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ABSTRACT

This dissertation proposes a new set of analytical methods for high dimensional

physiological sensors. The methodologies developed in this work were motivated

by problems in learning science, but also apply to numerous disciplines where high

dimensional signals are present. In the education field, more data is now available

from traditional sources and there is an important need for analytical methods to

translate this data into improved learning. Affecting Computing which is the study

of new techniques that develop systems to recognize and model human emotions is

integrating different physiological signals such as electroencephalogram (EEG) and

electromyogram (EMG) to detect and model emotions which later can be used to

improve these learning systems.

The first contribution proposes an event-crossover (ECO) methodology to ana-

lyze performance in learning environments. The methodology is relevant to studies

where it is desired to evaluate the relationships between sentinel events in a learning

environment and a physiological measurement which is provided in real time.

The second contribution introduces analytical methods to study relationships be-

tween multi-dimensional physiological signals and sentinel events in a learning en-

vironment. The methodology proposed learns physiological patterns in the form of

node activations near time of events using different statistical techniques.

The third contribution addresses the challenge of performance prediction from

physiological signals. Features from the sensors which could be computed early in

the learning activity were developed for input to a machine learning model. The

objective is to predict success or failure of the student in the learning environment

early in the activity. EEG was used as the physiological signal to train a pattern

recognition algorithm in order to derive meta affective states.

The last contribution introduced a methodology to predict a learner’s performance
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using Bayes Belief Networks (BBNs). Posterior probabilities of latent nodes were

used as inputs to a predictive model in real-time as evidence was accumulated in the

BBN. The methodology was applied to data streams from a video game and from

a Damage Control Simulator which were used to predict and quantify performance.

The proposed methods provide cognitive scientists with new tools to analyze subjects

in learning environments.
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Chapter 1

INTRODUCTION

1.1 Motivation

Since the first publication of Picard’s seminal paper on ”affective computing” in

1995 there has been a bloom of research related to this area (See Fig. 1.1). For

example, in the very highly cited paper [1] the authors present a multimodal dataset

in order to analyze human affective states. In this study participants watched 40

one-minute long videos with the objective of eliciting different emotions which were

classified in terms of levels of familiarity, dominance, like/dislike and arousal. In this

experiment electroencephalogram (EEG) was used for the classification of low/high

levels of emotions using a Naive Bayes classifier. In another prominent paper [2], the

authors provide a taxonomy for procedural content generation (PCG) algorithms in

order to personalize user experience by analyzing the cognitive and affective state of

users. In order to show the effectiveness of their approach they employ games which

are a good source to study emotions in human computer interfaces (HCI) because they

can elicit complex patterns of affective states. Moreover, in [3] authors use machine

learning techniques such as Support Vector Machines and Neural Networks to identify

affective states during context-specific scenarios using different sources such as: facial

expressions, audio cues and shoulder gesture as physiological inputs.

1.2 Physiological Signals in Affective Computing

According to [4] the most basic emotions are normally classified as: joy, sadness,

fear and anger. However, there is no complete agreement between theorists about

1



Figure 1.1: No. of Publications on Affective Computing According to Google Scholar.

what a basic emotions is, having researchers who list happiness and sadness as the

only two basic emotions and other authors who list up to 20 different types. The

two dimensional emotion model is another popular representation for affective states

which is represented by a horizontal axis of negative/positive valence and a vertical

axis of low/high arousal [5]. In this model valence ranges from pleasant (positive)

to unpleasant (negative) emotions while arousal ranges from calm (low arousal) to

excited (high arousal). Under this model, joy for example would be located in the

upper right quadrant of positive valence and high arousal while sadness would be

composed of low arousal and moderate negative valence.

Certain parts of the brain have been identified to play an important role in humans’

affective states. For example, the left frontal region of the brain has been observed to

be more involved in positive emotions such as happiness and joy while the right frontal

area shows more activation for negative experiences such as sadness and fear [6].

Another study [7] observed that occipital high theta and low alpha asymmetry over

the central nodes activity increased while participants played violent video games and

2



confirmed that EEG was a reliable method when compared to approaches traditionally

used in the field. Certain parts of the brain have also been associated with cognitive

activity for example, elevated levels of activity in the pre-frontal cortex is believed to

be associated with short-term memory in humans.

