10,271 research outputs found

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Knowledge management support for enterprise distributed systems

    No full text
    Explosion of information and increasing demands on semantic processing web applications have software systems to their limits. To address the problem we propose a semantic based formal framework (ADP) that makes use of promising technologies to enable knowledge generation and retrieval. We argue that this approach is cost effective, as it reuses and builds on existing knowledge and structure. It is also a good starting point for creating an organisational memory and providing knowledge management functions

    Enterprise engineering using semantic technologies

    No full text
    Modern Enterprises are facing unprecedented challenges in every aspect of their businesses: from marketing research, invention of products, prototyping, production, sales to billing. Innovation is the key to enhancing enterprise performances and knowledge is the main driving force in creating innovation. The identification and effective management of valuable knowledge, however, remains an illusive topic. Knowledge management (KM) techniques, such as enterprise process modelling, have long been recognised for their value and practiced as part of normal business. There are plentiful of KM techniques. However, what is still lacking is a holistic KM approach that enables one to fully connect KM efforts with existing business knowledge and practices already in IT systems, such as organisational memories. To address this problem, we present an integrated three-dimensional KM approach that supports innovative semantics technologies. Its automated formal methods allow us to tap into modern business practices and capitalise on existing knowledge. It closes the knowledge management cycle with user feedback loops. Since we are making use of reliable existing knowledge and methods, new knowledge can be extracted with less effort comparing with another method where new information has to be created from scratch

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    The business process modelling ontology

    Get PDF
    In this paper we describe the Business Process Modelling Ontology (BPMO), which is part of an approach to modelling business processes at the semantic level, integrating knowledge about the organisational context, workflow activities and Semantic Web Services. We harness knowledge representation and reasoning techniques so that business process workflows can: be exposed and shared through semantic descriptions; refer to semantically annotated data and services; incorporate heterogeneous data though semantic mappings; and be queried using a reasoner or inference engine. In this paper we describe our approach and evaluate BPMO through a use case

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures
    corecore