitting. We clustered kidneys in K = 5 quality categories based on KDPI, which is a

normalized score from 0% (best) to 100% (worst quality). The categories j = 1, . . . , 5 included all

kidneys with a KDPI score of 0-6%, 6-25%, 25-50%, 50-75% and 75-100%, respectively.14

We used the kidney interarrival times in the training set to fit the service time uncertainty set

parameters. In particular, we set the coefficient αj = 2 for all quality categories, based on the

absence of heavy tails in the empirical distributions. For the j-quality-kidneys, we let 1/µj equal

the interarrivals’ empirical mean. Similarly, we let ΓX
j = Γσj , where σj equals the interarrivals’

empirical standard deviation, and Γ is the same conservatism parameter as in (5).

For the queue population uncertainty set, we let q0 be the empirical mean of the fraction of

rejections due to unavailability in the training set. To estimate the probability qi of a patient

being of class i ∈ {1, . . . , K}, we used a maximum likelihood approach. That is, we fitted the

probabilities qi’s so as to maximize the likelihood of the accept/reject decisions we observed in the

training set—we refer the reader to Appendix D for more details.

Out-of-Sample Performance. Having fitted all parameters based on the training set, we used our

SOCP (4) with various values of the conservatism parameter Γ (as discussed in Section 3.3) to

estimate the average, 68-, 95-, 97- and 99-percentiles of the wait time for blood group O patients in

the PADV-OP1 Gift of Life Donor Program OPO in the testing set, depending on their rank. Our

estimates are depicted in Figure 3. For example, we estimate the average wait time that a patient

ranked 50 will experience until he is offered an organ to be approximately 500 days.

To evaluate the accuracy of our estimates out-of-sample, we used the patient identifier infor-

mation in our data set to empirically calculate statistics for the wait times actually experienced by

patients in our testing set. Due to limited data availability, we were only able to credibly calculate

the average and 68-percentile for patients ranked up to 40. Table 5 includes the empirical estimates,

14The best quality category j = 1 was picked to include the narrow band of top 0-6% kidneys so that all patients
would be willing to accept them, as per our model specification. Indeed, all offers of kidneys in that category are
accepted by available patients in our training set.
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Figure 3: Our model’s estimates of different statistics of time to first offer versus patient rank in a
particular OPO and blood group.
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together with our RMCMS model’s estimates. The average absolute errors of our estimates relative

to the empirical ones were 14.96% for the average and 11.73% for the 68-percentile.

For benchmark purposes, we consider a hypothetical estimator that uses additional historical

patient wait time information, and thus refer to it as “historical.” In particular, we estimate the

average (68-percentile) wait time of a patient of a given rank in the testing set by the average

(68-percentile) historical wait time of patients of the same rank in the training set. This estimator

is inspired by the so-called “delay history estimators” studied in queuing theory (Ibrahim et al.

2016). We referred to such an estimator as hypothetical in this context because historical wait time

information is not available to patients or physicians as per our discussion above. In other words,

the historical estimator could not be deployed in practice. Another significant limitation of the

hypothetical historical estimator compared to our model is that it can only provide estimates up to

some rank and up to some percentiles for which enough historical data is available. Consequently,

we were only able to use it to estimate average (68-percentile) wait times for patients ranked up

to 40 as before. The average absolute errors of the historical estimator relative to the empirical

estimates were 16.76% for the average and 14.65% for the 68-percentile. In contrast, our approach

requires only publicly available data, is implementable in practice, generalizes to arbitrarily high

ranks, and, despite using significantly less data, provides higher accuracy.

6. Class-Based Priority Systems

So far we focused on MCMS systems that serve customers according to FCFS. We now extend our

analysis to cater for two alternative priority rules, which are frequently encountered in practice.

In Section 6.1, we study systems in which customer priority is driven by the class they belong to.
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Table 5: Statistics of time to first offer in dependence of patient rank in a particular OPO and blood
group. Empirical wait times correspond to the actual wait times exhibited in the testing set. RMCMS
(resp. historical) estimates correspond to the estimates obtained by our (resp. the historical estimator)
approach. (∗) Note that the historical estimator relies on data that is not publicly available and is
provided for reference purposes only, see Section 5.3.

Average (in days) 68-percentile (in days)

Rank Empirical Historical (∗) RMCMS Empirical Historical (∗) RMCMS

1–5 110.00 71.50 100.45 178.24 122.80 141.90

5–10 133.00 128.00 141.54 209.84 235.40 193.70

10–15 243.00 188.50 188.63 328.86 349.00 251.27

15–20 308.50 235.00 234.07 405.74 383.76 305.37

20–25 292.00 335.50 278.50 345.38 436.72 357.38

25–30 319.00 300.00 322.23 409.60 450.80 407.94

30–35 261.00 272.00 365.41 444.82 468.06 457.40

35–40 363.00 450.00 408.17 457.00 551.30 506.00

Avg. abs. rel. error

across all ranks
0.00% 16.76% 14.96% 0.00% 14.65% 11.73%

In Appendix E, we study systems in which some servers prioritize customers based on their class,

while others based on FCFS. In both cases, same class customers are served according to FCFS.

The priority rules we consider here are motivated by practice. In particular, they arise in the

U.S. kidney allocation system owing to a recent allocation policy change that came in effect in

December 2014.15 According to it, the new KAS offers the top 20% quality kidneys (as measured

by their KDPI, see Section 5) to patients with top 20% expected post transplant survival (EPTS)

score first, and then to the remaining patients.16 That is, patient priority for top quality kidneys is

driven by whether they belong to the top 20% EPTS class or not, whereas the remaining kidneys

are offered in an FCFS manner. In Appendix E, we show how the formulation we developed in

Section 5.2 to estimate wait times in the KAS can be extended to capture this policy change.

Similarly, class based priority rules can be used to model regional or national kidney offers.

In particular, our KAS model in Section 5.2 ignored such offers and treated each local OPO in-

dependently (since that accounted for the vast majority of transplants). To further enhance our

estimates, one can envision a national KAS model with 58 MCMS systems of the type we studied

in Section 5.2, each corresponding to one of the 58 OPOs. Procured kidneys would then be offered

to patients within the same OPO first, then to patients within the same region, and then to the

remaining patients, i.e., different patient classes would have different priorities.

15There are other policy changes that we omit here since they hardly impact patient waitlist dynamics and for the
sake of brevity. For more details, see https://optn.transplant.hrsa.gov/governance/policies/.

16UNOSNet assigns each patient an EPTS score in the range 0 to 100% that characterizes the patient’s expected
survivability when transplanted a median quality kidney, as compared to other waitlisted candidates. For example,
an EPTS score of 20% indicates that the patient is expected to live longer (post-transplant) than 80% of candidates.
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Finally, various house allocation programs prioritize applicants based on additional criteria to

wait time, e.g., the Housing Authority in Cambridge, Massachusetts, prioritizes those who either

live/work in Cambridge or are veterans, while serving based on FCFS otherwise. Class based

priority rules become relevant under such circumstances.

6.1. Class Priority Systems

We study the alternative priority rules only for hierarchical service systems. This is due to space

considerations, but also allows us to keep our focus on the paper’s main application, the KAS.

General MCMS systems under class based priority rules can be analyzed in a similar fashion. Our

treatment parallels the one we presented for MCMS FCFS systems.

Model Dynamics. Consider an HMCMS system, where a customer’s service priority is dictated by

the class he belongs to. In particular, there is a class priority ranking, so that customers from a

higher ranked class have priority over customers from lower ranked classes. Customers from within

a particular class are served in an FCFS manner. We henceforth refer to this service priority rule

as class priority (CP). For simplicity, we present the case here where the priority rank of each class

corresponds to its index, i.e., i-customers have service priority over k-customers, for all i < k.

In this context and for the purposes of computing wait times, neither the precise arrival order σ

of customers waiting at t = 0 is needed, nor is the precise constellation of queues’ populations Li(t).

Instead, it can be readily seen that a sufficient state representation is now given by the population

size |Li(t)| of each queue at time t, where |Li(0)| = Ni, i = 1, . . . , K. Then, if the jth server

becomes available at time t it serves a customer from class i⋆ ∈ argmin{i ∈ Q(j) : |Li(t)| > 0}
and, subsequently |Li⋆(t+)| = |Li⋆(t)| − 1. If |Li(t)| = 0 for all i ∈ Q(j), then the server serves a

customer of an external class, assumed to always be populated.17

Suppose we are interested in quantifying the wait time of an i-customer. As before, we assume

that no i-customers arrive after t = 0, because future i-customers would not affect wait times

of existing ones. This no longer being true for customers of higher priority classes 1, . . . , i − 1,

we explicitly model such arrivals. In particular, k-customers arrive at an average rate λk after

t = 0, with i.i.d. interarrival times that are also independent of customer arrivals of other classes,

service times and queue populations, for all k = 1, . . . , i − 1. We denote the arrival time of the rth

k-customer after t = 0 with A r
k , k = 1, . . . , i − 1, r ∈ N (in which case |Lk(A r

k +)| = |Lk(A r
k )| + 1).

All other dynamics and model parameters are as in Section 2. The clearing time of the ith

customer class, defined as

W
CP

i (N1, . . . , NK , {X
ℓ

1 }ℓ∈N, . . . , {X
ℓ

K}ℓ∈N, {A
r

1 }r∈N, . . . , {A
r

i−1}r∈N) := inf{ t ≥ 0 : |Li(t)| = 0 },

17This assumption captures service perishability in kidney allocation, where unmatched kidneys are discarded,
rather than preserved waiting for a matching patient to arrive. The model dynamics can be readily modified to
capture cases where servers simply remain idle instead.
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can be used to analyze wait times for customers as per our discussion in Section 2. As a technical

remark, note that for finite service times and queue populations, W CP
i will remain finite—in fact,

since no i-customers arrive, class i will clear by the time the ith server serves Ni customers.

Model of Uncertainty. To quantify W CP
i , we assume that service times and queue populations

lie in uncertainty sets Xj and P as in Section 3. Customer arrival times, being summations of

i.i.d. interarrival times, are assumed to lie in GCTL-based uncertainty sets in accordance with the

literature. In particular, k-customers’ arrival times lie in the polyhedron

Ak :=

{
ak ∈ Rr̄k : ar

k ≥ r

λk
− ΓA

k (r)1/βk , r = 1, . . . , r̄k

}
, k = 1, . . . , i − 1,

where ΓA
k is a conservatism parameter,18 βk a heavy tail parameter and r̄k is the maximum number

of arrivals (in a similar fashion as ℓ̄j). As we shall see, a characterization of r̄k would be superfluous.

Solution Methodology. We quantify the clearing time W CP
i with a worst-case guarantee on its

value, denoted by W CP
i and given as the optimal value of the problem

maximize W CP
i (n1, . . . , nK , x1, . . . , xK , a1, . . . , ai−1)

subject to n ∈ P ∩ NK

xj ∈ Xj , j = 1, . . . , K

ak ∈ Ak, k = 1, . . . , i − 1.

(6)

One can readily adapt the proof of Proposition 1 to show that (6) remains N P-hard. Similarly

to our analysis in Section 4, our first non-trivial result on hierarchical service systems under CP

shows that in the problem above we can take service and arrival times be equal to their worst-case

values, i.e., have servers take as long as possible to serve and customers arrive as early as possible.

Lemma 2. For a hierarchical service system under CP, the clearing time W CP
i is increasing in the

service times and decreasing in the arrival times. In particular, Problem (6) admits an optimal

solution for which completion and arrival times take their worst-case values, i.e.,

cℓ
j = x1

j + . . . + xℓ
j =

ℓ

µj
+ ΓX

j (ℓ)1/αj , j = 1, . . . , K, ℓ = 1, . . . , ℓ̄j

ar
k =

r

λk
− ΓA

k (r)1/βk , k = 1, . . . , i − 1, r = 1, . . . , r̄k.

Taking advantage of Lemma 2, we fix the completion and arrival times to their worst-case

values. We next formulate an MIP to compute W CP
i that is similar to the efficient formulation (3),

resembling an assignment problem. Recall that cℓ is the ℓth smallest element of the set comprising

of all completion times cl
j , for all l = 1, . . . , ℓ̄j and j = 1, . . . , K. Let vℓ

k be the number of k-customer

arrivals by time cℓ, i.e., vℓ
k := max{r : ar

k ≤ cℓ} for k = 1, . . . , i − 1 and ℓ = 1, . . . , ℓ̄.

18To avoid degenerate cases, we assume that 1
λk

− ΓA

k ≥ 0 for all k.
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Consider the problem

maximize
∑

ℓ=2,...,ℓ̄

cℓ(f ℓ−1
i − f ℓ

i ) (7.1)

subject to
∑

k=j,...,K

yℓ
kj ≤ 1, ℓ = 1, . . . , ℓ̄j , j = 1, . . . , K (7.2)

∑

(j,ω):cω
j

≤cℓ

yω
ij ≤ ni − f ℓ

i , ℓ = 1, . . . , ℓ̄ (7.3)

∑

(j,ω):cω
j

≤cℓ

yω
kj ≤ nk + vℓ

k − f ℓ
k, k = 1, . . . , i − 1, ℓ = 1, . . . , ℓ̄ (7.4)

∑

(j,ω):cω
j =cℓ

k=j,...,i

yω
kj ≥ f ℓ

i , ℓ = 1, . . . , ℓ̄ (7.5)

f ℓ−1
i ≥ f ℓ

i , ℓ = 2, . . . , ℓ̄ (7.6)

yω
kj ≤ 1 − f ℓ

k′ , k′ < k, (j, ω) : cω
j = cℓ, ℓ = 1, . . . , ℓ̄ (7.7)

f ℓ
k ∈ {0, 1}, k = 1, . . . , i, ℓ = 1, . . . , ℓ̄ (7.8)

yℓ
kj ∈ {0, 1}, j = 1, . . . , K, k = j, . . . , K, ℓ = 1, . . . , ℓ̄j (7.9)

n ∈ P ∩ NK . (7.10)

Theorem 4. For a hierarchical MCMS system under class priority, the optimal value of the MIP (7)

is equal to W CP
i , i = 1, . . . , K.