Sometimes researchers are also interested in analyzing not only affective states

but also mental states such as awake/sleep and alert/drowsy [8] and these states have

been linked to increase/decrease activity in certain parts of the brain. For example,

in [9] researchers developed an EEG-based system to detect cognitive impairments in

truck drivers in order to detect early signals of fatigue and drowsiness caused by sleep

deprivation because these mental states have been linked to a decrease in cognitive

performance. Working memory and mental workload are other constructs that are

not emotions per se but are strongly related to cognitive performance in humans

[10]. Working memory is responsible for the processing, manipulation and retrieval of

information and it is critical for reasoning and learning while mental workload is the

level of cognitive processes occurring in the brain and it establishes the relationship

between cognitive tasks demands and the capacity of an individual’s working memory

[11].

The critical role of emotions and their influence on cognitive performance and

learning have been studied recently and the body of literature has been steadily

growing [12]. Moreover, it has been shown that people’s emotions strongly affect

productivity and the learning process and therefore it is important to be able to

recognize and interpret the learner’s different affective states in order to ensure an

affective learning [13]. One area of application of Affective Computing is in the design

of Intelligent Tutoring Systems (ITS) which are computer-based systems that try to

adapt to humans in order to enhance learning. The human tutor has been seen as the

gold standard in personalized learning and efforts are made to develop ITS which can

3



provide the same level of instructional advantage. Humans are good at recognizing

emotions and human tutors use this skill to engage students in order to generate good

quality learning by encouraging creativity and facilitating a flexible environment for

problem solving. The analysis and understanding of emotions and how they affect

learning performance therefore becomes critical. As a consequence, a pre-requisite

for a good ITS is to be able to monitor learner’s affective states and take actions

according to the information gathered from the subject regarding his individual and

unique experience and also his emotions [12]. Hence, the first challenge of an ITS is

how do we measure information about an individual’s affective states and how do we

build good predicting models to be included as part of a tutoring system. The next

section talks about how physiological signals can help us model affective states.

1.3 Physiological Signals in Affective Computing

Different methods have been proposed to study and recognize emotions which

include: neurophysiologic response, self-report, behavioral response and autonomic

measurement among others [14]. Researchers have noticed that emotional changes in

humans produce changes in different physiological response such as: blood pressure,

heart rate, skin conductance and temperature [6]. These physiological signals are a

good way of measuring users’ affective states because they are non-intrusive and cause

less distraction to participants unlike self-reported methods where participants need

to interrupt the cognitive task in order to provide feedback about his current emo-

tional state. Ideally we would like to use non-intrusive methods to measure affective

states because subjects are not required to perform additional tasks that are not re-

lated to the primary goal. Non-intrusive measurements allow to quickly track affective

state changes and don’t rely on self-report methods which are disrupting and highly

unreliable even within the same participant. Furthermore, physiological data is pro-
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vided in real-time on a continuous stream while other type of overt behavior normally

is incomplete and it is provided intermittent on discrete intervals [15]. Facial expres-

sions, voice or speech are another type sources used to model affective states as well as

body language and posture which have been used to study different emotions. How-

ever, most reliable and efficient physiological measurements come from four sources:

brain, heart, skin and muscles. For brain we have electroencephalogram (EEG), func-

tional magnetic resonance imaging (fMRI), electrocorticography (ECoG), functional

near-infrared spectroscopy (fNIRS), magneto-encephalography (MEG), intracortical

electrodes (ICE) and positron emission tomography (PET) [16]. For heart we have

electrocardiograms (ECG o EKG), for muscles we have electromyogram (EMG) and

in order to measure skin conductivity there are sensors which measure the electroder-

mal activity (EDA) [17]. All of these physiological signals have been used to model

different affective states. For example, EMG has been shown to be a good predictor

of motor preparation before a body movement [18] and there is a large body of lit-

erature involving the use of EEG to explore the relationship between affective states

and cognitive performances [10], [19], [20], [21] and [22]. In the next section we will

see how the EEG is a reliable and low cost physiological device.

