7,236 research outputs found

    Estimating scattered and absorbed radiation in plant canopies by remote sensing

    Get PDF
    Several research avenues are summarized. The relationships of canopy characteristics to multispectral reflectance factors of vegetation are reviewed. Several alternative approaches for incorporating spectrally derived information into plant models are discussed, using corn as the main example. A method is described and evaluated whereby a leaf area index is estimated from measurements of radiation transmitted through plant canopies, using soybeans as an example. Albedo of a big bluestem grass canopy is estimated from 60 directional reflectance factor measurements. Effects of estimating albedo with substantially smaller subsets of data are evaluated

    Spectral estimates of solar radiation intercepted by corn canopies

    Get PDF
    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models

    Investigation related to multispectral imaging systems

    Get PDF
    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community

    Using Canopies indices to Quantify the Economic optimum nitrogen rate in Spring Wheat

    Get PDF
    In-season N applications to spring wheat (Triticum aestivum L.) may increase profits and improve N fertilizer accuracy. The objectives were to develop a calibration tool employing normalized difference vegetative index (NDVI) and SPAD 502 chlorophyll meter (SPAD) measurements for calculating the differential from the economic optimum N rate (dEONR) at growth stages Z22, Z24, and Z31 to Z39 and provide N rate algorithms for use in applying N fertilizer at a variable rate. Sensing was conducted trials over 3 yr encompassing 10 site-years across Southeastern Buenos Aires Province, Argentina. The relationship between sensor indices and dEONR was evaluated by fitting quadratic plateau (QP) regression models. Statistically significant QP models were determined at the Z24, Z31, and Z39 growth stages. Relative SPAD (rSPAD) and relative NDVI (rNDVI) reduced variation and improved the calibration of measured N stress with the dEONR. For Z31 and Z39, the rSPAD had the best goodness of fit statistics when compared to rNDVI [adjusted R2 (adjR2)= 0.67 and 0.57 at Z31 and 0.68 and 0.52 at Z39, respectively]. However, adjustment at Z24 was higher for rNDVI (adjR2 = 0.53 and 0.61 for rSPAD and rNDVI, respectively). A single QP model to estimate the dEONR with 58% confidence was adjusted for the Z31 and Z39 growth stages. This indicates that the same calibration for N rate determination based on rSPAD or rNDVI values can be used during stem elongation in spring wheat. This model can be used as an N rate algorithm for applying N fertilizer in-season.Fil: Reussi Calvo, Nahuel Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Sainz Rozas, Hernan Rene. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria; ArgentinaFil: Echeverria, Hernan Eduardo. Instituto Nacional de TecnologĂ­a Agropecuaria; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Diovisalvi, Nadia Rosalia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    Get PDF
    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces

    Emission and reflection from healthy and stressed natural targets with computer analysis of spectroradiometric and multispectral scanner data

    Get PDF
    Special emphasis was on corn plants, and the healthy targets were differentiated from stressed ones by remote sensing. Infrared radiometry of plants is reviewed thoroughly with emphasis on agricultural crops. Theory and error analysis of the determination of emittance of a natural target by radiometer is discussed. Experiments were conducted on corn (Zea mays L.) plants with long wavelength spectroradiometer under field conditions. Analysis of multispectral scanner data of ten selected flightlines of Corn Blight Watch Experiment of 1972 indicated: (1) There was no regular pattern of the mean response of the higher level/levels blighted corn vs. lower level/levels blighted corn in any of the spectral channels. (2) The greater the difference between the blight levels, the more statistically separable they usually were in subsets of one, two, three and four spectral channels

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest

    NIR Calibrations for Soybean Seeds and Soy Food Composition Analysis: Total Carbohydrates, Oil, Proteins and Water Contents

    Get PDF
    Conventional chemical analysis techniques are expensive, time consuming, and often destructive. The non-invasive Near Infrared (NIR) technology was introduced over the last decades for wide-scale, inexpensive chemical analysis of food and crop seed composition (see Williams and Norris, 1987; Wilcox and Cavins, 1995; Buning and Diller, 2000 for reviews of the NIR technique development stage prior to 1998, when Diode Arrays were introduced to NIR). NIR spectroscopic measurements obey Lambert and Beer’s law, and quantitative measurements can be successfully made with high speed and ease of operation. NIR has been used in a great variety of food applications. General applications of products analyzed come from all sectors of the food industry including meats, grains, and dairy products (Shadow, 1998)
    • …
    corecore