
A technique for adding range restrictions to

generalized searching problems

Prosenjit Gupta

�

Ravi Janardan

y

Michiel Smid

z

August 30, 1996

Abstract

In a generalized searching problem, a set S of n colored geometric objects

has to be stored in a data structure, such that for any given query object q, the

distinct colors of the objects of S intersected by q can be reported e�ciently.

In this paper, a general technique is presented for adding a range restriction

to such a problem. The technique is applied to the problem of querying a

set of colored points (resp. fat triangles) with a fat triangle (resp. point). For

both problems, a data structure is obtained having size O(n

1+�

) and query time

O((logn)

2

+ C). Here, C denotes the number of colors reported by the query,

and � is an arbitrarily small positive constant.

Keywords: Computational geometry, data structures, intersection searching,

range restriction.

1 Introduction

Geometric searching problems arise in a large variety of application areas, such as

computer graphics, robotics, VLSI layout design, and databases. In such a problem,

a set S of n geometric objects has to be stored in a data structure, such that for any

given query object q, we can e�ciently report all objects of S that intersect q. The

e�ciency of such a data structure is typically expressed by its size and query time,

where the latter has the form O(f(n) + K � g(n)), for some \small" functions f and

g. In this expression, K denotes the number of elements of S that intersect the query

object. We call these problems standard searching problems, in order to distinguish

them from generalized searching problems, which are the subject of this paper.
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In many applications, a more general form of searching problem arises: The objects

in S come aggregated in disjoint groups and of interest are questions regarding the

intersection of q with the groups rather than with the objects. Here, we say that q

intersects a group if and only if it intersects at least one object in the group. We

will associate with each group a di�erent color and imagine that all the objects in the

group have that color. Then, in the generalized searching problem, we want to report

the distinct colors of those elements of S that intersect q. Note that the generalized

problem reduces to the standard one when each color class has cardinality one. For

applications of these generalized searching problems, see [1, 4, 6, 8].

We can solve a generalized searching problem by �rst determining the objects of S

that intersect q and then reading o� the distinct colors. However, the query time can

be very high since q could intersect 
(n) objects but only O(1) distinct colors. For

a generalized searching problem, we want to obtain query times that are sensitive to

the number C of distinct colors intersected, rather than K. Typically, our goal is to

obtain query times of the form O(f(n) +C) or O(f(n) +C � g(n)), where f and g are

polylogarithmic.

Generalized searching problems �rst appeared in [6]. Subsequently, several papers

were published on these type of problems. See [1, 3, 4, 5, 7, 8].

In this paper, we consider the problem of transforming generalized searching prob-

lems into other problems by adding a range restriction. This transformation was

introduced for standard searching problems by Bentley [2].

Let PR(q; S) denote the answer to a generalized searching problem PR with query

object q and object set S. To add a range restriction to PR, we give each object p

in S an additional parameter k

p

2 IR. In the transformed searching problem, we only

query objects in S that have their parameter in a given range. We de�ne this more

precisely.

De�nition 1 Let PR(q; S) be a generalized searching problem for a set S of objects

with query object q. To add a range restriction, we associate with each object p in

S a real number k

p

. In the transformed generalized searching problem TPR, a query

consists of a query object q together with an interval [a; b], and

TPR(q; [a; b]; S) := PR(q; fp 2 S : a � k

p

� bg):

In the case where the range restriction is of the form (�1; b] or [a;1), we speak about

a half-in�nite range restriction.

As an example, consider the d-dimensional generalized orthogonal range searching

problem, in which we are given a set S of n colored points in IR

d

. The query is an

axes-parallel d-box q, and we want to report the distinct colors of those points that

are contained in q. This problem is obtained by adding a range restriction to the

(d � 1)-dimensional generalized range searching problem.