The MIP (7) is very similar to (3) (for i = K), with its variables and constraints having the

same interpretation. The only two discrepancies are as follows. First, in this setting customer

arrivals are possible. This is reflected in (7.4), where the number of assigned services to the kth

class is bounded by its initial population nk adjusted for arrivals vℓ
k. Second, in this case the priority

discipline dictates that k′-customers have priority over k-customers, for all k′ < k. To capture this,

we use variables f ℓ
k that indicate whether class k is filled or has cleared by time cℓ. Constraint (7.7)

enforces then the CP discipline: if at cℓ the k′th class is filled the server cannot be assigned to any

lower priority k > k′ class, i.e., yω
kj ≤ 1 − f ℓ

k′ = 0.

As a technical remark, the parameters ℓ̄j can be calculated as follows. First, note that the ith

class must have cleared after the ith server has served ni customers, since i-customers have priority

among the ones the ith server is eligible for. Thus, ℓ̄i = max{ni : n ∈ P∩NK}. At the same time,

this observation implies that the ith class must have cleared by cℓ̄i
i , which is precisely the time it

takes the ith server to serve its maximum amount of customers. The parameters ℓ̄j can then be

taken as the maximum customers each server could serve within cℓ̄i

i , i.e., ℓ̄j = max{l : cl
j ≤ cℓ̄i

i }.

Scalable approximation. We conclude our analysis of CP hierarchical service systems by devising

a heuristic that approximates W CP
i . The heuristic is inspired by the “aggregate” allocation view
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that we discussed in Section 4.2. Specifically, consider the following convex optimization problem

maximize w

subject to w ≤ mj

µj
+ ΓX

j sj , j = 1, . . . , i

(sj)αj ≤ mj , j = 1, . . . , i
i∑

k=j

mk ≤
i∑

k=j

nk +
i−1∑

k=j

qk + i − j, j = 1, . . . , i

qj

λj
− ΓA

j uj ≤ w, j = 1, . . . , i − 1

(uj)βj ≤ qj , j = 1, . . . , i − 1

n ∈ P.

(8)

The problem shares many similarities with (4), reducing to an efficient SOCP formulation for CLT-

based uncertainty sets (when αj and βj are rational for all j). Here, variables q ∈ Ri−1 capture

customer arrivals. Accordingly, the number of customers assigned to a subset of servers is now

bounded by the population of customer classes these servers are eligible for, adjusted for arrivals.

Variables u ∈ Ri−1 are auxiliary and ensure that the customer arrivals q attain their appropriate

value, i.e., the worst-case number of arrivals by the clearing time w.

Note that, in comparison with the MIP (7), this heuristic has significantly reduced computa-

tional requirements that are also independent of n. Next we provide an approximation guarantee,

for the special case when there are no arrivals, that becomes tighter as n grows in the same way as

our heuristic in Section 4.2. Let Ŵ CP
i be the optimal value of (8).

Theorem 5. For a hierarchical MCMS system under class priority and no arrivals,

W CP
i ≤ Ŵ CP

i ≤ W CP
i + 2χ, i = 1, . . . , K.

Theorem 5 shows that our heuristic produces near-optimal results, for high value of n and the

special case of no arrivals. This suggests that the heuristic will still provide quality approximations

in the general case. In numerical studies we conducted, similar to the ones we presented in Sec-

tion 4.3, we found the approximation errors, even under customer arrivals, to be no worse that the

ones we reported in Section 4.3. We omit further details due to space limitations.

7. Conclusions, Disclaimers and Acknowledgements

We dealt with the problem of estimating wait times in multiclass, multiserver (MCMS) queuing

systems that operate based on predetermined priority rules under incomplete information. In par-

ticular, we focused on MCMS systems under FCFS, motivated by the U.S. kidney allocation system

(KAS). To deal with primitive information incompleteness and the transient/unstable behavior that
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characterizes such systems, we developed a novel robust optimization framework. The framework

was based on the introduction of an assignment-style formulation to capture the complex queuing

dynamics in an MCMS system.

We devised MIP formulations for our estimation problem. We also presented a provably near-

optimal heuristic that involved the solution of an SOCP for problems attaining a particular hier-

archical structure, commonly encountered in practice.

To validate the performance of our approach in terms of computation times and accuracy, we

performed numerical studies in which we found our method to significantly outperform simulation.

We also presented an implementation in the context of the KAS. Specifically, we calibrated our

model so as to estimate wait times of patients based on their own unique characteristics, preferences

and information available. Using detailed historical data, we fitted our model parameters and

measured the out-of-sample estimation error to be less compared to hypothetical estimators that

utilized data not available to patients. To the best of our knowledge, such an estimation tool is

novel and can provide valuable information to patients as they plan their treatment options and

life activities. Furthermore, we analyzed systems that operated under an alternatively priority rule,

based on class priority, to illustrate how our framework can be generalized.

The data reported here have been supplied by UNOS as the contractor for the Organ Procure-

ment and Transplantation Network (OPTN). The interpretation and reporting of these data are the

responsibility of the author(s) and in no way should be seen as an official policy of or interpretation

by the OPTN or the U.S. Government.

The authors would like to thank the review team for the valuable feedback they provided.
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Appendices

A. Service Time Uncertainty Sets

The service time uncertainty sets in this paper are given by

Xj :=

{
xj ∈ Rℓ̄j :

ℓ∑

k=1

xk
j ≤ ℓ

µj
+ ΓX

j (ℓ)1/αj , ℓ = 1, . . . , ℓ̄j

}
, j = 1, . . . , M,

where ΓX
j ≥ 0 controls the degree of conservatism and αj ∈ (1, 2] is a heavy tail parameter. We

remark on how our choice of service time uncertainty sets and their structure affect our results, and

possible ways to calibrate the sets using data and probabilistic guarantees. For an elaborate motiva-

tion and justification based on limit theorems, we refer the interested reader to Bandi and Bertsimas

(2012) and Bandi et al. (2015a).

A.1. Theoretical Results

It can be readily seen that all our theoretical results in Section 3 extend in case the service time

uncertainty sets Xj are non-empty, bounded polyhedra, for every j = 1, . . . , M . In particular, the

proofs of our hardness result (Proposition 1) and MILP reformulation of Problem 1 (Theorem 1)

do not rely on the GCLT structure imposed by Assumption 1. Similarly, our monotonicity result

in Lemma 1 holds more generally. The sharper formulations we derive in Section 4 for hierarchical

service systems, however, do rely on properties of the GCLT structure (Theorems 2 and 3).

A.2. Constraints Structure

A more general way to formulate constraints based on GCLT is to consider a subset of service

times, S ⊂
{

1, . . . , ℓ̄j

}
, and bound their sum as

∑

k∈S

xk
j ≤ |S|

µj
+ ΓX

j |S|1/αj .

In our work, we imposed constraints that correspond to nested subsets of the form S = {1, . . . , ℓ}
only (Assumption 1). Variations of this nested structure have been used in numerous papers in the

robust optimization literature across different application areas, including, for example, Bandi et al.

(2015a), Whitt and You (2016a,b) (queuing), and Mamani et al. (2016) (inventory management).

Nonetheless, we argue next that all our main results that rely on the GCLT structure, namely

Theorems 2 and 3, still hold true if we consider sets that are generated by all possible GCLT-based
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constraints, specifically

X̃j :=



xj ∈ Rℓ̄j :

∑

k∈S

xk
j ≤ |S|

µj
+ ΓX

j |S|1/αj , ∀S ⊂
{

1, . . . , ℓ̄j

}


 .

To show this, it suffices to show that the worst-case service times over the sets Xj we identify in

Lemma 1, which we denote here by

x̃ℓ
j =

1

µj
+ ΓX

j

(
(ℓ)1/αj − (ℓ − 1)1/αj

)
, ℓ = 1, . . . , ℓ̄j ,

remain feasible for X̃j ⊂ Xj . To this end, consider all possible index sets of some fixed cardinality

∆ ∈
{

1, . . . , ℓ̄j

}
. We have

∑

k∈S

x̃k
j ≤

∆∑

k=1

x̃k
j ≤ ∆

µj
+ ΓX

j ∆1/αj , ∀S ⊂
{

1, . . . , ℓ̄j

}
such that |S| = ∆,

where the first inequality follows from x̃1
j ≥ . . . ≥ x̃

ℓ̄j

j , and the second from x̃j ∈ Xj . Thus, x̃j ∈ X̃j .

A.3. Calibration Using Historical Data and Probabilistic Bounds

In this section, we discuss a possible way to calibrate the uncertainty set Xj for the important

case wherein service times have finite variance and do not exhibit heavy tails. This is the case,

for example, in the kidney allocation system, or when service times are exponentially distributed.

That is, we set αj = 2. We can also set the mean service time 1/µj equal to its empirical mean,

calculated from available historical data—see, for example, the Parameter Fitting section in our

KAS Numerical Study. Similarly, we calculate the empirical standard deviation σj using data.

A possible way to calibrate the conservatism parameter ΓX
j it to use probabilistic bounds as

follows. We assume that service times follow some (unknown) distribution P, and propose to use

(approximate) probabilistic bounds to calibrate ΓX
j so that service times lie in the uncertainty

set with some pre-specified confidence level. For technical purposes, we also require P to have a

uniformly bounded third absolute moment.

The key idea is to notice that the constraints in Xj can be equivalently rewritten involving the

maximum of a normalized random walk. In particular, if we let

Mℓ̄j
:= max

1≤ℓ≤ℓ̄j

ℓ∑

k=1




xk
j − 1

µj

σj




√
ℓ

,
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then we have that

Xj =

{
xj ∈ Rℓ̄j : Mℓ̄j

≤
ΓX

j

σj

}
.

If we now consider the associated random service times X k
j , it can be readily seen that Yk :=

X k
j − 1

µj

σj

are independent, zero-mean and unit-variance random variables. Letting Sℓ :=
∑ℓ

k=1 Yk, we can

write the random variable associated with Mℓ̄j
as

Mℓ̄j
:= max

1≤ℓ≤ℓ̄j

Sℓ√
ℓ
.

Using this notation, we get that the probability of service times X k
j lying in Xj is precisely

P

({
X

1
j , . . . , X

ℓ̄j

j

}
∈ Xj

)
= P

(
Mℓ̄j

≤
ΓX

j

σj

)
.

Using Theorem 1 in Darling and Erdös (1956), we get that for large enough ℓ̄j

P

(
Mℓ̄j

≤ δℓ̄j
+

t

θℓ̄j

)
≈ exp

(− exp(−t)

2
√

π

)
, ∀t ∈ R,

where θn :=
√

2 log log n and δn := θn + log log log n
2θn

, n ≥ 1. Therefore,

P

(
Mℓ̄j

≤
ΓX

j

σj

)
≈ exp




− exp

(
θℓ̄j

(
δℓ̄j

− ΓX

j

σj

))

2
√

π


 .

Hence, we conclude that if we want the service times to lie in the uncertainty set Xj with probability

1 − ǫ, approximately, we can select

ΓX
j = σjδℓ̄j

− σj

θℓ̄j

log

(
2
√

π log
1

1 − ǫ

)
.

B. Numerical Experiments on Synthetic Instances of MCMS Systems

We performed two sets of experiments on an array of randomly generated instances of MCMS

systems. In the first (second) set of experiments, we operate in a regime where the true distributions

of queue populations are known (unknown). We note that the second setting is most relevant for

the class of problems that we focus on in this paper.
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B.1. Known Queue Population Distribution

When the distributions of all uncertain parameters are perfectly known, the clearing time distri-

bution can be estimated using simulation. We estimate clearing time percentiles using our method

and benchmark against simulation (assumed to return the true statistics). The following procedure

underlies all our experiments in this regime:

• Select K = M . Select also the mean µP of each queue’s population distribution. The

populations of all queues are independent and normally distributed with standard deviation

σP = 0.2. Finally, select the distributions of the service times. These have mean 1/µj = 1 for

all j = 1, . . . , K, and are either normally distributed with standard deviation σj or Pareto

distributed with parameter α. Holding these parameters fixed, generate 100 instances of the

problem by constructing server eligibility sets S at random. For each instance, select a queue

index i uniformly at random. We are interested in estimating statistics of Wi.

• For each instance, estimate statistics of Wi by simulation as follows. Draw 20,000 (resp.

40,000) samples when the service times are normally (resp. Pareto) distributed from the

distributions of the queue populations and the service times. Generate also the permutation

σ uniformly at random based on the queue population. For each sample, record the simulated

clearing time of the ith queue.19 For each instance, record the average clearing time and the

95-, 97-, and 99-percentiles of the clearing time distribution.

• For each instance, compute the robust clearing time at the ith queue using the formulation (2).

The queue population uncertainty set is

P :=

{
n ∈ RM :

∣∣∣∣∣
ℓ∑

i=1

ni − ℓµP

∣∣∣∣∣ ≤ σPΓ
√

ℓ, ℓ = 1, . . . M

}
, (9)

where Γ is chosen to match the percentile of interest, see Bandi et al. (2015a) for details. Note

that in order to estimate the average clearing time, we heuristically select Γ = 0.5, which

exhibits good numerical performance. The service time uncertainty set is as in Assumption 1,

with ΓX
j = σjΓ and αj = 2 (in the case of normally distributed services), or where ΓX

j and αj

are chosen as in Section 2.1 of Bandi et al. (2015a) (in the case of Pareto distributed services).

For each of the four statistics, record Wi.

• Compute the average absolute relative error as in Section 3.3 across all 100 instances.

Our results are summarized in Tables 6 and 7 for the cases of normally and Pareto distributed

services, respectively. The tables showcase that, across all experiments, the average absolute relative

errors of our approach are under 9%.

19In our experiments, we simulated the clearing time using the suite of applications Java Modeling Tools (JMT),
see http://jmt.sourceforge.net/

41

http://jmt.sourceforge.net/


Table 6: Average absolute relative errors (in %) of our estimates when services are normally distributed.

