49,581 research outputs found

    Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge

    Full text link
    This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.Comment: Federated Conference on Computer Science and Information Systems, Prague (FedCSIS-2017) (Prague, Czech Republic

    Learning with Scalability and Compactness

    Get PDF
    Artificial Intelligence has been thriving for decades since its birth. Traditional AI features heuristic search and planning, providing good strategy for tasks that are inherently search-based problems, such as games and GPS searching. In the meantime, machine learning, arguably the hottest subfield of AI, embraces data-driven methodology with great success in a wide range of applications such as computer vision and speech recognition. As a new trend, the applications of both learning and search have shifted toward mobile and embedded devices which entails not only scalability but also compactness of the models. Under this general paradigm, we propose a series of work to address the issues of scalability and compactness within machine learning and its applications on heuristic search. We first focus on the scalability issue of memory-based heuristic search which is recently ameliorated by Maximum Variance Unfolding (MVU), a manifold learning algorithm capable of learning state embeddings as effective heuristics to speed up A∗A^* search. Though achieving unprecedented online search performance with constraints on memory footprint, MVU is notoriously slow on offline training. To address this problem, we introduce Maximum Variance Correction (MVC), which finds large-scale feasible solutions to MVU by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. We further propose Goal-oriented Euclidean Heuristic (GOEH), a variant to MVU embeddings, which preferably optimizes the heuristics associated with goals in the embedding while maintaining their admissibility. We demonstrate unmatched reductions in search time across several non-trivial A∗A^* benchmark search problems. Through these work, we bridge the gap between the manifold learning literature and heuristic search which have been regarded as fundamentally different, leading to cross-fertilization for both fields. Deep learning has made a big splash in the machine learning community with its superior accuracy performance. However, it comes at a price of huge model size that might involves billions of parameters, which poses great challenges for its use on mobile and embedded devices. To achieve the compactness, we propose HashedNets, a general approach to compressing neural network models leveraging feature hashing. At its core, HashedNets randomly group parameters using a low-cost hash function, and share parameter value within the group. According to our empirical results, a neural network could be 32x smaller with little drop in accuracy performance. We further introduce Frequency-Sensitive Hashed Nets (FreshNets) to extend this hashing technique to convolutional neural network by compressing parameters in the frequency domain. Compared with many AI applications, neural networks seem not graining as much popularity as it should be in traditional data mining tasks. For these tasks, categorical features need to be first converted to numerical representation in advance in order for neural networks to process them. We show that a na\ {i}ve use of the classic one-hot encoding may result in gigantic weight matrices and therefore lead to prohibitively expensive memory cost in neural networks. Inspired by word embedding, we advocate a compellingly simple, yet effective neural network architecture with category embedding. It is capable of directly handling both numerical and categorical features as well as providing visual insights on feature similarities. At the end, we conduct comprehensive empirical evaluation which showcases the efficacy and practicality of our approach, and provides surprisingly good visualization and clustering for categorical features

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    • …
    corecore