3,599 research outputs found

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    Analytical Methods for High Dimensional Physiological Sensors

    Get PDF
    abstract: This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional sources and there is an important need for analytical methods to translate this data into improved learning. Affecting Computing which is the study of new techniques that develop systems to recognize and model human emotions is integrating different physiological signals such as electroencephalogram (EEG) and electromyogram (EMG) to detect and model emotions which later can be used to improve these learning systems. The first contribution proposes an event-crossover (ECO) methodology to analyze performance in learning environments. The methodology is relevant to studies where it is desired to evaluate the relationships between sentinel events in a learning environment and a physiological measurement which is provided in real time. The second contribution introduces analytical methods to study relationships between multi-dimensional physiological signals and sentinel events in a learning environment. The methodology proposed learns physiological patterns in the form of node activations near time of events using different statistical techniques. The third contribution addresses the challenge of performance prediction from physiological signals. Features from the sensors which could be computed early in the learning activity were developed for input to a machine learning model. The objective is to predict success or failure of the student in the learning environment early in the activity. EEG was used as the physiological signal to train a pattern recognition algorithm in order to derive meta affective states. The last contribution introduced a methodology to predict a learner's performance using Bayes Belief Networks (BBNs). Posterior probabilities of latent nodes were used as inputs to a predictive model in real-time as evidence was accumulated in the BBN. The methodology was applied to data streams from a video game and from a Damage Control Simulator which were used to predict and quantify performance. The proposed methods provide cognitive scientists with new tools to analyze subjects in learning environments.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    A Survey of Attention Deficit Hyperactivity Disorder Identification Using Psychophysiological Data

    Get PDF
    Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders among children, that affects different areas in the brain that allows executing certain functionalities. This may lead to a variety of impairments such as difficulties in paying attention or focusing, controlling impulsive behaviours and overreacting. The continuous symptoms may have a severe impact in the long-term. This paper explores the ADHD identification studies using eye movement data and functional Magnetic Resonance Imaging (fMRI). This study discusses different machine learning techniques, existing models and analyses the existing literature. We have identified the current challenges and possible future directions to provide computational support for early identification of ADHD patients that enable early treatments

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events Using Long-Term Time-Series Data

    Get PDF
    In medicine, one often bases decisions upon a comparative analysis of patient data. In this paper, we build upon this observation and describe similarity-based algorithms to risk stratify patients for major adverse cardiac events. We evolve the traditional approach of comparing patient data in two ways. First, we propose similarity-based algorithms that compare patients in terms of their long-term physiological monitoring data. Symbolic mismatch identifies functional units in long-term signals and measures changes in the morphology and frequency of these units across patients. Second, we describe similarity-based algorithms that are unsupervised and do not require comparisons to patients with known outcomes for risk stratification. This is achieved by using an anomaly detection framework to identify patients who are unlike other patients in a population and may potentially be at an elevated risk. We demonstrate the potential utility of our approach by showing how symbolic mismatch-based algorithms can be used to classify patients as being at high or low risk of major adverse cardiac events by comparing their long-term electrocardiograms to that of a large population. We describe how symbolic mismatch can be used in three different existing methods: one-class support vector machines, nearest neighbor analysis, and hierarchical clustering. When evaluated on a population of 686 patients with available long-term electrocardiographic data, symbolic mismatch-based comparative approaches were able to identify patients at roughly a two-fold increased risk of major adverse cardiac events in the 90 days following acute coronary syndrome. These results were consistent even after adjusting for other clinical risk variables.National Science Foundation (U.S.) (CAREER award 1054419
    • …
    corecore