As mentioned, the notion of adding a range restriction (for standard problems) �rst

appeared in Bentley [2]. He gave a general technique that transforms a data structure

for solving the standard problem PR into a data structure for the standard problem

TPR. Later, other general techniques were developed by Willard and Lueker [11],
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Generalized Problem Space Query Time Reference

Querying Points with Fat Triangles n(log n)

3

(log n)

4

+ C(log n)

2

[5]

n

1+�

(log n)

2

+ C this paper

Querying Fat Triangles with Points n(log n)

2

(log n)

3

+ C log n [5]

n

1+�

(log n)

2

+ C [5]

n

1+�

(log n)

2

+ C this paper

Table 1: Overview of results for generalized problems on fat triangles. All bounds

given are \big{oh". C denotes the output size, and � is an arbitrarily small positive

constant.

Scholten and Overmars [10], van Kreveld [8], and Lenhof and Smid [9]. With the

exception of [8], these techniques can be applied to generalized searching problems,

but this leads to data structures in which each color may be reported a logarithmic

number of times. (That is, using the notation above, we have g(n) = �(log n).) The

results in [8] provide structures where each color is reported at most a constant number

of times. We discuss this in more detail below.

The main result of this paper is a general technique that transforms data structures

DS and TDS solving the generalized searching problems PR and TPR, respectively,

into a data structure TDS

0

solving TPR that uses much less space than TDS does.

More precisely, if we start with (i) a data structure DS having O(polylog(n)+C) query

time and using O(n

1+�

) space, and (ii) a data structure TDS having O(polylog(n)+C)

query time and using (possibly high) polynomial space, and apply the transformation

several times, we get a data structure for TPR having O(polylog(n) + C) query time

and using only O(n

1+�

) space. Here, � is an arbitrarily small positive constant.

We remark that in earlier work, van Kreveld presented an alternative approach for

obtaining O(n

1+�

) space and O(polylog(n)+C) query time for range-restricted colored

problems; see Theorem 5.1(ii), Theorem 5.3(ii), and Corollary 7.3(i) in [8]. His work is

based on multiway balanced search trees with secondary structures. Our approach is

di�erent: we construct TDS

0

iteratively from DS and TDS by using a \bootstrapping"

approach, which is interesting in its own right.

We illustrate our general technique by giving e�cient data structures for the follow-

ing two problems: Store a set of colored points (resp. fat triangles) in a data structure,

such that for any query fat triangle (resp. point) q, we can report the distinct colors of

those points (resp. triangles) that are contained in (resp. contain) q. Here, a triangle

is called fat, if all its angles are at least equal to some �xed constant �. This problem

was considered before in [5]. See Table 1 for this and our results. Again, some of our

results were known already. However, the techniques in this paper allow us to now

derive these results in a uni�ed way.

The rest of this paper is organized as follows. In Section 2, we give the general

technique of adding a range restriction to a generalized searching problem. In Section 3,

we show how to apply this technique to generalized problems for fat triangles. We

conclude the paper in Section 4 with some �nal remarks.

We now discuss one important issue that arises in the encoding and handling
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of colors. Throughout the paper, we assume that our algorithms incorporate the

mechanisms that we describe here and so we will not repeat them afterwards. The

number of colors for a given problem can range from 1 to n. We encode each color as

an integer in the range [1; n]. This allows us to use colors as array indices. In many

of our generalized searching problems, when answering a query we may encounter the

same color more than once (but no more than O(1) times). Our goal is to eliminate

the duplicate colors e�ciently before we output the answer. We can do this by using

an array, A[1 : n], of colors to keep track of the distinct colors that are found during a

query. We also store the distinct colors found in a linked list. After the query, A can

be reset in time proportional to the output size by scanning the list.

2 Adding a half-in�nite range restriction

Let S be a set of n colored objects, and let PR(q; S) be a generalized searching problem

for S with query object q. Let each object p of S have an additional parameter k

p

2 IR.

Let TPR be the generalized searching problem that is obtained by adding a half-in�nite

range restriction to PR.

Assume we have a data structure DS that stores the set S, such that generalized

queries PR(q; S) can be solved in O((log n)

u

+ C) time, for some positive constant u.