K = M = 10 K = M = 20 K = M = 50

Statistic µP = 10 µP = 50 µP = 100 µP = 10 µP = 50 µP = 100 µP = 10 µP = 50 µP = 100

σ
s

=
2.

5 Average 8.65 7.78 6.46 7.39 7.22 5.32 6.8 6.05 4.35

95-%ile 5.14 3.32 2.82 1.06 3.04 2.19 0.87 1.53 1.03

97-%ile 4.04 2.26 2.98 0.44 3.12 2.25 0.60 1.99 1.10

99-%ile 3.54 1.54 1.27 2.35 4.98 2.73 1.27 2.89 0.62

σ
s

=
4.

0 Average 8.21 7.54 6.12 6.84 6.9 5.49 6.47 6.33 4.67

95-%ile 2.23 2.57 2.44 0.64 3.28 3.59 1.21 2.60 2.11

97-%ile 1.75 2.16 1.65 1.49 4.14 4.85 0.59 3.33 3.39

99-%ile 5.05 4.09 3.51 4.47 7.70 5.31 2.83 5.08 1.50

Table 7: Average absolute relative errors (in %) of our estimates when services are Pareto distributed.

K = M = 10 K = M = 20 K = M = 50

Statistic µP = 10 µP = 50 µP = 100 µP = 10 µP = 50 µP = 100 µP = 10 µP = 50 µP = 100

α
=

1.
5

Average 7.65 7.17 6.09 6.87 7.26 5.38 6.66 6.15 4.2

95-%ile 5.66 4.63 3.82 1.38 2.89 1.67 0.68 2.64 1.46

97-%ile 4.89 2.54 7.49 0.87 2.44 2.11 0.84 1.47 0.98

99-%ile 2.36 1.62 4.99 0.96 3.08 0.97 0.40 2.54 1.66

α
=

1.
7

Average 8.24 7.50 6.42 6.47 7.01 5.33 6.74 6.50 4.49

95-%ile 4.84 5.75 5.64 2.16 2.09 2.50 1.71 1.94 1.78

95-%ile 1.56 2.86 5.28 1.00 4.65 4.08 1.03 2.82 2.91

99-%ile 3.69 5.13 7.25 4.10 6.49 8.99 1.27 4.00 2.52
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B.2. Unknown Queue Population Distribution

We now investigate the setting when the true queue population distribution is not perfectly known

and instead a different distribution is assumed. In this case the simulation approach fails to deliver

accurate estimates for the clearing time of a queue. We thus benchmark the estimates obtained

using both our approach and simulation against that of an oracle that knows the true distribution.

Across all our experiments, the service times are assumed to be normally distributed with mean

1/µj = 1 and standard deviation σj equal to either 25% or 40% with both parameters perfectly

known. The following procedure underlies all our experiments:

• Let K = M = 20. Select the mean µP of each queue’s population distribution. The popula-

tions of all queues are independent and either normally distributed with standard deviation

σP or Pareto distributed with parameter α. Only the means of the (otherwise unknown)

queue population distributions are known. Also select the value of σj uniformly at random.

Holding these parameters fixed, generate 100 instances of the problem by constructing server

eligibility sets S at random. For each instance, select a queue i randomly. We are interested

in estimating the average clearing time of the ith queue, Wi. Select an assumed distribution

for the queue population with mean µP. This can be either Normal, Pareto, or Exponential.

• For each instance, use simulation to compute the true expected clearing time of the ith queue

using a procedure that parallels that from Section B.1. Note that in reality, this estimate

would not be possible to obtain since the queue population distributions are unknown.

• Estimate the average clearing time of the ith queue under the assumed distribution using

both simulation and our approach, in the exact same fashion as described in Section B.1.

• Compute the average absolute relative error of both approaches relative to the true value

returned by the oracle across all 100 instances.

Our results are summarized in Tables 8, 9, and 10 for µP = 5, 100, and 500, respectively. We

observe that the average absolute relative error of the simulation approach is consistently greater by

a factor of over 1.5 relative to our approach, and this independently of the value of µP. Moreover, we

observe that our method converges as µP increases, consistent with the CLT asymptotic behavior.

B.3. Computation Times

We conclude with a summary of the computation times taken by our approach.20 We computed

the average solver times taken by our method over 100 randomly generated instances, for a varying

number of classes and an average queue population µP = 50, as in Section B.1. We observe

20These computational experiments were run on a 2.8GHz Intel Core i7 processor machine with 24GB RAM and
all optimization problems were solved with CPLEX 9.1.
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Table 8: Average absolute relative errors of both our estimates and simulation estimates for the average
wait time when the queue population distribution assumed differs from the actual distribution for the
case when the average queue population is µP = 5.

Queue population distribution
Wi (Γ = 0.5) Simulation

True Assumed

Normal(5,10)

Normal(5,5) 13.23% 11.10%

Normal(5,10) 11.69% 0.00%

Normal(5,15) 12.38% 20.89%

Normal(5,20) 13.92% 23.18%

Exponential(5) 12.45% 21.59%

Pareto(5,1.5)

Normal(5,5) 11.11% 21.89%

Normal(5,10) 11.55% 21.34%

Normal(5,15) 12.38% 17.87%

Normal(5,20) 12.37% 16.75%

Exponential(5) 12.11% 20.92%

Pareto(5,1.7) 11.16% 19.67%

Pareto(5,1.3) 12.02% 33.85%

Pareto(5,1.7)

Normal(5,5) 13.70% 27.98%

Normal(5,10) 14.94% 23.52%

Normal(5,15) 15.07% 21.24%

Normal(5,20) 13.67% 20.14%

Exponential(5) 15.94% 24.26%

Pareto(5,1.5) 14.20% 21.13%

Pareto(5,1.3) 14.88% 31.99%

Avg. abs. relative error across all instances 13.09% 21.02%

Table 9: Average absolute relative errors of both our estimates and simulation estimates for the average
wait time when the queue population distribution assumed differs from the actual distribution for the
case when the average queue population is µP = 100.

Queue population distribution
Wi (Γ = 0.5) Simulation

True Assumed

Normal(100,50)

Normal(100,25) 7.88% 6.73%

Normal(100,50) 8.18% 0.00%

Normal(100,75) 10.89% 13.89%

Normal(100,100) 9.08% 19.09%

Exponential(100) 8.14% 17.36%

Pareto(100,1.5)

Normal(100,25) 8.65% 14.74%

Normal(100,50) 9.68% 12.66%

Normal(100,75) 8.23% 14.73%

Normal(100,100) 8.95% 12.59%

Exponential(100) 7.90% 11.82%

Pareto(100,1.7) 9.57% 11.29%

Pareto(100,1.3) 7.07% 22.51%

Pareto(100,1.7)

Normal(100,25) 10.47% 19.06%

Normal(100,50) 10.06% 16.14%

Normal(100,75) 10.48% 17.93%

Normal(100,100) 8.60% 14.88%

Exponential(100) 8.68% 19.78%

Pareto(100,1.5) 12.29% 15.83%

Pareto(100,1.3) 12.70% 24.24%

Avg. abs. relative error across all instances 9.34% 15.01%
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Table 10: Average absolute relative errors of both our estimates and simulation estimates for the average
wait time when the queue population distribution assumed differs from the actual distribution for the
case when the average queue population is µP = 500.

Queue population distribution
Wi (Γ = 0.5) Simulation

True Assumed

Normal(500,200)

Normal(500,150) 6.60% 5.26%

Normal(500,200) 6.52% 0.00%

Normal(500,350) 7.55% 12.34%

Normal(500,500) 6.50% 15.88%

Exponential(500) 7.41% 14.78%

Pareto(500,1.5)

Normal(500,150) 8.26% 12.58%

Normal(500,200) 7.22% 9.05%

Normal(500,350) 7.14% 11.98%

Normal(500,500) 7.06% 10.05%

Exponential(500) 6.67% 10.01%

Pareto(500,1.7) 8.55% 10.07%

Pareto(500,1.3) 5.76% 16.94%

Pareto(500,1.7)

Normal(500,150) 8.26% 15.26%

Normal(500,200) 7.50% 11.75%

Normal(500,350) 9.34% 15.41%

Normal(500,500) 8.29% 13.23%

Exponential(500) 6.82% 15.23%

Pareto(500,1.5) 9.01% 11.22%

Pareto(500,1.3) 11.13% 19.42%

Avg. abs. relative error across all instances 7.66% 12.13%

that for instances even as large as K = M = 500, i.e., instances involving an average number of

50 × 500 = 25, 000 customers, the average solver times were under 2 minutes, see Table 11.

Table 11: Computation times for different problem sizes.

K = M = 10 20 50 100 500

Solver time (seconds) 0.42 0.93 17.2 39.6 152.4

C. Numerical Experiments on Synthetic Instances of HMCMS Systems

C.1. Computation Times

To evaluate the required computation times of the MIP (3) and the SOCP (4) (for αj = 2), we

used both formulations to compute WK in randomly generated instances of HMCMS systems. For

benchmark purposes, we computed WK using also the general MIP formulation (2). The instances

were generated as follows.

• Select the number of classes (and servers) K(= M) among the values {10, 20, 50, 100, 200, 500}.

45



Table 12: Average computation times (in seconds) of MIP (2) for HMCMS systems with varying size
of the system (K) and number of customers (n̂).

❍
❍
❍

❍
❍❍

K
n̂

10 20 50 100 200 500

10 1.03 1.65 26.67 110.33 261.49 470.22
20 1.18 8.22 29.23 237.16 315.48 574.41
50 7.1 48.28 101.35 324.94 414.96 580.22
100 20.48 92.52 156.56 380.56 692.65 916.09
200 94.53 132.92 258.73 447.55 2348.72 2755.79
500 135.92 268.25 483.92 985.09 2244 4656.11

Table 13: Average computation times (in seconds) of MIP (3) for HMCMS systems with varying size
of the system (K) and number of customers (n̂).

❍
❍

❍
❍
❍❍

K
n̂

10 20 50 100 200 500

10 0.84 1.11 9.96 40.46 60.45 115.42
20 1.09 5.37 15.26 70.28 84.72 135.05
50 5.42 24.56 55.37 104.89 129.79 149.97
100 19.55 54.73 69.93 125.34 165.13 199.89
200 64.86 85.34 120.23 189.53 540.19 650.37
500 94.84 134.77 179.89 399.95 649.54 1149.74

• Select also the means {n̂i}i=1,...,K of each queue’s population distribution among the values

{10, 20, 50, 100, 200, 500}.

• Construct the uncertainty sets P (as in (5)) with the parameters {n̂i}i=1,...,K and ΓP = 2/
√

K.

This gives rise to on average a total of K · n̂i customers in the system.

• Holding these parameters fixed, generate 100 instances of the problem by randomly varying

the service rates µj . For each instance solve the optimization problems (2), (3) and (4) while

measuring the solver times.

Our results are included in Tables 12, 13 and 14.

C.2. Accuracy of Heuristic Approach

To evaluate the accuracy of the SOCP (4), we used it to compute ŴK for randomly generated

instances of HMCMS systems, and measured the approximation error compared with WK . Our

approach was:
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Table 14: Average computation times (in seconds) of SOCP (4) for HMCMS systems with varying size
of the system (K) and number of customers (n̂).

❍
❍

❍
❍
❍❍

K
n̂

10 20 50 100 200 500

10 0.83 0.89 0.98 1.18 1.92 2.45
20 0.86 0.93 1.19 2.12 2.29 2.62
50 1.17 1.06 1.95 2.59 3.29 3.71
100 1.72 3.37 3.08 3.97 7.1 10.25
200 1.83 5.22 8.53 15.39 19.23 42.64
500 3.38 8.81 12.28 19.11 44.43 74.32

Table 15: Average relative approximation error of our SOCP heuristic (4) for HMCMS systems with
varying number of customers.

Lower and upper bounds on queue populations Avg. relative error

[p, p] ŴK−WK

WK
× 100%

[5, 10] customers 1.9%
[15, 30] customers 0.85%
[25, 50] customers 0.5%
[75, 100] customers 0.25%
[200, 300] customers 0.08%

• For various lower and upper bounds on queue populations, p and p, respectively, generate

1, 000 instances as follows.

• Let K = M = 5. Select the ith class population ni randomly between [p, p]. Let P = {n}.

Select arrival rates µj randomly between [0.1, 1.1] and ΓX randomly between [0, 1].

• For each instance, solve SOCP (4) to compute ŴK , and similarly MIP (3) to compute WK .

• Compute the average approximation error across all 1,000 instances.

Table 15 reports our results. Evidently, our heuristic is almost exact and becomes tighter as p

and p increase, i.e., as population sizes grow.

D. Estimating Kidney Patients’ Preferences

We outline the procedure we followed in our case study in Section 5 to estimate qi, the probability

of a random waitlisted patient being an i-patient, i.e., being willing to accept a kidney if and only

if it is of quality i or higher, for all i = 1, . . . , K. For simplicity, we assume here that all patients are

available, i.e., q0 = 0. Put differently, we discuss how to calculate the probability of a patient being
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in class i, conditional on being available. The unconditional probabilities can be readily retrieved

by scaling the conditional ones by 1 − q0.

At a high level, our approach is to estimate the probabilities with the ones that maximize the

likelihood of the recorded offer decisions in the UNOS dataset. In particular, for all k = 1, . . . , K,

let A k and Qk be indicator random variables such that

A
k =





1 if the patient is willing to accept kidneys of quality k

0 otherwise,

Q
k =





1 if the patient is a k-patient

0 otherwise,

By definition,

P(Qi = 1) = qi and P(A j = 1|Qi = 1) =





1 if j ≤ i

0 otherwise,

for all i, j = 1, . . . , K. Thus,

P(A j = 1) =
K∑

i=1

P(A j = 1|Qi = 1)P(Qi = 1) =
K∑

i=j

P(Qi = 1) =
K∑

i=j

qj , j = 1, . . . , K.