1.4 EEG as a Reliable Physiological Input

The methods and techniques outlined in this work can be applied to different

and even combined physiological signals which are not restricted to the ones we just

mentioned. However, the current proposal is mainly focused on the use of EEG as

the primary physiological signal. The first attempts to model cognitive activity can

be traced back to Berger and his discovery of EEG and the alpha waves in 1929

and even though there are several devices used to study brain activity in terms of

portability, reliability and costs EEG turns out to be a very practical tool to use in a
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research setting. EEG has been used to study different cognitive functions including

but not limited to: emotions, language, memory, perception and social cognition. The

signals captured by EEG can be associated with different brain processes and they are

detected by the synchronization and desynchronization of neurons in specific parts of

the brain [20]. However, the main goal is not to understand the physical properties

of the brain but to be able to understand cognitive processes and behavior. Another

reason why EEG is a good tool to analyze cognitive processes is that is able to directly

analyze neural activity which is the voltage oscillations that can be measured on the

scalp and those fluctuations are a direct result of cortex activity [23]. Perhaps the

main reason why EEG is an excellent tool to analyze the brain is that it also provides

a multidimensional signal which contains topographical information about neural

processes. This is possible because each of the electrodes is located on a specific area

of the skull and they capture voltage oscillations which contains both temporal and

spatial information. As a matter of fact, EEG provides information in four domains:

time, space, frequency and phase which enable researchers with different options to

explore a wide array of psychological and physiological experiments.

In order to analyze brain waves different techniques have been proposed which

include spectral analysis, synchronization and time-frequency transformations. EEG

is widely used because it is able to capture brain dynamics at the time the cognition

happens. The motor, emotional, linguistic, perceptual processes occur very quickly

in matters of seconds and milliseconds and very few devices are capable of record-

ing this information in real time in a reliable way at a low cost [23]. The activity

produced by neurons is captured by the EEG and contains both spatial, temporal

and spectral information. Spatial because the sensors located in different parts of

the skull provide topographical information about the source and origin of the neural

activity. Temporal because an increase/decrease of neural activity before, during and
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after and stimuli can provide some insights about the cognitive process and spectral

because the signal can be decomposed into different frequencies which are known

to be related to certain brain activity. The θ (theta) wave band is in the low side

of the spectrum around 4-7 Hz and it is implicated in different cognitive functions

such as cognitive control and memory. The δ (delta) is even slower at 1-3 Hz while

the β (beta) bandwidth is in the 13-30 Hz frequency. Analyzing these bandwidths

and some features generated from ratios researchers have found significant results for

identifying different motivational traits, cognitive performance, emotions and even

psychopathology [22].

The most popular feature extraction method for EEG signals is perhaps spectral

analysis by using the Fourier transform. However, one of the shortcomings of this

approach is that once we go from time to frequency domain all the temporal informa-

tion is lost. As a consequence, other time-frequency approaches such as the discrete

wavelet transform (DWT) and short time Fourier transform (STFT) have be pro-

posed which consider both the temporal as well as the spectral information provided

by the EEG. Hence, human cognition can be better understood by electrical changes

in the participants’ scalp which are associated with mental activity in a non-intrusive

way.

In order to model the different cognitive and affective states different machine

learning approaches have been proposed. In ideal situations the goal of any data

mining or machine learning technique applied to the problem of modeling affective

states should produce high accuracy while maintaining a low computational complex-

ity [24]. For example in [10] the researchers fitted a discriminative model to classify

engagement at different levels of intensity using a headset containing only 10 sen-

sors. In another study [25] the authors used fuzzy k-means and fuzzy c-means as the

clustering methods to classify emotions initially using 64 sensors and decreasing the
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number of electrodes down to 24 without sacrificing accuracy. The process followed

by researchers to model different emotional states using EEG goes as follows: first

the EEG raw signal is collected and a pre-processing phase is executed in order to

reduce the noise of the signal as well as applying spatial and temporal filters to the

EEG. After the signal has been pre-processed features are extracted applying different

signal processing techniques such as even related potentials (ERPs), spectral power

decomposition or phase synchronization. The last step is to apply either continuous

(regression) or discrete (classification) machine learning models in order to estimate

the various emotional states [14].

Another interesting construct that researcher have tried to model that is not

directly related to affective states is cognitive workload which is defined as the total

effort in the working memory. For example, in [26] the authors found that frontal

theta activity in humans increases with the number of items retained in working

memory while in [21] it was found for example that EGG alpha and beta bandwidths

reflect cognitive and memory performance. For workload, features can be extracted

using different techniques including: phase-based, spectral-based and time-based in

order to characterize this construct like in [27] where researchers used a multi-class

support vector machine (SVM) using the aforementioned features using EEG sensors

as the raw signal in order to build a profile for working memory.

