3,617 research outputs found

    Implicit 3D Orientation Learning for 6D Object Detection from RGB Images

    Get PDF
    We propose a real-time RGB-based pipeline for object detection and 6D pose estimation. Our novel 3D orientation estimation is based on a variant of the Denoising Autoencoder that is trained on simulated views of a 3D model using Domain Randomization. This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when the object deviates from the image center and show extended results.Comment: Code available at: https://github.com/DLR-RM/AugmentedAutoencode

    Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective

    Full text link
    This paper addresses the task of dense non-rigid structure-from-motion (NRSfM) using multiple images. State-of-the-art methods to this problem are often hurdled by scalability, expensive computations, and noisy measurements. Further, recent methods to NRSfM usually either assume a small number of sparse feature points or ignore local non-linearities of shape deformations, and thus cannot reliably model complex non-rigid deformations. To address these issues, in this paper, we propose a new approach for dense NRSfM by modeling the problem on a Grassmann manifold. Specifically, we assume the complex non-rigid deformations lie on a union of local linear subspaces both spatially and temporally. This naturally allows for a compact representation of the complex non-rigid deformation over frames. We provide experimental results on several synthetic and real benchmark datasets. The procured results clearly demonstrate that our method, apart from being scalable and more accurate than state-of-the-art methods, is also more robust to noise and generalizes to highly non-linear deformations.Comment: 10 pages, 7 figure, 4 tables. Accepted for publication in Conference on Computer Vision and Pattern Recognition (CVPR), 2018, typos fixed and acknowledgement adde

    Invertible Orientation Scores of 3D Images

    Full text link
    The enhancement and detection of elongated structures in noisy image data is relevant for many biomedical applications. To handle complex crossing structures in 2D images, 2D orientation scores were introduced, which already showed their use in a variety of applications. Here we extend this work to 3D orientation scores. First, we construct the orientation score from a given dataset, which is achieved by an invertible coherent state type of transform. For this transformation we introduce 3D versions of the 2D cake-wavelets, which are complex wavelets that can simultaneously detect oriented structures and oriented edges. For efficient implementation of the different steps in the wavelet creation we use a spherical harmonic transform. Finally, we show some first results of practical applications of 3D orientation scores.Comment: ssvm 2015 published version in LNCS contains a mistake (a switch notation spherical angles) that is corrected in this arxiv versio

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201
    corecore