2,107 research outputs found

    Semantic web technologies for video surveillance metadata

    Get PDF
    Video surveillance systems are growing in size and complexity. Such systems typically consist of integrated modules of different vendors to cope with the increasing demands on network and storage capacity, intelligent video analytics, picture quality, and enhanced visual interfaces. Within a surveillance system, relevant information (like technical details on the video sequences, or analysis results of the monitored environment) is described using metadata standards. However, different modules typically use different standards, resulting in metadata interoperability problems. In this paper, we introduce the application of Semantic Web Technologies to overcome such problems. We present a semantic, layered metadata model and integrate it within a video surveillance system. Besides dealing with the metadata interoperability problem, the advantages of using Semantic Web Technologies and the inherent rule support are shown. A practical use case scenario is presented to illustrate the benefits of our novel approach

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    The Distributed Ontology Language (DOL): Use Cases, Syntax, and Extensibility

    Full text link
    The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper presents the current state of DOL's standardization. It focuses on use cases where distributed ontologies enable interoperability and reusability. We demonstrate relevant features of the DOL syntax and semantics and explain how these integrate into existing knowledge engineering environments.Comment: Terminology and Knowledge Engineering Conference (TKE) 2012-06-20 to 2012-06-21 Madrid, Spai

    Business Level Service-Oriented Enterprise Application Integration

    Get PDF
    In this paper we propose a new approach for service-oriented enterprise application integration (EAI). Unlike current EAI solutions, which mainly focus on technological aspects, our approach allows business domain experts to get more involved in the integration process. First, we provide a technique for modeling application services at a sufficiently high level of abstraction for business experts to work with. Next, these business experts can model the orchestration as well as the information mappings that are required to achieve their integration goals. Our mediation framework then takes over and realizes the integration solution by transforming these models to existing service orchestration technology

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web

    Full text link
    In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers
    corecore