EEG headset providers rely on the techniques explained above in order to come

up with robust models that perform well not only on a specific individual but that

are able to generalize to larger populations. In order to achieve this objective, re-

searchers extract feature that are good predictors across a wide range of different

populations and perform baseline tests before the main experiment in order to ac-

commodate individual differences and increase predictions accuracy. Topographical

information about sensors is also considered during the modeling phase. For exam-
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ple, in [8] the experimenters found that topographical information derived from EEG

provided useful information regarding the type of cognitive activity participants were

performing on 14 different tasks. In the next section we talk about the contribution

and organization of this dissertation considering the use of physiological signals to

understand different affective states near the time of events.

1.5 Organization and Contributions of This Dissertation

The objective of this proposed research is to develop analytical methods for high

dimensional physiological sensors. The methodologies developed in this work are ap-

plicable to numerous problems in learning science and also in industrial settings where

high dimensional signals are present. In order to show the robustness of the method-

ologies proposed in this work we present different experiments in which we had a

group of subjects participating on different learning environment systems. The char-

acteristics of these dynamic learning environments is that they are complex and have

multiple events embedded in time. In all the experiments a vector of physiological

measurements yt is continuously recorded where t represents time. Lessons learned

in this work can be potentially used to analyze the relationship between events and

physiological signals that later can be used to design robust ITS.

Chapter 2 proposes a robust methodology for performance assessment which can

be applied to different event-driven learning environments using any type of phys-

iological signal to monitor users’ affective states. The methodology which we have

called the event-crossover (ECO) has some analogies with the case-crossover which has

been used to evaluate a measurement obtained continuously in real time near acute

(abrupt) events. Unlike the case-crossover which usually considers longer time inter-

vals such as days, the ECO works on time intervals of seconds and even milliseconds

which adapts pretty well to the high frequency sampling rate of most physiological
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devices. The methodology is relevant to studies with the following characteristics: the

experiment involves a learning environment with different types of events occurring

a different points in time as a consequence of the user’s decision making process and

it is desired to evaluate the relation between these events which exhibit a random

pattern and occur abruptly and the physiological measurement which is provided

continuously in real time. The main advantage of the ECO is that each subject acts

as its own control which avoids the traditional necessity of controlling for other con-

founded effects such as age, gender, health, skill level, gaming experience, etc. In this

contribution we also introduce the concept of a moving hazard window in order to

analyze the physiological signal before, during and after specific events. For illustra-

tion purposes the methodology is applied to analyze error rates in a popular video

game using affective constructs provided by an EEG headset. Significant effects are

detected following this methodology.

Chapter 3 introduces three approaches to analyze events that occur randomly

during a learning environment and are embedded in time and where a multi-sensor

physiological signal is provided in real-time. Instead of analyzing each of the sig-

nal components separately as in the previous contribution we propose a multivariate

approach to simultaneously examine different patterns around events related to the

participant’s performance. The high dimensionality on this type of study is caused

by the availability of different devices simultaneously recording physiological signals

such as: electromyograms (EMG) to detect muscle activity, electrodermal activity

(EDA) for skin conductivity, electrocardiogram (EKG, EOG) for heart rate, elec-

trooculogram (EOG) for eyes movement and EEG to record brain activity. In the

first approach we propose a multivariate version of the event-crossover where instead

of analyzing the different physiological signals independently we use all the informa-

tion of the input vector distribution near time of events using multivariate methods
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to draw conclusions. In the second approach we tried to address the question: Given

a multidimensional physiological signal from a subject, what is the affective state of

this subject at a given time or event and how can this state be represented? For this

purpose we represent different physiological patterns in the form of weight combina-

tions using self-organizing maps (SOM) which are a type of artificial neural network

which maps high-dimensional data into a lower dimension representation without the

need of any labels. The characteristics of interpretability and the preservation of

topographical properties make this approach suitable for the analysis of physiolog-

ical signals. Once the SOM was trained various statistical techniques were applied

to analyze correlated proportions of node activations near time of events. In the

last methodology proposed we compare for differences in the physiological signals

between two groups at the time of specific events using univariate and multivari-

ate methods. In order to show the effectiveness of these new methodologies a case

study is presented analyzing events and the decision making process using a damage

control simulator as the learning environment. The physiological signal used in the

experiment is electroencephalogram (EEG). Significant results for all approaches are

found. The methodologies proposed in this contribution can help better understand

the decision making of participants around events in a complex learning environment.