Let ai (ri), i = 1, . . . , K, denote the records in the UNOS data set of a kidney of quality i being

accepted (rejected) due to quality. The likelihood of observing ai (ri) accept (reject) decisions for

kidneys of quality i can be readily expressed as

K∑

i=1

ai log




K∑

j=i

qj


+ ri log


1 −

K∑

j=i

qj


 ,

for all i = 1, . . . , K. Note that in line with the literature we assumed that decisions are independent

of each other and are solely driven by kidney quality, see, e.g., Zenios (2005). Then, the maximum

likelihood probabilities can be obtained by solving the following convex optimization problem in

the variables q1, . . . , qK :

maximize
K∑

i=1

ai log




K∑

j=i

qj


+ ri log


1 −

K∑

j=i

qj




subject to
K∑

i=1

qi = 1

qi ≥ 0 i = 1, . . . , K.
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E. Hybrid Priority Systems

In this section, we study HMCMS systems where some servers follow CP and others follow FCFS.

We refer to such priority rules as hybrid (HP). As with our analysis of class-priority systems, we

again focus our discussion on a specific model that pertains to KAS due to space considerations—

more general cases can be tackled in a similar fashion.

Consider an HMCMS system for which we are interested in estimating the clearing time of the

Kth queue, as in Section 4.1. There is an additional class, indexed by i = 0, who seek service from

the 1st server only, i.e., the one providing the highest service quality. That is, S(0) = {1} and

Q(1) = {0, 1, . . . , K}. Server 1 prioritizes 0-customers over all other customers. All other model

specifications are as in Section 4. In particular, all servers but the first one follow FCFS.

This model adequately captures the dynamics under the new KAS. Specifically, patients with

an EPTS score in the top 20% range can be classified in the 0th class. Consequently, they would

receive priority for top quality organs (procured by server 1) over all other patients.21

In this context, it can be readily seen that only arrivals of 0-customers affect the Kth queue’s

clearing time, and are thus the only arrivals we model. We refrain from formalizing further model

dynamics of this hybrid HMCMS system, as they closely resemble the dynamics of FCFS and CP

systems we outlined in Sections 2 and 6.1. We also use uncertainty models, notation and solution

methodology that are immediate extensions of our approach so far. For instance, we denote the

(robust) clearing time we are interested in with (W HP
K ) W HP

K .

In this context, one can readily extend our analysis to show that calculating W HP
K is N P-hard

and the following monotonicity result.

Lemma 3. For a hierarchical MCMS system under HP, the clearing time W HP
K is increasing in the

service times x1, . . . , xK and decreasing in the arrival times a0.

Using Lemma 3, we fix the completion and arrival times to their worst-case values as in Sec-

tion 6.1. The following MIP, which builds on Problem (3), allows us to compute W HP
K .

maximize
∑

ℓ=2,...,ℓ̄

cℓ(f ℓ−1 − f ℓ) (10.1)

subject to constraints (3.1)-(3.9) (10.2)
∑

(j,ω):cω
1 ≤cℓ

yω
01 ≤ n0 + vℓ

0 − f ℓ
0, ℓ = 1, . . . , ℓ̄ (10.3)

yω
i1 ≤ 1 − f ℓ

0, i ≥ 1, ω : cω
1 = cℓ, ℓ = 1, . . . , ℓ̄ (10.4)

f ℓ
0 ∈ {0, 1}, ℓ = 1, . . . , ℓ̄. (10.5)

21We make the implicit assumption that 0-patients, i.e., those with top 20% EPTS score, are willing to accept
kidneys only from the first server, i.e., kidneys of top quality. This is because such patients not only have priority
exclusively for top quality kidneys, they are also in relatively better health (as reflected in their high EPTS score),
affording them time to wait for top quality kidneys. Nonetheless, relaxing this assumption is straightforward.
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Theorem 6. For the hierarchical MCMS system under hybrid priority defined above, the optimal

value of the MIP (10) is equal to W HP
K .

Loosely speaking, MIP (10) builds on formulation (3) to capture the FCFS dynamics of the

original system, as reflected in the common constraints (3.1)-(3.9). MIP (10) then borrows from

(7) the CP dynamics that pertain to the 0th class, as reflected in the additional constraints (10.3)-

(10.4). In particular, variables f ℓ
0 indicate whether class 0 is filled or has cleared by time cℓ.

Constraint (10.3) is then an arrivals-adjusted capacity constraint for the 0th class, similar to (7.4).

Constraint (10.4) enforces the CP priority: at any cℓ, if the 0th class is filled, the 1st server cannot

serve any lower priority i > 0 class, i.e., yω
i1 ≤ 1 − f ℓ

0 = 0–similar to constraint (7.7).

In summary, our treatment in this section demonstrated the flexibility of our modeling frame-

work to tackle multiclass multiserver queuing systems under priority rules different than FCFS that

are also potentially open. While we limited our exposition to the particular hierarchical service

systems for brevity, our approach is still applicable in the general case.

F. Proofs

We present the proofs of the main results in the order they appear in our paper.

Proof of Proposition 1. Consider the decision problem associated with the optimization prob-

lem (1), where we query whether its optimal value is greater than or equal to some value V . Let

Π denote this decision problem. We will show that the problem Partition (Garey and Johnson

1979), which is known to be N P-hard, transforms to Π. That is, given an instance IP of Parti-

tion, we will show how to construct an instance IΠ of Π in polynomial time, such that IP is a Yes

instance of Partition if and only if IΠ is a Yes instance of Π.

To introduce some notation, we define the decision problem

Partition:

Instance: A set of k positive integers A = {a1, . . . , ak}, with
k∑

ℓ=1

aℓ = 2B, B ∈ N.

Query: Is there a subset A1 ⊂ A such that
∑

ℓ∈A1

aℓ =
∑

ℓ∈A\A1

aℓ = B?

We construct an instance IΠ of Π as follows:

(i) K = 2, M = 2, with S(1) = {1}, S(2) = {1, 2}.

(ii) i = 2.

(iii) P ∩ N2 =
{

n : n1 = y⊤a, n2 = 2B − y⊤a, n1 ≥ B, y ∈ {0, 1}k
}

.

(iv) µ1 = µ2 = 1, ΓX
1 = ΓX

2 = 0, ℓ̄1 = ℓ̄2 = k.
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(v) V = B.

For the constructed instance, note that there are always 2B customers in the system, split

between the two classes, with class 1 having at least B customers. All service times are equal

to one. For the worst-case clearing time W2, we can take without loss the service priority of the

1-customers to be higher than all of 2-customers. This ensures that server 1 does not serve any

2-customer. Therefore, in the worst-case we have that W2 = n2.

Suppose now that IP is a Yes instance of Partition. Then, let yℓ = I (ℓ ∈ A1), for all

ℓ = 1, . . . , k. This value of y yields a population vector n1 = n2 = B, and therefore IΠ is a

Yes instance of Π since W2 = B ≥ V . Conversely, if IΠ is a Yes instance of Π, we conclude

that W2 = n2 = B for some population vector n, such that n1 = n2 = B. Let y ∈ {0, 1}k the

corresponding vector that generates n. By letting A1 = {ℓ : yℓ = 1}, we get that

∑

ℓ∈A1

aℓ = n1 = B,

and IP is a Yes instance of Partition. �

Proof of Theorem 1. We proceed in two steps. First, we show that Wi is equal to the optimal

value of the following optimization problem with variables w, n ∈ RK , q ∈ R|Q(1)|ℓ1+···+|Q(M)|ℓM ,

and c ∈ R

∑M

j=1
ℓ̄j .

maximize wi (11.1)

subject to qℓ
j ∈ Q(j) ∪ {K + 1}, ℓ = 1, . . . , ℓj , j = 1, . . . , M (11.2)

qℓ
j ∈ Q(j), ℓ = 1, . . . , ℓj , j = 1, . . . , M : cℓ

j < wk for some k ∈ Q(j) (11.3)
∑

ℓ=1,...,ℓj

j∈S(k)

I
(
qℓ

j = k
)

= nk, k = 1, . . . , K (11.4)

wk = max{cℓ
j : qℓ

j = k or ℓ = 0, j ∈ S(k), ℓ = 0, . . . , ℓj}, k = 1, . . . K, (11.5)

cj ∈ Cj , j = 1, . . . , M (11.6)

n ∈ P ∩ NK , (11.7)

where we use the convention that c0
j = 0 for all j ∈ {1, . . . , M}. Problem (11) admits a very

intuitive interpretation. The variables qℓ
j model the queue the jth server assigns its ℓth service,

as per constraint (11.2). Service is assigned to the fictitious queue K + 1 if no eligible customer

is available for service. Constraint (11.3) captures the fact that if at time cℓ
j , there exists a non-

empty queue compatible with server j, then the ℓth service from the jth server cannot be assigned

to the fictitious queue. Constraint (11.4) requires that all customers from all queues are served,
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while constraint (11.5) corresponds to the definition of the completion time of a queue, with the

completion time being equal to zero if no customers were waiting.

Proposition 3. The optimal values of Problems (1) and (11) are finite and equal to each other.

Moreover, for every optimal solution (n, σ, x) to (1), there exists an optimal solution (w, n, q, c)

to (11) such that cℓ
j = x1

j + · · · + xℓ
j, j = 1, . . . , M , ℓ = 1, . . . , ℓj, and vice versa.

Second, we show that Problems (2) and (11) have the same optimal value.

Proposition 4. The optimal values of Problems (2) and (11) are equal to each other. Moreover, for

every optimal solution to (11), there exists an optimal solution to (2) such that the optimal vectors

of completion times coincide. �

Proof of Proposition 2. Follows directly from the proof of Proposition 1. �

Proof of Lemma 1. Recall that in a hierarchical MCMS, Q(j) = {j, . . . , K} for all j ∈ {1, . . . , K}
and S(k) = {1, . . . , k} for all k ∈ {1, . . . , K}. Proposition 3 implies that WK is equal to the optimal

value of (11) with i := K. We show that given any feasible solution (w, n, q, c) to (11) and any

sequence of service times c̃ such that c̃j ∈ Cj and c̃ℓ
j ≥ cℓ

j for all j ∈ {1, . . . , K} and ℓ ∈ {1, . . . , ℓj},

there exists a solution (w̃, n, q̃, c̃) feasible in (11) and such that w̃K ≥ wK . This will enable us to

conclude that there exists an optimal solution to (11) in which the completion times all attain their

maximum values. The statement of the lemma with then readily follow from Proposition 3.

Let (w, n, q, c) be feasible in (11) and let c̃ such that c̃j ∈ Cj and c̃ℓ
j ≥ cℓ

j for all j ∈ {1, . . . , K}
and ℓ ∈ {1, . . . , ℓj}. Also, define an assignment r and a population n̂ as follows:

rℓ
j :=





qℓ
j if c̃ℓ

j < wK ,

K + 1 else,

n̂k := nk −
∑

ℓ=1,...,ℓj

j=1,...,k

I
(
rℓ

j = k
)

,

for all j ∈ {1, . . . , K}, ℓ ∈ {1, . . . , ℓj}, and k ∈ {1, . . . , K}. Note that n̂ ≥ 0, and in particular

n̂k > 0 for all k ∈ {1, . . . , K} such that wk ≥ wK . To see the latter, fix k ∈ {1, . . . , K} such that

wk ≥ wK . Then, n̂k ≤ 0 would imply that more than nk k-customers are served under assignment r.

Since under r, customers are served only at times before wK according to q (and servers remain

idle afterwards), this would imply that more than nk k-customers are served under assignment q

before wK , a contradiction since the earliest time at which the nkth k-customer is served is wK .

Let ℓj be the number of customers served by the jth server under r, i.e.,

ℓj := max{ℓ : rℓ
j < K + 1}, j = 1, . . . , K.

52



Consequently, the times their service started has to be less than wK (by the definition of r). Thus,

for all j ∈ {1, . . . , K} and ℓ ∈ {1, . . . , ℓj} it holds that

c̃ℓ
j





< wK if ℓ ≤ ℓj ,

≥ wK else.

Consider now a new instance of Problem (11) with identical service system layout, but where

the queue population uncertainty set is given by the singleton {n̂} and where the uncertainty set

for the server completion times is given by the singleton {ĉ}, where ĉ is defined through ĉℓ
j = c̃

ℓ+ℓj

j ,

j ∈ {1, . . . , K}, ℓ ∈ {1, . . . , ℓj − ℓj}. Let (ŵ, q̂) be such that (ŵ, n̂, q̂, ĉ) is feasible in the associated

instance of Problem (11). Next, for j ∈ {1, . . . , K} and ℓ ∈ {1, . . . , ℓj − ℓj}, define

q̃ℓ
j :=





qℓ
j if ℓ ≤ ℓj ,

q̂
ℓ−ℓj

j else,

w̃k :=





wk if wk < wK ,

ŵk else.

We first argue that wK ≤ w̃K . The definition of n̂ implies that n̂K > 0 and therefore feasibility

of (ŵ, n̂, q̂, ĉ, ŵ) in the instance of (11) implies ŵK ∈ ĉ. But, for all j ∈ {1, . . . , K} and ℓ ∈
{1, . . . , ℓj − ℓj}, ĉℓ

j = c̃
ℓ+ℓj

j ≥ wK . Hence, wK ≤ ŵK = w̃K .

The final step is to show that (w̃, n, q̃, c̃) is feasible in Problem (11). Constraint (11.2) is trivially

satisfied. For (11.3), fix j ∈ {1, . . . , K}. Then:

• For ℓ ≤ ℓj , we have cℓ
j ≤ c̃ℓ

j < wK ≤ w̃K . Since K ∈ Q(j), feasibility of (w, n, q, c) in (11)

combined with cℓ
j < wK imply that qℓ

j ∈ Q(j). The definition of q̃ then yields q̃ℓ
j = qℓ

j ∈ Q(j)

and constraint (11.3) is satisfied in this case;

• For ℓ > ℓj , if ∃k ∈ Q(j) such that c̃ℓ
j < w̃k, then the definition of c̃ implies that wK ≤ c̃ℓ

j < wk

and therefore it follows from the definition of w̃ that w̃k = ŵk. Therefore, ĉ
ℓ−ℓj

j = c̃ℓ
j < w̃k =

ŵk. The feasibility of (ŵ, n̂, q̂, ĉ) in its corresponding instance of (11) implies q̂
ℓ−ℓj

j ∈ Q(j).