Let the size of DS be bounded by O(n

1+�

), where � is an arbitrarily small positive

constant.

Also, assume we have a data structure TDS for the set S, such that generalized

queries TPR(q; [a : 1); S) can be solved in O((log n)

v

+ C) time, for some positive

constant v. Let the size of TDS be bounded by O(n

w

) for some constant w > 1.

We will show how to construct a data structure that solves generalized queries

TPR(q; [a : 1); S) in O((log n)

max(u;v)

+ C) time, using O((n

1+�

) space, for an arbi-

trarily small positive constant �.

The basic transformation: Sort the elements of S in non-increasing order of their

parameter k

p

. Let the sorted set be S = fp

1

; p

2

; : : : ; p

n

g, i.e., k

p

1

� k

p

2

� : : : � k

p

n

.

Let m be a parameter such that 1 � m � n. For 0 � i < n=m, let

S

i

= fp

1

; p

2

; : : : ; p

im

g;

and

S

0

i

= fp

im+1

; p

im+2

; :::p

(i+1)m

g:

For each i, 0 � i < n=m, we store the set S

i

in a data structure DS

i

(of type DS )

for solving generalized queries of the form PR(q; S

i

). Moreover, we store the set S

0

i

in a data structure TDS

i

(of type TDS ) for solving generalized queries of the form

TPR(q; [a;1); S

0

i

).

Having de�ned the transformed data structure, we show how to answer generalized

queries of the form TPR(q; [a;1); S). Without loss of generality we may assume that

a � k

p

1

and a > k

p

n

; otherwise, in the former case, the answer is the empty set while

in the latter case there is e�ectively no range-restriction. Find the index i such that

k

p

im

� a > k

p

(i+1)m

:
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Then, solve the generalized query PR(q; S

i

) using the structure DS

i

, and solve the

generalized query TPR(q; [a;1); S

0

i

) using the structure TDS

i

. Output the union of

the colors reported by these two queries, after having removed duplicate colors.

Lemma 1 The basic transformation results in a data structure for the generalized

searching problem TPR(q; [a :1); S)

1. with a query time of O((log n)

max(u;v)

+ C),

2. using O(n

2+�

=m+ nm

w�1

) space.

Proof: To prove the correctness of the query algorithm, observe that all elements p of

Sn(S

i

[S

0

i

) have a parameter k

p

that is smaller than a. Hence, these elements certainly

do not satisfy the query. Moreover, all elements p of the set S

i

have a parameter k

p

that satis�es the range restriction.

It is clear that the query time of the transformed data structure is bounded by

O((log n)

max(u;v)

+C). (Note that each color is reported at most once by the query on

DS

i

and, similarly, by the query on TDS

i

.)

It remains to prove the space bound. The total size of the structures DS

i

, 0 � i <

n=m, is bounded by

O

0

@

n=m

X

i=0

(im)

1+�

1

A

= O

�

m

1+�

� (n=m)

1+�

� (n=m)

�

= O(n

2+�

=m):

Similarly, the total size of the structures TDS

i

is bounded by

O

0

@

n=m

X

i=0

m

w

1

A

= O(nm

w�1

):

This completes the proof.

Using this lemma, we can prove the main result of this section.

Theorem 1 Let DS be a data structure that stores a set S of n colored objects, such

that generalized queries PR(q; S) can be solved in O((log n)

u

+ C) time, for some

positive constant u. Let the size of DS be bounded by O(n

1+�

), where � is an arbitrarily

small positive constant. Let TDS be a data structure for the set S, such that generalized

queries TPR(q; [a : 1); S) can be solved in O((log n)

v

+ C) time, for some positive

constant v. Let the size of TDS be bounded by O(n

w

) for some constant w > 1.