Lessons learned can be used by researchers and educators to improve the design of

intelligent tutoring systems where physiological input signals are intended to be used

to adapt the system, enhance user experience and improve learning.

Chapter 4 addresses the challenge of performance prediction using a physiological

signal. In this contribution the methodology Bag of States is proposed with the goal

of extracting features that later could be used on a machine learning model to make

a two class (pass/fail) classification. The intention of the methodology presented is

to provide cognitive scientists with the statistical and machine learning tools to be
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able to design a feedback system which considers different user’s profiles in order to

increase engagement, provide enjoyment, stimulate attention while preventing fail-

ure. We have employed the affective constructs provided by a research-grade EEG

device as our main input but the methodology can be used to fit a wide variety of

physiological signals. The methodology makes use of self-organizing maps (SOMs) to

define different affective states but unlike the previous approach this time the SOM

provides the time spent on a given affective state and this information is later used

as input on a machine learning model. Once the SOM is trained with the physiolog-

ical signal the number of activations is counted for each of the output nodes and fed

into a logistic regression model. We have named the methodology Bag of Affective

States (BAS) because it resembles a bag-of-words model which is one of the most

popular techniques for object categorization [28]. The methodology was applied to

a damage control simulator where participants required to perform several complex

tasks with the objective of putting out a fire on a submarine. A high cross-validated

accuracy was achieved even after reducing the number of affective constructs used

to train the SOM and also reducing the number of nodes selected for the machine

learning model. Findings suggest that participant who succeeded the mission were

more likely to spent time in an affective state formed by a combination of low levels

of engagement, distraction and drowsiness as well as low to moderate levels of work-

load in contrast with participants who failed who showed lower levels of engagement

and higher levels of workload. The utility of this methodology relies on the fact that

features were extracted in the first seconds of the simulation opening the door for a

close-loop system to be able to recognize the user emotional state early on and adapt

accordingly.

Chapter 5 introduces a novel way for predicting learners performance using Bayes

belief networks (BBNs) in order to provide the individual with the appropriate guid-
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ance to maximize learning. The current methodology presents a way of using a BBN

and its latent variables temporal information as inputs for a logistic regression model

in order to make predictions about performance. The utility of this approach is that

we consider time into the analysis and we focus on how early we can predict the final

outcome. Traditionally, BBNs need a lot of evidence in order to be reliable and they

are based partly on expert knowledge which sometimes could be biased. Furthermore,

the latent nodes of BNNs are normally associated with specific skills and psychome-

tricians generally analyze them in a unidimensional manner [29] not considering that

students skills are most of the time highly correlated. In this experiment a BBN

generated from a Damage Control Simulator was used to predict performance of 69

subjects. The posterior probabilities were updated in real-time as new evidence was

presented. Personal safety which was one of the latent nodes turned out to be the

most important predictor. The logistic regression model with 10-fold cross-validation

achieved high accuracy where we were able to predict as early as 38 seconds into

the simulation the final outcome of the session. Furthermore, by using logistic re-

gression and the latent nodes scores as inputs we open the door to explore potential

interactions between different latent skills challenging the ”unidimensional” approach

that traditionally pychometricians embrace. Ignoring the fact that the majority of

skills for a given objective are highly correlated can lead to miss important interac-

tions [29]. The results show that Bayes Belief Network which are normally included

in learning environments could be used in conjunction with machine learning algo-

rithms to predict performance early on. Furthermore, we show that it is possible

to identify the latent variables which have more discriminative power by means of

variable importance. The utility of this approach will help cognitive scientists to use

current available information embedded in tutoring systems to adapt and respond to

different users’ needs.
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Chapter 2