The definition of q̃ yields q̃ℓ
j = q̂

ℓ−ℓj

j ∈ Q(j) and constraint (11.3) holds.
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As the choice of j was arbitrary, constraint (11.3) is satisfied. For (11.4), we have that

∑

ℓ=1,...,ℓj

j=1,...,K

I
(
q̃ℓ

j = k
)

=
∑

ℓ=1,...,ℓj

j=1,...,K

I
(
q̃ℓ

j = k
)

+
∑

ℓ=ℓj+1,...,ℓj

j=1,...,K

I
(
q̃ℓ

j = k
)

=
∑

ℓ=1,...,ℓj

j=1,...,K

I
(
qℓ

j = k
)

+
∑

ℓ=ℓj+1,...,ℓj

j=1,...,K

I
(

q̂
ℓ−ℓj

j = k

)

= nk − n̂k +
∑

ℓ=ℓj+1,...,ℓj

j=1,...,K

I
(

q̂
ℓ−ℓj

j = k

)
[by definitions of n̂, r, ℓj ]

= nk − n̂k + n̂k = nk. [by feasibility of (q̂, ĉ, ŵ)]

Finally, it can be readily checked that (w̃, n, q̃, c̃) satisfies constraint (11.5) by the definition of q̃

and the fact that n̂k > 0 for all k ∈ {1, . . . , K} such that wk ≥ wK . �

Proof of Theorem 2. Recall that, in the context of hierarchical MCMS, Q(j) = {j, . . . , K} for

all j ∈ {1, . . . , K} and S(k) = {1, . . . , k} for all k ∈ {1, . . . , K}. Theorem 1 implies that WK is

equal to the optimal value of Problem (2) with i := K. It thus suffices to show that the optimal

values of Problems (2) and (3) are equal in the present setting.

Let (w, n, y, f, c) be an optimal solution to Problem (2) such that the completion times are

equal to their worst-case values. Existence of such a solution is guaranteed by Lemma 1 and

Propositions 3 and 4. We first argue that ∃ j⋆, ℓ⋆, t⋆ such that

wK = cℓ⋆

j⋆ = ct⋆

and f ℓ
Kj =





1 if cℓ
j < wK ,

0 if ℓ = ℓ⋆ and j = j⋆.

To see this, note that if f ℓ
Kj = 1 for all j and ℓ, then by (2.5), wK can take a value that is

strictly bigger than ζ̄ (since all the elements of c are positive), a contradiction. Let then (j⋆, ℓ⋆) ∈
argmin{cℓ

j : f ℓ
Kj = 0}. Then, by optimality of (w, n, y, f, c), constraint (2.5) is binding for j⋆ and ℓ⋆

and our claim follows. Define the variables f̂ ∈ Rℓ̄ and n̂ ∈ RK such that for ℓ ∈ {1, . . . , ℓ}

f̂ ℓ :=





1 if ℓ < t⋆,

0 else,

n̂ := n + eK .

We now demonstrate that (y, n̂, f̂) is feasible in Problem (3), and produces an objective value (3.1)

equal to wK , i.e., the optimal value of Problem (2). Constraints (3.2) and (3.4) follow directly from
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(2.2) and (2.3), respectively. For (3.3) note that

∑

(j,ω):cω
j

≤cℓ

yω
Kj ≤

∑

ω=1,...,ℓ̄j

j=1,...,k

yω
Kj ≤ nK = n̂K − 1 ≤ n̂K − f̂ ℓ,

where the second inequality follows from (2.3). Constraint (3.5) is trivially satisfied for ℓ ≥ t⋆. For

any ℓ < t⋆, let (j, ω) be such that cω
j = cℓ. Constraint (3.5) then becomes

∑
k′=j,...,K yω

k′j ≥ 1, which

follows from (2.4) for k = K and (j, ω). Constraints (3.6)-(3.9) are readily satisfied. Finally, note

that the objective value attained by (y, n̂, f̂) in (3) is given by ct⋆
(f̂ t⋆−1 − f̂ t⋆

) = wK and thus the

optimal value of (3) is greater or equal to WK .

To complete the proof, let (y, n, f) be an optimal solution to Problem (3). Using a similar

argument as above, ∃ t⋆ such that f ℓ = 1 for ℓ ∈ {1, . . . , ℓ}, ℓ < t⋆, and f ℓ = 0 else. Consequently,

the optimal value of (3) is equal to ct⋆
. Define the variables ỹ, f̃ ∈ RKℓ̄1+(K−1)ℓ̄2+...+ℓ̄K such that

for j ∈ {1, . . . , M}, ℓ ∈ {1, . . . , ℓj}, and k ∈ Q(j)

ỹℓ
kj :=





yℓ
kj if cℓ

j < ct⋆
,

0 else,

f̃ ℓ
kj :=





1 if cℓ
j < ct⋆

,

0 else.

Consider the solution (ct⋆
e, n − eK , ỹ, f̃ , c), which produces an objective value (2.1) equal to ct⋆

,

i.e., the optimal value of Problem (3). We show that (ct⋆
e, n − eK , ỹ, f̃ , c) is feasible in (2). Con-

straint (2.2) follows from (3.2) and from ỹ ≤ y. Similarly, for k = 1, . . . , K − 1 constraint (2.3)

follows from (3.4). For k = K we have

∑

ℓ=1,...,ℓ̄j

j=1,...,K

ỹℓ
Kj =

∑

(j,ω):cω
j

≤ct⋆
−1

ỹω
Kj +

∑

(j,ω):cω
j

≥ct⋆

ỹω
Kj =

∑

(j,ω):cω
j

≤ct⋆
−1

yω
Kj ≤ nK − f t⋆−1 = nK − 1,

where the second equality follows from the definition of ỹ and the inequality from (3.3). For

constraint (2.4), it suffices to check it for k = K. The constraint is trivially satisfied, unless (j, ℓ) are

such that cℓ
j < ct⋆

, in which case f̃ ℓ
Kj = 1 and ỹℓ

k′j = yℓ
k′j . Let t be such that ct = cℓ

j . Clearly, t < t⋆

and thus f t = 1. Constraint (2.4) then follows from (3.5). For constraint (2.5), it again suffices to

check for k = K. As with the previous case, for any (j, ℓ) we either have cℓ
j < ct⋆

and f̃ ℓ
Kj = 1,

or cℓ
j ≥ ct⋆

and f̃ ℓ
Kj = 0. In both cases, (2.5) is trivially satisfied. Constraint (2.7) is trivially valid,

unless ỹℓ
kj = 1, i.e., for (j, ℓ) such that cℓ

j < ct⋆
. But then, the constraint becomes ct⋆ ≥ cℓ

j , which

is true. The remaining constraints are immediate and the proof is complete. �

Proof of Theorem 3. For ease of exposition, we treat the case of αj = 2, j = 1, . . . , K; general-
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izing for other values is straightforward. We introduce the following notation. Let F be a mapping

from RK to a set in RK+1 such that for all n ∈ RK

F(n) :=



(m, W ) ∈ RK+1 : W ≤ mj

µj
+ ΓX

j
√

mj and
K∑

k=j

mk ≤
K∑

k=j

nk + K − j, j = 1, . . . , K





and FI be the corresponding mapping where m is integral, i.e., FI(n) := F(n) ∩ {NK × R}. Let h,

hI : RK → R be such that for all n ∈ RK

h(n) := max{W : (m, W ) ∈ F(n)} and hI(n) := max{W : (m, W ) ∈ FI(n)}.

The proof is based on the following results.

Proposition 5. The optimal value of

maximize hI(n)

subject to n ∈ P ∩ NK
(12)

is equal to WK .

Proposition 6. The optimal value of

maximize h(n)

subject to n ∈ P
(13)

is equal to ŴK .

Proposition 7. For all n ∈ RK we have

i) hI(n) ≤ h(n) ≤ hI(n) + χ.

ii) hI(n) ≤ hI(m) for all m ∈ RK such that n ≤ m.

iii) hI(n + e) ≤ hI(n) + χ.
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Let n⋆ ∈ P be an optimal solution of Problem (13). We then have that

WK = max{hI(n) : n ∈ P ∩ NK} [by Prop. 5]

≤ max{h(n) : n ∈ P ∩ NK} [by Prop. 7i)]

≤ max{h(n) : n ∈ P}
= ŴK [by Prop. 6]

= h(n⋆)

≤ hI(n⋆) + χ [by Prop. 7i)]

≤ hI(⌊n⋆⌋ + e) + χ [by Prop. 7ii)]

≤ hI(⌊n⋆⌋) + 2χ [by Prop. 7iii)]

≤ WK + 2χ,

where the last inequality holds since n⋆ ∈ P ⇒ ⌊n⋆⌋ ∈ P∩NK , i.e., ⌊n⋆⌋ is feasible for Problem (12),

and Proposition 5. �

Proof of Lemma 2. We begin by defining a number of operators that will facilitate our analysis

of the queue dynamics under CP. Given three ordered finite sequences c = {cℓ}ℓ
ℓ=1, a = {ar}r

r=1,

and y = {ym}m
m=1, define the operator

c ⊕ y := sort({c, y}),

which returns the ordered finite sequence of length (ℓ + m) consisting of all elements of the con-

catenation of sequences c and y. Also, define the operator

c → a := {ct : st(a, c) = 0, t ∈ {1, . . . , ℓ}},

where the sequence s is given by:

s0(a, c) := 0

st(a, c) := [st−1(a, c) − 1]+ + zt(a, c) − zt−1(a, c) ∀t ∈ {1, . . . , ℓ}
zt(a, c) := max{i ∈ {0, . . . , r} : ai ≤ ct} ∀t ∈ {0, . . . , ℓ},

(14)

with the convention that a0 = c0 < 0. These operators admit a very natural interpretation in the

context of hierarchical MCMS systems under CP. The operator c → a enables us to obtain the

(ordered) subset of completion times c that remain “unused” after being fed into the stream of

customer arrival times a. The operator c ⊕ y enables us to collect (subsets of) completion times of

multiple servers into a single ordered stream.

Consider a single server single class system under FCFS, where c and a collect the server
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completion times and the customer arrival times, respectively. We argue that the quantity c → a

corresponds to the set of completion times that coincide with times when the queue was empty.

For any t ∈ {0, . . . , ℓ}, the quantity zt(a, c) ∈ {0, . . . , r} corresponds to the number of customers

that have arrived by time ct (note that z0(a, c) = 0). Accordingly, (zt(a, c)−zt−1(a, c)) ∈ {0, . . . , r}
represents the number of customer arrivals in the interval (ct−1, ct]. Interpret s0(a, c) as the number

of customers waiting prior to time 0. Fix t ∈ {1, . . . , ℓ}. Suppose that st−1(a, c) ∈ N represents

the number of customers waiting to be served at time ct−1 (i.e., the (t − 1)th time the server

completes a job). If st−1(a, c) = 0, the total number of customers waiting at time ct is equal

to zt(a, c) − zt−1(a, c), i.e., no one was served in the interval [ct−1, ct). On the other hand, if

st−1(a, c) ≥ 1, a customer is served at time ct−1 and the total number of customers waiting at

time ct is given by st−1(a, c) − 1 + zt(a, c) − zt−1(a, c) (a non-negative integer). We conclude that

st(a, c) ∈ N represents the number of people waiting to be served at time ct for all t ∈ {0, . . . , ℓ}.

Thus, for t ∈ {1, . . . , ℓ}, st(a, c) = 0 if and only if the queue is empty at time ct, yielding the desired

interpretation for c → a.

We now demonstrate that W CP
i can be expressed analytically in dependence of the customer

arrival times, the queue population lengths, and the server completion times using the operators

introduced above.

Proposition 8. Consider a hierarchical service system under CP with customer arrival times and

server completion times given by a and c, respectively. For each k ∈ {1, . . . , i − 1}, let

ak := ak ⊕ {0, . . . , 0︸ ︷︷ ︸
nk times

}.

Then, the clearing time W CP
i is given by

y1 = c1 → a1

yk = (yk−1 ⊕ ck) → ak ∀k ∈ {2, . . . , i − 1}
W CP

i = (yi−1 ⊕ ci)
ni .

Note that ak is essentially the augmented sequence of k-customer arrival times including the nk

k-customers initially waiting at time 0.

Given two sequences y = {ym}m
m=1 and ỹ = {ỹm}m̃

m=1 of not necessarily identical length, we

define the relationship

y ≤ ỹ if and only if m̃ ≤ m and ym ≤ ỹm ∀m ∈ {1, . . . , m̃}.

The above relationship can be interpreted as an element-wise comparison of the two sequences,

where elements equal to +∞ are appended at the end of the shorter sequence so as to equalize the
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sequence lengths. Note in particular that if m̃ = 0, then y ≤ ỹ for all y.

The remainder of the proof is based on the following structural properties of our operators.

Proposition 9. Given the ordered sequences c, c̃, a, ã, and y, the following statements hold true:

i) If c̃ ≥ c, then y ⊕ c̃ ≥ y ⊕ c.

ii) If c̃ ≥ c, then c̃ → a ≥ c → a.

iii) If ã ≤ a, then c → ã ≥ c → a.

We are now ready to show that W CP
i is increasing in the service times x and decreasing in the

arrival times a. Let W CP
i

′
denote the clearing time under service and arrival times given by x′ and

a′, respectively. Then, from Proposition 8, W CP
i

′
is expressible analytically via

y′
1 = c′

1 → a′
1

y′
k = (y′

k−1 ⊕ c′
k) → a′

k ∀k ∈ {2, . . . , i − 1}
W CP

i
′

= (y′
i−1 ⊕ c′

i)
ni .