There exists a data structure that solves generalized queries TPR(q; [a :1); S)

1. with a query time of O((log n)

max(u;v)

+ C),

2. using O(n

1+�

) space, for an arbitrarily small positive constant �.
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Proof: First assume that w > 2, i.e., the data structureTDS uses more than quadratic

space. Choosing m = n

1=w

in Lemma 1 gives a data structure for solving queries

TPR(q; [a :1); S), with a query time of O((log n)

max(u;v)

+ C), and using space

O(n

2+��1=w

+ n

2�1=w

);

which is bounded by O(n

2

), provided � � 1=w.

Hence, we can assume that the generalized problem TPR can be solved with

quadratic space and O((log n)

z

+ C) query time, where z = max(u; v).

We will prove by induction that for any positive integer constant ` there is a data

structure TDS

`

for the generalized problem TPR, with O((log n)

z

+ C) query time,

using O(n

1+1=`+�

) space. Choosing ` large enough, the space bound becomes O(n

1+2�

).

Hence, starting with �=2 instead of � will complete the proof.

For ` = 1, the claim has been proved already. So, let ` � 1, and assume the

claim holds for `. Apply Lemma 1 to the structures DS and TDS

`

, choosing m =

n

`=(`+1)

. This gives a data structure TDS

`+1

for solving queries TPR(q; [a : 1); S).

Straightforward calculations show that TDS

`+1

has a query time of O((log n)

z

+ C),

and uses O(n

1+1=(`+1)+�

) space.

Theorem 1 implies that in order to solve the generalized problem TPR, it su�ces to

have (i) a data structure for PR with polylogarithmic query time and O(n

1+�

) space,

and (ii) a data structure for TPR with polylogarithmic query time and polynomial

space. In many applications, the latter data structure is obtained from the following

result, which is due to van Kreveld [8] (Corollary 7.3 (ii)). For convenience, we restate

the result in [8] in a slightly di�erent form.

Theorem 2 ([8]) Let S be a set of n colored points in IR

d

, where d � 2 is a constant,

and let k be an integer constant. There exists a data structure of size O(n

d+�

), such

that for any query region q in IR

d

that is the intersection of at most k halfspaces,

we can in O(log n + C) time report the C distinct colors of all points of S that are

contained in q. Here � is an arbitrarily small positive constant.

3 Generalized query problems for fat triangles

Let S be a set of n colored points in the plane. We want to store these points in a

data structure, such that generalized fat triangle queries can be solved e�ciently. In

such a query, we are given a fat triangle, and we have to report the distinct colors

of all points of S that are contained in the triangle. A triangle is called fat, if all its

angles are at least equal to some �xed constant �.

We start by solving a simpler problem. Then, we apply Theorem 1 twice in order

to get our result.

Let R be a �xed ray that starts in the origin. If q is a point in the plane, then R

q

denotes the ray that is obtained by translating R such that its starting point coincides

with q, i.e., R

q

= R + q. Consider generalized queries of the following form: Given a

point q and a ray T starting in q, such that T makes an angle at most � with R

q

. We

want to report the distinct colors of those points of S that are contained in the wedge
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de�ned by T and R

q

. By Theorem 2, there is a data structure TDS for this wedge

problem having O(log n+ C) query time and using polynomial space.

Let DS be the data structure of [5] for solving the generalized halfplane searching

problem with O((log n)

2

+ C) query time using O(n log n) space.

We show that we obtain the above wedge problem by adding a half-in�nite range

restriction to DS . In a query, we want to report the distinct colors of those points that

are, say, below the line through T and, say, above the line through R

q

. Let ` be the

line through the origin orthogonal to R. Project all points of S onto `. Each point of

S gets this projection as the additional parameter. Note that these parameters de�ne

an ordering along ` in the natural way. A point of S is above the line through R

q

if

and only if its additional parameter is \larger" than the projection of q onto `, where

\larger" refers to the ordering along `. Hence, among all points that are larger than

q's projection, we want the distinct colors of those that are below the line through T .

Therefore, applying Theorem 1 to DS and TDS , we get the following result.