AFFECTIVE STATE ASSESSMENT IN A LEARNING ENVIRONMENT WITH

PHYSIOLOGICAL SIGNALS AND EVENT-CROSSOVER ANALYTICS

2.1 Introduction

Recently, EEG has been used to understand a subject’s affective states and predict

reactions to stimuli. For example, [30] used EEG and other physiological signals to

assess flow in games with the goal of anticipating users’ intentions. This is an interest-

ing area of research since emotions influence our actions, and therefore, dramatically

affect our daily activities [31]. Some of the affective states that past studies have used

or tried to model include happiness, surprise, anger, fear, disgust, sadness, fatigue,

stress, drowsiness/alertness, task engagement and mental workload [9, 10, 31]. For

example, in [20] the authors classified emotional responses when listening to different

types of music where both EEG and self-reported ratings were used. This is a major

improvement considering that the majority of the traditional affective assessments

were only self-reported using different theoretical models such as the Keller’s ARCS

[32].

Brain Computer Interfaces (BCI) have been designed using EEG allowing humans

to interact with their surroundings by using brain waves instead of muscles. The

neuroscience community believes that BCI have a great potential to improve the

quality of life of patients with disabilities [19]. Furthermore, BCI have moved from

being mainly used for medical purposes to other applications such as video games [16].

For example, in [33] the researchers successfully classified experts from novices while

playing a video game using logistic regression with a ridge parameter. BCI technology

14



has started to have a commercial application with games such as Mattel’s Mindflex,

which uses brain waves to control the height of a floating ball. Kinect motion tracking

sensor (Microsoft) has also been used in game environments using EEG functional

brain mapping to isolate body movements of participants while playing a virtual ball

game [34].

Intelligent Tutoring Systems (ITS) which try to combine cognitive sciences with

artificial intelligence and computer software have also looked to understand the stu-

dent’s emotional states to customize the tutoring experience and enhance learning

[35]. Unfortunately, the majority of the traditional techniques are invasive and dis-

rupt the learning process by asking participants about their feelings or workload in

the middle of a task. ITS in the form of Human Computer Interfaces (HCI) are

designed in different shapes, from formal software indented for educational purposes

to industry training, military training and simulators. In the case of education there

has been an increasing interest in exploring different types of data which come from

learning environment using data mining techniques [36].

Sometimes there is blurry line between a simulator and a video game to enhance

learning. In fact, video games are an excellent tool to keep the subject engaged and

motivated to perform specific tasks and they have been widely used to study the

brain in human subjects [34]. For example, in [37] the authors used physiological

information to study the social relationship between players on a first-person shooter

video game. They focused on the participants’ response to victory and defeat when

playing against a friend or a stranger.

Performance assessment in many learning environments such as video games is

more appropriately based on events that occur during the time interval of the game

than an overall or average affective measure. Consequently, affective measures of play-

ers are similarly expected to be most sensitive to events. Furthermore, the measures
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near the times of events might be expected to be substantially different from mea-

sures during more routine periods of play without events. Thus, affective measures

near events can provide more important summaries of a player’s affective status than

an overall summary. An important element of performance assessment is a statisti-

cally valid methodology to evaluate affective measures near events. The methodology

should be robust to differences in subjects and environments, yet simple to evaluate

and interpret. Moreover, the use of a control is a valuable addition to a methodology

that facilitates a simple and interpretable approach.

Here we present a robust methodology for performance assessment that can be

applied to a large number of event-driven EEG experiments such as the video game

experiments that motivated this work. It has been found that in order to increase

participant performance it is imperative to understand the learner in-game behavior

[38]. A focus to measures near events has been considered in other domains, outside

of affective monitoring, and approaches can be modified for the EEG domain. To

this end, case-crossover studies have been used to evaluate a measurement (which

is obtained continuously in real time) near acute (abrupt) events. For example, the

approach has been successfully used in applications such as epidemiological studies

to investigate the effect of transient effects on the risk of acute events [39]. Although

there can be differences in the objectives of case-crossover studies from our objectives,

a similar analytical framework can used. Also, case-crossovers usually consider longer

time intervals (such as days) but we show that the methodology applies equally well

to the higher-frequency measurements obtained in EEG. We provide a simple, robust

approach that can be useful in a broad range of studies that involve events and

continuous measurements recorded over time.