Let x and a be such that x ≥ x′ and a ≤ a′. Then, c ≥ c′ and it follows from Proposition 9 i) that

ak ≤ a′
k for all k ∈ {1, . . . , i − 1}. Propositions 9 ii) and iii) then imply that

y1 = c1 → a1 ≥ c′
1 → a1 ≥ c′

1 → a′
1 ≥ y′

1.

Applying Proposition 9 i) twice yields

y1 ⊕ c2 ≥ y′
1 ⊕ c2 ≥ y′

1 ⊕ c′
2.

Fix k ∈ {2, . . . , i − 1}. Suppose that yk−1 ⊕ ck ≥ y′
k−1 ⊕ c′

k. Then, Propositions 9 ii) and iii) imply

that yk ≥ y′
k. Thus yk ≥ y′

k for all k ∈ {1, . . . , i−1}. Proposition 9 i) yields that yi−1⊕ci ≥ y′
i−1⊕c′

i,

and therefore W CP
i ≥ W CP

i
′
, which concludes the proof. �

Proof of Theorem 4. The proof is similar to Theorem 2 and is omitted for brevity. �

Proof of Theorem 5. Fix any i = 1, . . . , K. Consider a hierarchical MCMS system that com-

prises the first i classes and servers, but operates under FCFS. That is, an HMCMS with i classes,

server parameters µj , ΓX
j and αj , j = 1, . . . , i, and population uncertainty set

P′ = {n ∈ Ri : (n, ñ) ∈ P for some ñ ∈ RK−i},

where servers follow FCFS. Under no arrivals, Problem (8) reduces to Problem (4), since we have

q = u = 0. Therefore, we have that Ŵ CP
i = Ŵi, for all i = 1, . . . , K.
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We next argue that for a closed HMCMS system, the worst-case clearing time of the last class

is equal for both CP and FCFS priorities.

Proposition 10. For a hierarchical MCMS service system under no arrivals, WK = W CP
K .

Fix again an i = 1, . . . , K and consider a hierarchical MCMS system that comprises the first

i classes and servers, but operates under FCFS, as before. Since we deal with closed systems,

Proposition 10 yields that W CP
i = Wi. By Theorem 3, we obtain that Wi ≤ Ŵi ≤ Wi + 2χ.

Replacing for Wi and Ŵi we obtain that

W CP
i ≤ Ŵi ≤ W CP

i + 2χ, i = 1, . . . , K. �

Proof of Lemma 3. The proof is similar to Lemma 2 and is omitted for brevity. �

Proof of Theorem 6. The proof is similar to Theorem 2 and is omitted for brevity. �

F.1. Proofs of Auxiliary Results

Proof of Proposition 3. The proof proceeds in three steps.

Step 1: Problem (1) is feasible and has a finite optimal value. The sets P ∩ NK , Σ(n) and

Xj , j = 1, . . . , M , are all nonempty by construction. It follows that Problem (1) is feasible.

Boundedness of the optimal value of (1) follows from boundedness of its feasible region.

Step 2: The optimal values of Problems (1) and (11) are equal. First, let (n, σ, x) be feasible

in (1). We construct w, q and c such that wi = Wi(n1, . . . , nK , σ, x1, . . . , xM ) and (w, n, q, c) is

feasible in (11). For all j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj}, define cℓ
j :=

∑ℓ
k=1 xk

j . We assume

without loss of generality that the elements of c are all distinct from one another and positive. All

of our arguments remain valid if this assumption is relaxed at the cost of complicating notation.

As in Section 2, let Lk : R+ → 2{1,...,K}, k ∈ {1, . . . , n} be multivalued functions that map time to

the set of k-customers still waiting to be served. For all j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj}, define

qℓ
j :=





k if
⋃

k′∈Q(j)

Lk′(cℓ
j) 6= ∅ and argmin



σ(ν) : ν ∈

⋃

k′∈Q(j)

Lk′(cℓ
j)



 ∈ Lk(cℓ

j),

K + 1 else.

Note that since all the elements of σ are distinct, the minimization problem in this definition

presents a unique minimizer. Also, for all k ∈ {1, . . . , K}, let

wk := Wk(n1, . . . , nK , σ, x1, . . . , xM ) = inf{t ≥ 0 : |Lk(t)| = 0}.

Constraints (11.2), (11.6) and (11.7) are clearly satisfied. Fix j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj}.

It follows from the definitions of w and q that if cℓ
j < wk′ for some k′ ∈ Q(j), then |Lk′(cℓ

j)| > 0
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and therefore
⋃

k′∈Q(j) Lk′(cℓ
j) 6= ∅, implying that qℓ

j ∈ Q(j). Since the choice of j and ℓ was

arbitrary, constraint (11.3) is satisfied. Fix k ∈ {1, . . . , K}. Until time wk (note that wk < ∞),

the total number of customers served from queue k is equal to nk and constraint (11.4) is satisfied.

By construction, the function |Lk(t)| is non-increasing, left-continuous, with discontinuities at all

instants t ∈ {t ≥ 0 : t = cℓ
j and qℓ

j = k}. Thus,

wk =





max{cℓ
j : qℓ

j = k, j ∈ S(k), ℓ = 1, . . . , ℓj} if |Lk(0)| > 0,

0 else,

and constraint (11.5) is satisfied. We have thus constructed a solution (w, n, q, c) feasible in (11)

and such that wi = Wi(n1, . . . , nK , σ, x1, . . . , xM ).

Second, let (w, n, q, c) be feasible in (11). Note that existence of such a solution is guaranteed

since Problem (1) is feasible (see Step 1) and we have just shown that any feasible solution to (1)

can be used to construct a feasible solution to (11). We will construct a solution σ and x such

that (n, σ, x) is feasible in (1) and Wi(n1, . . . , nK , σ, x1, . . . , xM ) = wi. We again assume without

loss of generality that the elements of c are all distinct from one another and positive. For all

j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj}, define xℓ
j := cℓ

j − cℓ−1
j , where we use the convention that c0

j = 0.

Also, define λ : R+ → {1, . . . ,
∑K

k=1 nk} and λk : R+ → {1, . . . , nk}, k ∈ {1, . . . , K} through

λ(t) :=
∑

j=1,...,M

ℓ=1,...,ℓj

I
(
cℓ

j ≤ t and qℓ
j ∈ Q(j)

)
and λk(t) :=

∑

j∈S(k)

ℓ=1,...,ℓj

I
(
cℓ

j ≤ t and qℓ
j = k

)
,

which count the number of all customers served by time t, or the number of k-customers, respec-

tively. Thus, if qℓ
j = k ∈ Q(j), then the k-customer who receives the ℓth service of the jth server is

the λ(cℓ
j)th customer to be served in the system. For each k ∈ {1, . . . , K}, m ∈ {1, . . . , nk}, define

σ

(
k−1∑

k′=1

nk′ + m

)
:=

{
λ(cℓ

j) : qℓ
j = k and λk(cℓ

j) = m, j ∈ S(k), ℓ ∈ {1, . . . , ℓj}
}

.

Thus, if ν =
∑k−1

k′=1 nk′ +m, customer ν is the mth k-customer waiting at t = 0 and σ(ν) is the order

in which he is served. By our assumption that the elements of c are all distinct from one another,

σ defines a permutation of n, i.e., σ ∈ Σ(n) and thus the second constraint in (1) is satisfied. By

construction, x also satisfies the last constraint in (1). Therefore (n, σ, x) is feasible in (1). Note

in particular that under this solution, customers are sorted according to the order in which they

received service under q. We now show that, Wi(n1, . . . , nK , σ, x1, . . . , xM ) = wi. It suffices to show
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that for all j ∈ {1, . . . , M}, k ∈ Q(j), and ℓ ∈ {1, . . . , ℓj}, it holds that

qℓ
j = k ⇔

⋃

k′∈Q(j)

Lk′(cℓ
j) 6= ∅ and argmin



σ(ν) : ν ∈

⋃

k′∈Q(j)

Lk′(cℓ
j)



 ∈ Lk(cℓ

j), (15)

so that the same customers are served under the allocation q and the permutation σ each time a

server becomes available. We prove this statement by induction on the ordered sequence of server

completion times c.

Fix j′ ∈ {1, . . . , M}, and ℓ′ ∈ {1, . . . , ℓj′}. Suppose that (15) is true for all j and ℓ such that

cℓ
j < cℓ′

j′ . We first show that it must also be true for j = j′ and ℓ = ℓ′. It follows from (15) that for

all k ∈ {1, . . . , K} and t ≤ cℓ′

j′ it holds that

Lk(t) = Lk(0) −





k−1∑

k′=1

nk′ + m : m ∈





1, . . . ,
∑

j∈S(k)

ℓ=1,...,ℓj

I
(
cℓ

j < t and qℓ
j = k

)









,

and thus

|Lk(t)| = nk −
∑

j∈S(k)

ℓ=1,...,ℓj

I
(
cℓ

j < t and qℓ
j = k

)
. (16)

If qℓ′

j′ = k ∈ Q(j), it follows from (16) and from the feasibility of q in (11) that |Lk(cℓ′

j′)| > 0, and

therefore ∪k′∈Q(j)Lk′(cℓ
j) 6= ∅. Moreover, it follows from the definition of λ that the first customer

waiting at queue k at time cℓ′

j′ under q is the λ(cℓ′

j′)th customer being served in the system. Finally,

the definition of σ implies that at time cℓ′

j′ , all customers ν with σ(ν) < λ(cℓ′

j′) have already left the

system. Thus, argmin{σ(ν) : ν ∈ ∪k′∈Q(j)Lk′(cℓ′

j′)} ∈ Lk(cℓ′

j′) holds. If instead qℓ′

j′ = K + 1, then

constraints (11.3) and (11.5) imply that cℓ′

j′ > wk′ for all k′ ∈ Q(j′) and it follows from (16) that

|Lk′(cℓ′

j′)| = 0 for all k′ ∈ Q(j), i.e. ∪k′∈Q(j)Lk′(cℓ
j) = ∅ and the right hand-side in (15) cannot hold.

We conclude that (15) is true for j = j′ and ℓ = ℓ′.

To complete the induction, we show that (15) is true for the first completion time, i.e., for

j′ ∈ {1, . . . , M} such that c1
j′ ≤ cℓ

j for all j ∈ {1, . . . , M}, ℓ ∈ {1, . . . , ℓj}. If q1
j′ = k ∈ Q(j), then

σ(1+
∑k−1

k′=1 nk′) = 1, i.e., the highest priority is a k-customer. Moreover, since by time c1
j′ , no other

customer has been assigned to a server yet under q, it holds that |Lk(c1
j′)| > 0 and the right hand-

side of (15) holds true for j = j′ and ℓ = 1. If instead q1
j′ = K + 1, constraints (11.3) and (11.5)

combined with the fact that c1
j′ ≤ cℓ

j ∀j, ℓ imply that nk′ = 0 for all k′ ∈ Q(j), a contradiction.

We conclude that (15) is true for all j, ℓ, and k, and therefore the completion time of queue i

under the allocation q and the permutation σ are equal, i.e. Wi(n1, . . . , nK , σ, x1, . . . , xM ) = wi.

Consequently, Problems (1) and (11) have the same optimal value, which is finite. �
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Proof of Proposition 4. Let (w, n, y, f, c) be an optimal solution in (2) whose existence follows

from the Weierstrass Theorem. Without loss of generality, we assume that constraint (2.3) is active

at this optimal solution. Otherwise, such an optimal solution can be readily constructed in an

iterative fashion, starting from (w, n, y, f, c). We construct a feasible solution in (11) as follows.

Let

(ℓ′, j′) ∈


(ℓ, j) ∈ R2 :

∑

k′∈Q(j)

yℓ
k′j = 0 and cℓ

j = wi, j ∈ S(i), ℓ ∈ {1, . . . , ℓj}


 .

Note that by the definition of ζ, the set above is never empty (otherwise it would contradict the

optimality of (w, n, y, f, c) in (2)) and therefore the pair (ℓ′, j′) is well defined. For j ∈ {1, . . . , M},

k ∈ Q(j), ℓ ∈ {1, . . . , ℓj}, define

qℓ
j :=





∑

k∈Q(j)

kyℓ
kj if

∑

k∈Q(j)

yℓ
kj = 1,

i if j = j′ and ℓ = ℓ′,

K + 1 else,

and w̃k := max{cℓ
j : qℓ

j = k, j ∈ S(k), ℓ ∈ {0, . . . , ℓj}}. Also let ñ := n + ei. By definition

of q and w̃, (11.2) and (11.5) are both trivially satisfied. It follows from n + ei ∈ P ∩ NK that

ñ ∈ P ∩ NK . Thus, (w̃, n, q, c) satisfies constraints (11.6) and (11.7). In addition,

∑

ℓ=1,...,ℓj

j∈S(i)

I
(
qℓ

j = i
)

= 1 +
∑

ℓ=1,...,ℓj

j∈S(i)

yℓ
ij = ni + 1 = ñi,

where the first and second equalities follow from the definition of q and the feasibility of y in (2),

respectively. For k ∈ {1, . . . , K}, k 6= i it holds that

∑

ℓ=1,...,ℓj

j∈S(k)

I
(
qℓ

j = k
)

=
∑

ℓ=1,...,ℓj

j∈S(k)

yℓ
kj = nk = ñk.

Thus, (11.4) is satisfied for all k ∈ {1, . . . , K}. Fix k ∈ {1, . . . , K}. If k 6= i, it directly follows from

the definition of w̃, that w̃k ≤ wk. Moreover, it follows from the choice of (ℓ′, j′) that w̃i = wi.

