47,355 research outputs found

    A technique for adding range restrictions to generalized searching problems

    Get PDF
    In a generalized searching problem, a set SS of nn colored geometric objects has to be stored in a data structure, such that for any given query object qq, the distinct colors of the objects of SS intersected by qq can be reported efficiently. In this paper, a general technique is presented for adding a range restriction to such a problem. The technique is applied to the problem of querying a set of colored points (resp.\ fat triangles) with a fat triangle (resp.\ point). For both problems, a data structure is obtained having size O(n1+ϵ)O(n^{1+\epsilon}) and query time O((logn)2+C)O((\log n)^2 + C). Here, CC denotes the number of colors reported by the query, and ϵ\epsilon is an arbitrarily small positive constant

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    POPE: Partial Order Preserving Encoding

    Get PDF
    Recently there has been much interest in performing search queries over encrypted data to enable functionality while protecting sensitive data. One particularly efficient mechanism for executing such queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the relative order of the underlying plaintexts thus allowing range and comparison queries to be performed directly on ciphertexts. In this paper, we propose an alternative approach to range queries over encrypted data that is optimized to support insert-heavy workloads as are common in "big data" applications while still maintaining search functionality and achieving stronger security. Specifically, we propose a new primitive called partial order preserving encoding (POPE) that achieves ideal OPE security with frequency hiding and also leaves a sizable fraction of the data pairwise incomparable. Using only O(1) persistent and O(nϵ)O(n^\epsilon) non-persistent client storage for 0<ϵ<10<\epsilon<1, our POPE scheme provides extremely fast batch insertion consisting of a single round, and efficient search with O(1) amortized cost for up to O(n1ϵ)O(n^{1-\epsilon}) search queries. This improved security and performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding

    Analysis of Petri Nets and Transition Systems

    Full text link
    This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled) place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.Comment: In Proceedings ICE 2015, arXiv:1508.0459
    corecore