Although in our experiment an EEG headset is used as a physiological input to

evaluate errors, other type of sensors such as eye tracking, facial expressions, elec-
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trocardiogram (ECG), electromyography (EMG), and galvanic skin response (GSR)

can be used. Furthermore, the events don’t need to be errors but rather any type

of event defined by the experimenter according to the video game, tutoring system

or learning environment. The layout of this chapter is as follows. The case-crossover

methodology is fully explained in section 2.2. In section 2.3 the experimental protocol

is explained in detail. Section 2.4 provides with the results and discussion. Finally,

the conclusions are presented in section 2.5.

2.2 Event-Crossover Analysis

In this chapter we focus on events and the physiological measurements near the

time of events. This methodology has analogies to studies used to assess the effect

of exposures to outcomes in health care. A case-crossover study is used in health

care to study the effect of transient exposures on rare, acute events [39]. In a case-

crossover study, the case refers to the subject at the time of an event (hazard period),

while the control (known as a referent) is the same person at another time (control

period). The case-control pairs are used to study the effect of the exposure. It is

similar to a matched, case-control study in that the analysis compares the distribu-

tion of exposures, not the proportion of events. The key benefit is that each case

is matched with a corresponding control from the same subject to compensate for

potential confounding from fixed subject attributes.

The analysis of a case-crossover follows an intuitive approach similar to a matched

case control study. One compares the level of exposure in the hazard period to the

level(s) of exposure in one or more control periods. A statistically significant difference

(paired t-test) identifies the exposure as linked to the event. Control periods are

selected to attenuate potential confounding effects. Usually some randomization is

employed in the selection. Although frequently one control period is used for each
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event, more than one can be handled in a manner similar to that used in a matched

case control study with several controls. The original objective of a case-crossover

was to find the significant determinants of the event. We will use the case-crossover

study as a framework, but we will modify the approach to more generally consider

relationships between the events and physiological measurements.

Several methodology steps are used in our analysis approach. We share similarities

with the case-crossover methodology but we find it useful to emphasize a more general

applicability. Consequently, we refer to our approach for embedded event analytics as

an event-crossover (ECO) study. The first step is to define an event case. It should

be very clear and both easy to track and record. In a video game environment an

event could be every error, or it could be every time a player shoots in a first person

shooter game. It also could be when the player dies, makes a decision, goes into other

level, clicks certain button, crashes, jumps, etc. Furthermore, analyses can focus on

different event types. For example, one analysis can be applied to error event, while

the same analysis can be applied only for decision events. Moreover, rather than a

particular event instance, we find it useful to consider an interval of time that meets

certain criteria as an event.

Rather than an exposure as a hazard as in a traditional case-crossover study, the

exposure in our models refer to different physiological inputs for stimuli presentations,

such as EEG, eye tracking, facial expressions, ECG, EMG and GSR among others.

This is not restricted to only one input since the methodology can be applied to

several inputs. It is also important to consider the sampling rate of each of the

inputs. For example, it is not uncommon to see an EEG sampling rate of 256 Hz,

which corresponds to recording 256 sample points every second. Moreover, according

to [41] modern eye-trackers, which is another type of physiological signals, have a

sampling rate from 25-2000 Hz. In conclusion, since each of the physiological inputs
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may have a different sampling rate it is good to define a unit time for the analysis

where all the devices will be able to provide good resolution. A key difference from

traditional case-crossovers is that we do not require the hazard period to occur before

the event. We are also interested in the physiological measurements after an event

occurs and we adapt the methodology to include these analyses.

It is convenient to partition the total time length of the game into equal length

intervals of h seconds (with possible truncation) and let i denote the index of the

associated time window, for i = 1, 2, . . . , n. For a sufficiently small value of h, we

can associate an event with a time window. But there is flexibility in how events

are defined. In some of our analyses, we only consider an event to occur if there are

more than 5 errors in a time window h. We define yi as a particular physiological

measurement in time interval i. For high-frequency measurements, yi might be an

average or median of measurements in interval i. In other cases, we might compare

slopes of EEG measurements over intervals. The basic analysis will compare yei in

the hazard period (where subscript e denotes that the interval i contains an event) to

yci in a control period (where subscript c denotes an interval i without an event). The

physiological measurement yci in our studies is selected randomly from the intervals

without events for the same subject in the same game or session. Further restrictions

can be placed on yci to remove additional confoundings. For example, in air quality

studies a control period is selected on the same day of the week as the hazard period

in order to control for difference in the intensity of traffic. In addition, if the playing

environment changes dramatically, so, for example, the player dies and is reborn, one

might restrict the control period to be selected within the same player lifetime as the

hazard period. Environmental studies might select the control and hazard periods

within the same season. Control periods might also be restricted to be selected either

before or after hazard periods. Our environment was sufficient short in duration so
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that restrictions were not used.