Thus, w̃k ≤ wk for all k ∈ {1, . . . , K}. Fix j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj} and suppose that

cℓ
j < w̃k for some k ∈ Q(j). Then, cℓ

j < wk and (2.5) implies that f ℓ
kj = 1. It then follows

from (2.4) that
∑

k′∈Q(j) yℓ
k′j = 1. The definition of q then implies that qℓ

j ∈ Q(j). Since the choice

of j ∈ {1, . . . , M} and ℓ ∈ {1, . . . , ℓj} was arbitrary, constraint (11.3) is satisfied. We have thus

constructed a solution (w̃, ñ, q, c) feasible in (11) such that w̃i = wi. Thus, the optimal objective

value of (11) is lower bounded by the optimal objective value of (2).

Suppose that there exists a solution (w, n, q, c) feasible in (11) and such that wi > wi. Once we
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reach a contradiction, the proof will be complete. To this end, let

(ℓ′, j′) ∈ {(ℓ, j) ∈ R2 : qℓ
j = i and cℓ

j = wi, j ∈ S(i), ℓ ∈ {1, . . . , ℓj}}.

Note that by construction the set above is never empty and therefore the pair (ℓ′, j′) is well defined.

For j ∈ {1, . . . , M}, k ∈ Q(j), ℓ ∈ {1, . . . , ℓ̄j}, define

yℓ
kj :=





I
(
qℓ

j = i and j 6= j′ and ℓ 6= ℓ′
)

if k = i,

I
(
qℓ

j = k
)

else,

and f
ℓ
kj := I

(
cℓ

j < wk

)
. Also let n := n − ei. We now show that (w, n, y, f , c) is feasible in (2).

It follows from n ∈ P ∩ NK that n + ei ∈ P ∩ NK . Therefore, constraints (2.7)-(2.9) are satisfied.

Also, it holds that
∑

k∈Q(j)

yℓ
kj ≤

∑

k∈Q(j)

I
(
qℓ

j = k
)

≤ 1,

where the first and second inequalities follow from the definition of y and the feasibility of q in (11),

respectively. Thus, constraint (2.2) is satisfied. Constraint (2.4) is trivially satisfied if f
ℓ
kj = 0. If

f
ℓ
kj = 1, then by definition it holds that cℓ

j < wk, and (11.3) implies that qℓ
j ∈ Q(j), i.e., ∃k′ ∈ Q(j)

such that yℓ
k′j = 1 and constraint (2.4) is satisfied in this case also. Moreover, by definition of yℓ

ij

and n, it holds that

∑

ℓ=1,...,ℓ̄j

j∈S(i)

yℓ
ij =

∑

ℓ=1,...,ℓ̄j

j∈S(i)

I
(
qℓ

j = i and j 6= j′ and ℓ 6= ℓ′
)

= ni − 1 = ni

and for k 6= i, it holds that

∑

ℓ=1,...,ℓ̄j

j∈S(k)

yℓ
kj =

∑

ℓ=1,...,ℓ̄j

j∈S(k)

I
(
qℓ

j = k
)

= nk = nk.

Thus, (2.3) holds true. If f
ℓ
kj = 0, then it follows from the definition of f that wk ≤ cℓ

j and

constraint (2.5) holds true. If f
ℓ
kj = 1, then constraint (2.5) is trivially satisfied since ζ constitutes
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a valid upper bound on wk by construction. Finally, it follows from the definition of wk that

wk = max
ℓ∈{1,...,ℓj}

j∈S(k)

cℓ
j I
(
qℓ

j = k
)

≥ max
ℓ∈{1,...,ℓj}

j∈S(k)

cℓ
jyℓ

kj

≥ max
ℓ∈{1,...,ℓj}

j∈S(k)

cℓ
j − ζ̄(1 − yℓ

kj)

≥ cℓ
j − ζ̄(1 − yℓ

kj) ∀ℓ ∈ {1, . . . , ℓj}, j ∈ {1, . . . , M},

where the first equality and first inequality follow from the definitions of wk and yℓ
kj , respectively

and where the second inequality follows from the definition of ζ̄. Therefore, constraint (2.6) holds

true. We have thus constructed a feasible solution (w, n, y, f , c) in (2) with an objective value

wi > wi. This contradicts optimality of (w, n, y, f, c) in (2) and the proof is complete. �

Proof of Proposition 5. Fix n ∈ P ∩ NK and consider an instance of Problem (1) in which the

queue population uncertainty set is given by the singleton {n}. Let WK be the optimal value of

this instance. Since the choice of n ∈ P∩NK is arbitrary, it suffices to show that the optimal value

of this instance is equal to hI(n).

Let (n, x, σ) be optimal in the new instance of Problem (1) and let mj be the number of

customers served by the jth server by the clearing time WK , for j = 1, . . . , K, under this solution.

These numbers satisfy the following property

K∑

k=j

mk ≤
K∑

k=j

nk, j = 1, . . . , K, (17)

since the servers j, . . . , K, being eligible to serve customers of classes j, . . . , K, cannot serve more

than the population of these classes.

By the clearing time definition, at WK some server has to start serving the nKth K-customer;

let that server be J . Consider now m ∈ RK such that

mj := mj + 1, j 6= J, and mJ := mJ .

We will show that (m, WK) ∈ FI(n), which will yield that WK ≤ hI(n). Clearly, m ∈ NK . For

j > J , we have that (17) is satisfied with strict inequality, i.e.,
∑K

k=j mk <
∑K

k=j nk. Otherwise, the

servers j, . . . , K, being eligible to serve customers of classes j, . . . , K, serve the entire population of
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these classes, a contradiction since server J serves one K-customer at WK . This then implies

K∑

k=j

mk =
K∑

k=j

mk + K − j + 1 ≤
K∑

k=j

nk + K − j.

For j ≤ J , we use (17) to obtain

K∑

k=j

mk =
K∑

k=j

mk + K − j ≤
K∑

k=j

nk + K − j.

By Lemma 1, we can assume that service times take their worst-case values. Thus, the ℓth customer

served by the j server starts receiving service at ℓ
µj

+ ΓX
j

√
ℓ. Consequently, and by the definition

of WK and m we get that

WK =
mJ

µJ
+ ΓX

j

√
mJ =

mJ

µJ
+ ΓX

j

√
mJ ,

WK ≤ mj + 1

µJ
+ ΓX

j

√
mj + 1 =

mJ

µJ
+ ΓX

j

√
mJ , j 6= J.

In order to derive a contradiction and complete the proof, we assume that hI(n) > WK . Then,

∃(m̂, ŵ) ∈ FI(n) such that ŵ > WK . Note that for all j = 1, . . . , K we have that

mj

µj
+ ΓX

j
√

mj ≤ WK < ŵ ≤ m̂j

µj
+ ΓX

j

√
m̂j ,

where the first inequality follows from the definition of m and the last by (m̂, ŵ) ∈ FI(n). Conse-

quently, mj < m̂j for all j = 1, . . . , K.

Let I be the minimum index so that queues I, . . . , K have cleared by WK . Then, we can select

a feasible solution (n, x, σ) that still attains the worst-case value WK so that (17) is satisfied with

equality for j = I, i.e.,
∑K

k=I mk =
∑K

k=I nk. To see this, suppose that we have strict inequality.

Since I, . . . , K have cleared by WK , then it must be that a server r ∈ {1, . . . , I − 1} served a

customer from class I, . . . , K. Without loss, we can select the priority σ so that server r serves an

(I −1)-customer instead—such a customer is guaranteed to wait, since queue I −1 did not clear. By

this change in assignments of customers to servers, the clearing time for queues I, . . . , K can only

strictly increase, leading to a contradiction of worst-case optimality of WK , or remain the same,

preserving worst-case optimality. By applying this argument recursively, we get the desired m.
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Then, we get a contradiction as

K∑

k=I

nk + K − I ≥
K∑

k=I

m̂k [by (m̂, ŵ) ∈ FI(n)]

≥
K∑

k=I

(mk + 1) [by m̂j > mj ]

=
K∑

k=I

nk + K − I + 1 [by
∑K

k=I mk =
∑K

k=I nk].

�

Proof of Proposition 6. For any n ∈ P and (m, W ) ∈ F(n) let s =
√

m. Then, it can be readily

seen that m, s, n and W are feasible for Problem (4). Thus,

ŴK ≥ max{h(n) : n ∈ P}.

Conversely, for any m, s, n and W feasible for Problem (4) we have that n ∈ P and

W ≤ mj

µj
+ ΓX

j sj ≤ mj

µj
+ ΓX

j
√

mj and
K∑

k=j

mk ≤
K∑

k=j

nk + K − j, j = 1, . . . , K.

That is, (m, W ) ∈ F(n) and thus ŴK ≤ max{h(n) : n ∈ P}, completing the proof. �

Proof of Proposition 7 i). Consider any n ∈ RK .

The first inequality follows directly from the fact that FI(n) = F(n)∩(NK × R) ⊂ F(n).

For the second inequality, let (m, W ) ∈ F(n) be optimal for the maximization problem in the

definition of h(n), i.e., h(n) = W . Then, it suffices to show that (⌊m⌋, W − χ) ∈ FI(n), since then

by the definition of hI(n) we would have hI(n) ≥ W − χ = h(n) − χ. Clearly ⌊m⌋ ∈ N and for any

j = 1, . . . , K we have that
K∑

k=j

⌊mk⌋ ≤
K∑

k=j

mk ≤
K∑

k=j

nk + K − j,

where the second inequality follows from (m, W ) ∈ F(n). Finally, note that for any j = 1, . . . , K

W − χ ≤ mj

µj
+ ΓX

j

√
mj − χ [by (m, W ) ∈ F(n)]

≤ ⌊mj⌋ + 1

µj
+ ΓX

j

√
⌊mj⌋ + 1 − χ

≤ ⌊mj⌋ + 1

µj
+ ΓX

j

√
⌊mj⌋ + ΓX

j − χ [by
√

x + 1 ≤ √
x + 1]

≤ ⌊mj⌋
µj

+ ΓX
j

√
⌊mj⌋ [by

1

µj
+ ΓX

j ≤ χ]. �
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Proof of Proposition 7 ii). Consider any x, y ∈ RK with x ≤ y. Let (m, W ) ∈ FI(x) be optimal

for the maximization problem in the definition of hI(x), i.e., hI(x) = W . Then, m ∈ NK and for

all j = 1, . . . , K we have that

W ≤ mj

µj
+ ΓX

j

√
mj and

K∑

k=j

mk ≤
K∑

k=j

xk + K − j ≤
K∑

k=j

yk + K − j.

Hence, (m, W ) ∈ FI(y) as well and, by the definition of hI(y), we have that hI(y) ≥ W = hI(x). �

Proof of Proposition 7 iii). Consider any n ∈ RK . Let (m, W ) ∈ FI(n + e) be optimal for the

maximization problem in the definition of hI(n+e), i.e., hI(n+e) = W . We consider the following

two cases.

Case 1: mj ≥ 1 for all j = 1, . . . , K. It suffices to show that (m − e, W − χ) ∈ FI(n), since then by

the definition of hI(n) we would have that hI(n) ≥ W −χ = hI(n+e)−χ. Since (m, W ) ∈ F(n+e)

we get that m ∈ N ⇒ (m − e) ∈ N and for any j = 1, . . . , K we have that

K∑

k=j

(mk − 1) ≤
K∑

k=j

(nk + 1 − 1) + K − j =
K∑

k=j

nk + K − j.

Note also that for any j = 1, . . . , K

W − χ ≤ mj

µj
+ ΓX

j

√
mj − χ [by (m, W ) ∈ F(n + e)]

=
mj − 1

µj
+ ΓX

j

√
mj − 1 − χ +

1

µj
+ ΓX

j (
√

mj −
√

mj − 1)

≤ mj − 1

µj
+ ΓX

j

√
mj − 1 − χ +

1

µj
+ ΓX

j [by
√

x −
√

x − 1 ≤ 1]

≤ mj − 1

µj
+ ΓX

j

√
mj − 1. [by

1

µj
+ ΓX

j ≤ χ]

Case 2: mJ = 0 for some 1 ≤ J ≤ K. Then, we get

hI(n + e) = W ≤ mJ

µJ
+ ΓX

J

√
mJ = 0 ≤ hI(n) + χ. �

Proof of Proposition 8. Recall that in a hierarchical service system under CP, a customer from

any given class k ∈ {1, . . . , K} will only be serviced by a server j < k if the server completion

time coincides with a moment when all queues 1 through k − 1 are empty. Observe that y1 =

c1 → a1 corresponds to the set of times when server 1 becomes available to serve 2-customers. Fix

k ∈ {2, . . . , i − 1}. Suppose that yk−1 denotes the set of times when any of the servers 1 through

k − 1 becomes available to serve k-customers, i.e., the times when any server j ∈ {1, . . . , k − 1}
completes a job and the queues j through k − 1 are all empty. Then, the quantity ck := (yk−1 ⊕ ck)
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represents the times when any of the servers 1 through k becomes available to serve k-customers.

Since these are the only servers eligible to service k-customers, the quantity ck corresponds to the

set of candidate k-customer service times. Accordingly, st(ak, ck) corresponds to the number of

k-customers waiting at time ct
k (i.e., the tth time an eligible server becomes available to service

k-customers). Under a CP discipline, servers 1 through k are available to serve (k+1)-customers at

time ct
k if and only if st(ak, ck) = 0. Thus, yk corresponds to the set of times when any of the servers

1 though k becomes available to serve (k + 1)-customers. Therefore, the quantity ci represents the

stream of candidate i-customer service times. Since all i-customers have arrived at time 0, they will

all be immediately serviced each time any of the servers 1 through i becomes available. Therefore,

the nith i-customer will be serviced at time cni

i , which concludes the proof. �

Proof of Proposition 9 i). Let ℓ and ℓ̃ denote the lengths of c and c̃, respectively. Also let m

denote the length of y. Since c̃ ≥ c, it follows that ℓ̃ ≤ ℓ. Suppose first that ℓ = ℓ̃. If ℓ̃ = 0, the

claim follows immediately. Suppose instead that ℓ = ℓ̃ > 0. Then, (y ⊕ c̃) and (y ⊕ c) have identical

lengths and it suffices to perform an element by element comparison of the two sequences. Fix

ν ∈ {1, 2, . . . , ℓ + m}. Then,

(y ⊕ c̃)ν =





yλ̃ for some λ̃ ∈ {1, . . . , ν}, or

c̃λ̃′

for some λ̃′ ∈ {1, . . . , ν}.