Lemma 2 Let S be a set of n colored points in the plane, and let R be a �xed ray that

starts in the origin. There exists a data structure of size O(n

1+�

) such that for any

point q and any ray T starting in q, such that T makes an angle at most � with R

q

(i.e., the ray R translated to q), we can report in O((log n)

2

+ C) time, all C distinct

colors of those points of S that are contained in the wedge de�ned by T and R

q

. Here,

� is an arbitrarily small positive constant.

Next, we show how to solve generalized fat wedge queries. In such a query, we are

given a wedge whose angle is between � and �, where � is a constant.

Choose t = d2�=�e coordinate systems CS

i

= (x

i

; y

i

), all sharing the origin, such

that CS

i+1

is o�set from CS

i

by an angle �. For each i, let DS

i

be the data structure

of Lemma 2 storing the points of S, where we take R = x

i

.

A fat wedge query is solved as follows. Let q be the apex of the query wedge, and

let A and B be its bounding rays. Find an index i, such that (x

i

)

q

|i.e., x

i

translated

by the vector q|is contained in the wedge. Then we query the data structure DS

i

twice, once with the wedge de�ned by A and (x

i

)

q

, and once with the wedge de�ned

by B and (x

i

)

q

. We output the union of the colors reported by these two queries, after

having removed duplicate colors. This proves:

Lemma 3 Let S be a set of n colored points in the plane. There exists a data structure

of size O(n

1+�

) such that for any fat query wedge, we can report in O((log n)

2

+ C)

time, all C distinct colors of those points of S that are contained in it. Here, � is an

arbitrarily small positive constant.

Now we are ready to consider generalized fat triangle queries. Let T be a fat query

triangle. We decompose T into two triangles T

1

and T

2

by drawing a vertical line

through the middle vertex. Hence, for i = 1; 2, T

i

has a vertical side, and the vertex

opposite to this side has angle at least �. We can think of T

i

as a range-restricted

fat-wedge query, where the additional parameter of a point of S is its x-coordinate.

Our goal is to get a data structure DS

0

for such a query which uses O(n

1+�

) space and

has a query time of O((log n)

2

+ C). Given DS

0

, we can solve the fat triangle query
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for T by querying DS

0

with T

1

and T

2

, and reporting the union of the colors reported

by these two queries.

Let DS be the data structure of Lemma 3. By Theorem 2, there is a data structure

TDS for range-restricted fat-wedge queries having O(log n+C) query time and using

polynomial space. Then, Theorem 1 gives the data structure DS

0

. This proves the

following result.

Theorem 3 Let S be a set of n colored points in the plane. There exists a data struc-

ture of size O(n

1+�

) such that for any fat query triangle, we can report in O((log n)

2

+

C) time, all C distinct colors of those points of S that are contained in it. Here, � is

an arbitrarily small positive constant.

Using basically the same approach, we can solve the generalized searching problem

of querying fat triangles with points. We leave the details to the reader.

Theorem 4 Let S be a set of n colored fat triangles in the plane. There exists a data

structure of size O(n

1+�

) such that for any query point q, we can report in O((log n)

2

+

C) time, all C distinct colors of those triangles of S that contained q. Here, � is an

arbitrarily small positive constant.

4 Concluding remarks

We have given a general technique for adding a range restriction to a generalized

searching problem. This results in data structures for generalized searching problems

on fat triangles having O((log n)

2

+ C) query time using O(n

1+�

) space.

Our technique can also be used to solve the d-dimensional generalized orthogonal

range searching problem with O(log n+ C) query time and O(n

1+�

) space. (This was

known already, see Corollary 7.3 (i) in [8].) It remains open if this problem can be

solved with O(polylog(n) + C) query time and O(n(log n)

O(1)

n) space for dimensions

d � 4. (For e�cient solutions in dimensions d � 3, see [4, 6].)

The results of this paper only apply to generalized reporting problems. In a gen-

eralized counting problem, we want to report the number of distinct colors of the

objects that intersect the query object. Is there a general technique for adding a range

restriction to such generalized counting problems?
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