27,167 research outputs found

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio

    Heuristic Evaluation for Serious Immersive Games and M-instruction

    Get PDF
    Š Springer International Publishing Switzerland 2016. Two fast growing areas for technology-enhanced learning are serious games and mobile instruction (M-instruction or M-Learning). Serious games are ones that are meant to be more than just entertainment. They have a serious use to educate or promote other types of activity. Immersive Games frequently involve many players interacting in a shared rich and complex-perhaps web-based-mixed reality world, where their circumstances will be multi and varied. Their reality may be augmented and often self-composed, as in a user-defined avatar in a virtual world. M-instruction and M-Learning is learning on the move; much of modern computer use is via smart devices, pads, and laptops. People use these devices all over the place and thus it is a natural extension to want to use these devices where they are to learn. This presents a problem if we wish to evaluate the effectiveness of the pedagogic media they are using. We have no way of knowing their situation, circumstance, education background and motivation, or potentially of the customisation of the final software they are using. Getting to the end user itself may also be problematic; these are learning environments that people will dip into at opportune moments. If access to the end user is hard because of location and user self-personalisation, then one solution is to look at the software before it goes out. Heuristic Evaluation allows us to get User Interface (UI) and User Experience (UX) experts to reflect on the software before it is deployed. The effective use of heuristic evaluation with pedagogical software [1] is extended here, with existing Heuristics Evaluation Methods that make the technique applicable to Serious Immersive Games and mobile instruction (M-instruction). We also consider how existing Heuristic Methods may be adopted. The result represents a new way of making this methodology applicable to this new developing area of learning technology

    Maximising gain for minimal pain: Utilising natural game mechanics

    Get PDF
    This paper considers the application of natural games mechanics within higher education as a vehicle to encourage student engagement and achievement of desired learning outcomes. It concludes with desiderata of features for a learning environment when used for assessment and a reflection on the gap between current and aspired learning provision. The context considered is higher (tertiary) education, where the aims are both to improve students’ engagement with course content and also to bring about potential changes in the students’ learning behaviour. Whilst traditional approaches to teaching and learning may focus on dealing with large classes, where the onus is frequently on efficiency and on the effectiveness of feedback in improving understanding and future performance, intelligent systems can provide technology to enable alternative methods that can cope with large classes that preserve the cost-benefits. However, such intelligent systems may also offer improved learning outcomes via a personalised learning experience. This paper looks to exploit particular properties which emerge from the game playing process and seek to engage them in a wider educational context. In particular we aim to use game engagement and Flow as natural dynamics that can be exploited in the learning experience

    Player agency in interactive narrative: audience, actor & author

    Get PDF
    The question motivating this review paper is, how can computer-based interactive narrative be used as a constructivist learn- ing activity? The paper proposes that player agency can be used to link interactive narrative to learner agency in constructivist theory, and to classify approaches to interactive narrative. The traditional question driving research in interactive narrative is, ‘how can an in- teractive narrative deal with a high degree of player agency, while maintaining a coherent and well-formed narrative?’ This question derives from an Aristotelian approach to interactive narrative that, as the question shows, is inherently antagonistic to player agency. Within this approach, player agency must be restricted and manip- ulated to maintain the narrative. Two alternative approaches based on Brecht’s Epic Theatre and Boal’s Theatre of the Oppressed are reviewed. If a Boalian approach to interactive narrative is taken the conflict between narrative and player agency dissolves. The question that emerges from this approach is quite different from the traditional question above, and presents a more useful approach to applying in- teractive narrative as a constructivist learning activity

    Integrating mobile robotics and vision with undergraduate computer science

    Get PDF
    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision, and is directly linked to the research conducted at the authors’ institution. The paper describes the most relevant details of the module content and assessment strategy, paying particular attention to the practical sessions using Rovio mobile robots. The specific choices are discussed that were made with regard to the mobile platform, software libraries and lab environment. The paper also presents a detailed qualitative and quantitative analysis of student results, including the correlation between student engagement and performance, and discusses the outcomes of this experience

    CGAMES'2009

    Get PDF

    Gaming Business Communities: Developing online learning organisations to foster communities, develop leadership, and grow interpersonal education

    Get PDF
    This paper explores, through observation and testing, what possibilities from gaming can be extended into other realms of human interaction to help bring people together, extend education, and grow business. It uses through action learning within the safety of the virtual world within Massively Multiplayer Online Games. Further, I explore how the world of online gaming provides opportunity to train a wide range of skills through extending Revans’ (1980) learning equation and action inquiry methodology. This equation and methodology are deployed in relation to a gaming community to see if the theories could produce strong relationships within organisations and examine what learning, if any, is achievable. I also investigate the potential for changes in business (e.g., employee and customer relationships) through involvement in the gaming community as a unique place to implement action learning. The thesis also asks the following questions on a range of extended possibilities in the world of online gaming: What if the world opened up to a social environment where people could discuss their successes and failures? What if people could take a real world issue and re‐create it in the safe virtual world to test ways of dealing with it? What education answers can the world of online gaming provide

    The Effects of a Platform Digital Game-Based Learning Environment on Undergraduate Students Achievement and Motivation in a Multivariable Calculus Course

    Get PDF
    This study examined the effects of a researcher-designed digital game-based learning (DGBL) environment called Adventures of Krystal Kingdom on undergraduate students’ mathematics achievement and motivation in a Multivariable Calculus course. Multivariable Calculus is a specific area of computational and applied mathematics that focuses on the differentiation and integration of functions of several variables in fields like physics and engineering. The study employed a single exploratory embedded case study design with quantitative and qualitative techniques. A case study is the appropriate methodology for this study, which is a bounded system that facilitates a deeply contextualized understanding of a case through giving descriptions, analyses, and interpretations (Yin, 2014). The quantitative sample comprised 29 undergraduate students, and the qualitative sample included 6 students selected through stratified sampling based on the level of achievement. Quantitative data was collected using two surveys: demographic and motivation surveys, and two tests: academic achievement test and a game performance test. Analysis of quantitative data used a paired sample t-test. Qualitative data were collected from interviews, observations, and artifacts. Analysis of qualitative data used coding procedures suggested by Creswell (2014) where patterns were identified and grouped to allow the emergence of themes. The results of the study indicated no statistical significance in achievement (p=0.88 \u3e0.05), however, there was overall improvement found in achievement scores of the students who played the game. Three themes emerged from the study: 1) Undergraduate students saw the use of the Adventures of Krystal Kingdom as learning tool to enhance their understanding of concepts in Multivariable Calculus.; 2) Undergraduate students saw the use of the Adventures of Krystal Kingdom as a way to engage themselves in mathematical fun in a digital environment; and 3) Undergraduate students saw input semiotics, automated reflexes, Task Relevant Support and other core mechanics as components that affect students’ gameplay. Results of the interviews, observations, and artifacts revealed that students benefited from using DGBL as an alternative approach to learning mathematics and to use such advanced techniques in biology, engineering, and computational neuroscience. The overall results indicate that DGBL used in the study was an appropriate teaching and learning tool to improve students\u27 mathematics skills
    • …
    corecore