2 research outputs found

    Über den Einfluss der Fußgeometrie auf die Energieeffizienz beim zweibeinigen Gehen

    Get PDF
    Der Einfluss der Fußgeometrie auf die Energieeffizienz beim zweibeinigen Gehen wird untersucht. Es wird eine Methode zur Optimierung der Fußgeometrie für einen zweibeinigen Roboter entwickelt. Grundlage ist ein ebenes Modell mit beliebieger, konvexer Fußgeometrie in Kombination mit einer Regelung auf Basis der hybriden Nulldynamik. Es werden optimale Bewegungen und Fußgeometrien ermittelt. Im Vergleich zu einem Modell mit Punktfüßen ergeben sich Energieeinsparungen von über 80%

    Über den Einfluss der Fußgeometrie auf die Energieeffizienz beim zweibeinigen Gehen

    Get PDF
    Die Energieeffizienz beim Gehen ist ein wichtiger Aspekt bei der Entwicklung zweibeiniger Roboter. Diese verfügen nur über einen begrenzten Energiespeicher, mit dem ein möglichst langer Betrieb angestrebt wird. Die Energieeffizienz wird einerseits von der konstruktiven Gestaltung und den Modellparametern beeinflusst, andererseits jedoch auch von der verwendeten Regelung, mit der die Bewegung erzeugt und stabilisiert wird. In einem Entwicklungsprozess werden daher bei der Konzeption und der konstruktiven Gestaltung bereits früh Modelle zur Simulation und Methoden zur Optimierung benötigt. Da in diesem Entwicklungsstadium erst wenige Details konkretisiert und festgelegt sind, eignen sich einfache Mehrkörpermodelle für diese Fragestellung. Durch eine Regelung auf Basis der hybriden Nulldynamik können für solche Systeme stabile Gehbewegungen mit hoher Energieeffizienz erzeugt werden, die die natürliche Dynamik des Systems ausnutzen. In dieser Arbeit wird untersucht, welchen Einfluss die Fußgeometrie auf die Energieeffizienz beim zweibeinigen Gehen hat und wie diese bei der Entwicklung eines zweibeinigen Roboters optimiert werden kann. Hierfür wird ein Modell für einen konvexen, starren Fuß entwickelt, dessen Kontaktpunkt mit dem Boden explizit berechnet werden kann. Dadurch ist eine Beschreibung der Abrollbewegung in Minimalkoordinaten möglich und für die Dynamik des Gesamtsystems kann eine gewöhnliche Differentialgleichung abgeleitet werden. Für das Fußmodell werden zwei Parametrierungen entwickelt, bei denen jeweils von einem Polygon ausgegangen wird, dessen Kanten abgerundet werden, damit sich eine kontinuierliche Abrollbewegung ergibt. Auf diese Weise wird ein flacher Fuß, und ein Fuß mit zusätzlichem Zehenbereich beschrieben. Der Roboter wird durch ein ebenes Mehrkörpersystem beschrieben, das aus einem Oberkörper, Oberschenkeln, Unterschenkeln und dem konvexen Fuß besteht, die jeweils durch Drehgelenke in Hüfte, Knie und Sprunggelenk miteinander verbunden sind. Für dieses System wird eine Regelung auf Basis der hybriden Nulldynamik entworfen. Dieses Regelungskonzept wird somit auf Systeme mit beliebiger Fußgeometrie erweitert. Mittels numerischer Optimierung werden optimale Gehbewegungen erzeugt und zugleich die Fußgeometrie optimiert. Zur Durchführung von Parameterstudien wird eine numerische Fortsetzungsmethode für dieses nichtglatte Problem entwickelt. Durch die Optimierung der Fußgeometrie kann der durchschnittliche Energieverbrauch eines 80 kg schweren und 1,80 m großen Roboters im Geschwindigkeitsbereich 0,3 bis 2,3 m/s gegenüber einem Modell mit Punktfüßen um 81 % reduziert werden
    corecore