Similarly,

(y ⊕ c)ν =





yλ for some λ ∈ {1, . . . , ν}, or

cλ′

for some λ′ ∈ {1, . . . , ν}.

We proceed by contradiction for each possible case. Suppose that (y ⊕ c̃)ν < (y ⊕ c)ν .

• If (y ⊕ c̃)ν = yλ̃, then by definition of the ⊕ operator it follows that

c̃κ ≤ yλ̃ κ = 1, 2, . . . , ν − λ̃, and (18.1)

c̃κ ≥ yλ̃ κ = ν − λ̃ + 1, . . . , ℓ. (18.2)

– If (y ⊕ c)ν = yλ, then yλ̃ < yλ and therefore λ̃ < λ. Moreover,

cκ ≤ yλ κ = 1, 2, . . . , ν − λ, and (19.1)

cκ ≥ yλ κ = ν − λ + 1, . . . , ℓ. (19.2)

Since λ̃ < λ ≤ ν, it follows that c̃ν−λ̃ ≥ c̃ν−λ, and thus

c̃ν−λ ≤ c̃ν−λ̃ ≤ yλ̃ < yλ ≤ cν−λ̃,
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where the second and last inequalities follow from (18.1) with κ = ν − λ̃ and (19.2) with

κ = ν − λ̃, respectively. The last sequence of inequalities constitutes a contradiction.

– If (y ⊕ c)ν = cλ′

, then yλ̃ < cλ′

. Moreover,

yκ ≤ cλ′

κ = 1, 2, . . . , ν − λ′, and

yκ ≥ cλ′

κ = ν − λ′ + 1, . . . , m.

The inequalities above imply that λ̃ ∈ {1, 2, . . . ν −λ′}, so that λ̃ ≤ ν −λ′, or equivalently

ν − λ̃ ≥ λ′. Therefore,

cλ′

> yλ̃ ≥ c̃ν−λ̃ ≥ c̃λ′

,

where the second inequality above follow from (18.1) with κ = ν − λ̃. The last sequence

of inequalities contradicts our assumption that c̃ ≥ c.

We conclude that if ℓ̃ = ℓ and (y ⊕ c̃)ν = yλ̃, then (y ⊕ c̃)ν ≥ (y ⊕ c)ν .

• The proof for the case when (y ⊕ c̃)ν = c̃λ̃′

mirrors exactly the case above and can thus be

omitted.

If ℓ̃ < ℓ, the same proof carries through unchanged by appending (ℓ − ℓ̃) elements equal to +∞ at

the end of c̃ so as to equalize sequence lengths. We conclude that (y ⊕ c̃) ≥ (y ⊕ c). �

Before proceeding with the proof of Propositions 9 ii) and iii), we provide a non-recursive

expression for the elements of the sequence s(a, c) defined in (14). For any given τ ∈ {1, . . . , ℓ}, it

follows from (14) that

τ∑

t=1

st(a, c) =
τ∑

t=1

[st−1(a, c) − 1]+ + zt(a, c) − zt−1(a, c)

= zτ (a, c) +
τ−1∑

t=0

[st(a, c) − 1]+

= zτ (a, c) +
τ−1∑

t=1

[st(a, c) − 1]+ [since s0(a, c) = 0]

= zτ (a, c) +
τ−1∑

t=1

(st(a, c) − 1) +
τ−1∑

t=1

I
(
st(a, c) = 0

)

= zτ (a, c) − τ + 1 +
τ−1∑

t=1

st(a, c) +
τ−1∑

t=1

I
(
st(a, c) = 0

)
,

which yields

sτ (a, c) = zτ (a, c) −
[
(τ − 1) −

τ−1∑

t=1

I
(
st(a, c) = 0

)]
∀τ ∈ {1, . . . , ℓ}. (20)
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Equation (20) can be interpreted as follows: the number of people waiting to be served at time cτ

under c is equal to the difference between the total number of people that have arrived by time cτ

under a less the total number of people that have been served prior to time cτ .

Proof of Proposition 9 ii). Let ℓ and ℓ̃ denote the lengths of c and c̃, respectively. Let q̃ := c̃ →
a = {q̃m}m̃

m=1 and q := c → a = {qm}m
m=1. Since c̃ ≥ c, it follows that ℓ̃ ≤ ℓ. Suppose first that

ℓ = ℓ̃. If ℓ̃ = 0, then m̃ = 0 and the claim follows immediately. Suppose ℓ = ℓ̃ > 0. We begin by

showing that m̃ ≤ m and then demonstrate that q̃m ≥ qm for all m ∈ {1, . . . , m̃}.

• If m̃ = 0, the claim follows directly. Suppose m̃ > 0 and let

τ̃ := max{t ∈ {0, . . . , ℓ} : st(a, c̃) = 0}.

Then, τ̃ ≥ 1 and it follows from the definition of m̃ that

m̃ − 1 =
τ̃−1∑

t=1

I
(
st(a, c̃) = 0

)

= sτ̃ (a, c̃) − zτ̃ (a, c̃) + τ̃ − 1 [from (20) since τ̃ ≥ 1]

= τ̃ − 1 − zτ̃ (a, c̃) [since sτ̃ (a, c̃) = 0]

≤ sτ̃ (a, c) + τ̃ − 1 − zτ̃ (a, c) [since zτ̃ (a, c̃) ≥ zτ̃ (a, c) and sτ̃ (a, c) ≥ 0]

=
τ̃−1∑

t=1

I
(
st(a, c) = 0

)
.

There are two possible cases depending on the sign of sτ̃ (a, c). If sτ̃ (a, c) = 0, it follows from

the above that

I
(
sτ̃ (a, c) = 0

)
+

τ̃−1∑

t=1

I
(
st(a, c) = 0

)
≥ m̃.

If sτ̃ (a, c) > 0, the inequality above is strict and the claim follows. In both cases, the sequence

s(a, c) has at least m̃ zero elements. We conclude that m ≥ m̃.

• We now proceed by contradiction to show that q̃m ≥ qm for all m ∈ {1, . . . , m̃}. Suppose that

there exists t′ ∈ {1, . . . , m̃} such that q̃t′

< qt′

, while q̃t ≥ qt for all t ∈ {1, . . . , t′ − 1}. Then,

q̃t′

= c̃τ̃ for some τ̃ ≥ t′, and

qt′

= cτ for some τ ≥ t′.

Therefore, c̃τ̃ < cτ , from which it must hold that τ̃ < τ . Otherwise, if τ̃ ≥ τ , then c̃τ̃ ≥ c̃τ ≥
cτ , where the second inequality follows from the premise that c̃ ≥ c, yielding a contradiction.
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From the definition of τ̃ and τ , it follows that

τ−1∑

t=1

I
(
st(a, c) = 0

)
= t′ − 1 and

τ̃−1∑

t=1

I
(
st(a, c̃) = 0

)
= t′ − 1. (21)

Moreover, sτ (a, c) = sτ̃ (a, c̃) = 0. Then, (20) implies that

zτ (a, c) = τ − t′ and zτ̃ (a, c̃) = τ̃ − t′. (22)

Let τ ′ := max{t : ct ≤ c̃τ̃ }. Then, it must hold that τ ′ ≥ τ̃ . Otherwise, if τ ′ < τ̃ , then from

the definition of τ ′, cτ ′ ≤ c̃τ̃ < cτ̃ , which contradicts the premise that c̃ ≥ c. Moreover, it

must hold that τ ′ < τ . Otherwise, if τ ′ ≥ τ , then c̃τ̃ ≥ cτ ′ ≥ cτ , a contradiction. In addition,

it follows from cτ ′ ≤ c̃τ̃ and (22) that

zτ ′

(a, c) ≤ zτ̃ (a, c̃) = τ̃ − t′. (23)

From the non-negativity of sτ ′

(a, c), it follows that

0 ≤ sτ ′

(a, c)

= zτ ′

(a, c) − (τ ′ − 1) +
τ ′−1∑

t=1

I
(
st(a, c) = 0

)
[by definition]

≤ zτ ′

(a, c) − (τ ′ − 1) +
τ−1∑

t=1

I
(
st(a, c) = 0

)
[τ ′ < τ ]

≤ τ̃ − t′ − τ ′ + 1 +
τ−1∑

t=1

I
(
st(a, c) = 0

)
[from (23)]

= τ̃ − t′ − τ ′ + 1 + t′ − 1 [from (21)]

= τ̃ − τ ′

≤ 0 [from τ ′ ≥ τ̃ ].

It thus follows that the sequence of inequalities above must hold with equality. In particular,

we obtain
τ ′−1∑

t=1

I
(
st(a, c) = 0

)
=

τ−1∑

t=1

I
(
st(a, c) = 0

)
. (24)

Moreover, sτ ′

(a, c) = 0 which yields

τ ′−1∑

t=1

I
(
st(a, c) = 0

)
<

τ ′∑

t=1

I
(
st(a, c) = 0

)
≤

τ−1∑

t=1

I
(
st(a, c) = 0

)

and contradicts (24).

Since m̃ ≤ m and qm ≤ q̃m for all m ∈ {1, . . . , m̃}, it follows that q ≤ q̃, which concludes the proof
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for the case when ℓ̃ = ℓ. If ℓ̃ < ℓ, the same proof carries through unchanged by appending (ℓ − ℓ̃)

elements equal to +∞ at the end of c̃ so as to equalize sequence lengths. �

Proof of Proposition 9 iii). This proof parallels the proof of Proposition 9 ii) and is omitted. �

Proof of Proposition 10. Consider an HMCMS system under no arrivals that operates under

FCFS and let c be the servers’ completion times. Let (y, n, f) be an optimal solution to Problem (3).

We will show that the assignments y can be taken to be compatible with class priority without

loss. This will imply that WK ≤ W CP
K for this system. Note also that since any allocation that is

compatible with CP is also compatible with FCFS—under an appropriately constructed σ, as in

the proof of Theorem 1—we have that WK ≥ W CP
K . These two results will yield that WK = W CP

K .

To show that the assignments y can be taken to be compatible with class priority without loss,

suppose that there exists an assignment implied by y that is not compatible with CP. Let τ be

the largest time at which such an assignment was made. In particular, at time τ server j became

available and served a k-customer, while an i-customer was waiting, for j ≤ i < k. We denote the

number of ν-customers waiting at the system at τ+, i.e., immediately after the jth server started

serving the k-customer, with mν , ν = 1, . . . , K. Note that this implies that mi > 0. Such an

assignment is not compatible with CP indeed. All assignments at times t > τ are compatible with

CP, by our choice of τ .

To show our claim, it suffices to prove that the Kth queue’s clearing time would increase under

the alternative (CP-compatible) assignment at time τ where server j serves an i-customer instead

of a k-customer. Recall that WK is the Kth queue’s clearing time under the original assignment

and let W̃K be the corresponding time under the alternative assignment.

Since we assumed all assignments after τ to follow CP, WK (W̃K) can be computed as the Kth

queue’s clearing time in case the system’s initial queue populations were m (m− ei +ek) and server

completion times were d = {cℓ : cℓ > τ} under CP. We use the notation and results derived in

Lemma 2 and Proposition 8 to express WK (W̃K). In particular, consider the arrival processes

aν = {0, . . . , 0}︸ ︷︷ ︸
mν times

, ν = 1, . . . , K

ãν = {0, . . . , 0}︸ ︷︷ ︸
mν−I(ν=i)+I(ν=k) times

, ν = 1, . . . , K.

The process a (ã) corresponds to to initial queue populations of m (m−ei +ek), i.e., to the original
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(alternative) scenario. By Proposition 8,

y1 = d1 → a1, ỹ1 = d1 → ã1

yν = (yν−1 ⊕ dν) → aν , ỹν = (ỹν−1 ⊕ dν) → ãν ∀ν ∈ {2, . . . , K − 1}
WK = (yK−1 ⊕ dK)mK , W̃K = (ỹK−1 ⊕ dK)mK .

Using the monotonicity properties derived in Proposition 8, to show that W̃K ≥ WK , it suffices to

show that ỹk ≥ yk (in a similar fashion as in the proof of Lemma 2).

Let y0 := ∅ and

hν := yν−1 ⊕ dν , ν = 1, . . . , K.

Using this notation and the properties of the → operator we get that

yν = (yν−1 ⊕ dν) → aν = hν → aν = {hℓ
ν}ℓ≥mν

, ν = 1, . . . , K.

Note that by construction of a, ã, y and ỹ we have that

ỹν = yν , ν = 1, . . . , i − 1. (25)

Combining the above, we get that

ỹi = (ỹi−1 ⊕ di) → ãi

= (yi−1 ⊕ di) → ãi

= hi → ãi

= {hℓ
i}ℓ≥mi−1

= hmi−1
i ⊕ yi.

Similarly,

ỹi+1 = (ỹi ⊕ di+1) → ãi+1

= (hmi−1
i ⊕ yi ⊕ di+1) → ãi+1

= (hmi−1
i ⊕ hi+1) → ãi+1

= {(hmi−1
i ⊕ hi+1)ℓ}ℓ≥mi+1

= max{hmi−1
i , h

mi+1−1
i+1 } ⊕ yi+1.

Applying these operators iteratively yields that

ỹk−1 = max
i≤ν≤k−1

{hmν−1
ν } ⊕ yk−1.
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Finally, if we let η := maxi≤ν≤k−1{hmν−1
ν },

ỹk = (ỹk−1 ⊕ dk) → ãk

= (η ⊕ yk−1 ⊕ dk) → ãk

= (η ⊕ hk) → ãk

=
{

(η ⊕ hk)ℓ
}

ℓ≥mk+1

= max
{
η, hmk

k

}⊕ {hℓ
k}ℓ≥mk+1

≥ {hℓ
k}ℓ≥mk

= yk,

and the proof is complete. �
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