An advantage of the ECO approach is that a simple, interpretable paired t-test

is applied to the physiological measurements. Let ne denote the number of intervals

with events in the environment. A paired t-test is applied to the measurements from

the hazard periods yei, i = 1, 2, . . . , ne and the corresponding measurements from the

control periods yci, i = 1, 2, . . . , ne, where one-to-one matching is assumed. More than

one control period can be selected per hazard period and the analysis method can be

modified in a manner similar to case-control studies with more than one control per

case. See [40].

In addition, it is important to explore the relationship of the physiological input

before the event happens or even after the event happens. This can be incorporated

easily into the approach. We can define a hazard period as w intervals before or

after the event interval. If yei is the measurement in event interval i, we can also

consider ye,i−w and ye,i+w that denote the measurements w intervals before and after

the event, respectively. Here intervals i + w and i − w define new hazard periods.

Controls can again be randomly selected and a paired t-test can be applied to compare

the measurements between these hazard periods and control periods. Consequently,

the method can simply be adapted to compare physiological measurements before or

after events. In our studies, we investigate several values for w before and after the

event. See Fig. ??.

We also look to study the effect of the random selection of control intervals.

Consequently, we conduct analyses with R replicates where each replicate uses a

different random selection of control intervals to compare to the hazard intervals.
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Figure 2.1: The Event-Crossover (ECO).

2.3 Experimental Protocol

2.3.1 Game Environment

As previously mentioned, the Guitar Hero video game was used as stimuli for the

subjects. Guitar Hero is a game that involves holding a guitar interface while listening

to music and watching a video screen. This type of video game is rich in graphics,

multimedia, challenges and embodied activities triggers. This gives the best context

in which to elicit changes in the affective states of the users. Guitar Hero provides

a scenario where subjects are challenged in diverse ways that demand from them

different skills related to a learning process such as concentration as well as visual,

motor, and auditory skills. The user has five colored buttons to press on the guitar

fingerboard. The objective is to use the left hand to press the correct button(s) while

colored notes are streaming on the screen. The right hand is also used by depressing

a switch that resembles a guitar strum or string picking.
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2.3.2 Participants and Design

There were a total of 8 subjects recruited from Arizona State University of which

4 were men and 4 were women. Age ranged from 18 to 28 years. Participants

were compensated and they had the option to leave the study at any time for any

reason. Participants were asked to self-report their experience playing video games.

Accordingly with the overall score and their self-report, four of them were classified

as novices and four of them as experts. Data from two songs, an easy-mode and

a hard-mode song, where collected. All selected subjects played the same songs in

both modes. The easy song, ”Story of my life”, had length 5:40 (m:ss) and a total of

511 notes. The hard song, ”One”, had length 7:03 and 2189 total number of notes.

Consequently, we had a total of 16 data sets, one for each player-difficulty possible

combination.

2.3.3 EEG Recordings

Emotiv EEG is a high resolution, multi-channel, wireless portable EEG system.

In [41] the findings suggest that Emotiv can provide a valid option to Laboratory

EEG systems (Neuroscan) for recording auditory even related potentials. Another

study assessed the quality of Emotiv to measure engagement, short and long term

excitement and found consistency among these constructs, at least in learning en-

vironments [42]. However, authors in [43] do not recommend Emotiv for medical

purposes such as rehabilitation or prosthesis control since the lack of reliability may

cause negative consequences. Nevertheless, they agreed that Emotiv could be a good

option for video game environments. Emotiv has 14 EEG channels with names based

on the International 10-20 locations, these are: AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, AF4. The sensor data is referenced to left and right mastoid.
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Emotiv internally samples at 2,048 Hz and applies band-pass filters in the range of

0.2-45 Hz. Finally, two digital notch filters at 50 and 60 Hz are applied. The out-

put is downsampled to 128 Hz. Emotiv has a suite called Affective which uses the

information derived from the channels to compute measures related to five affective

states: short term excitement, long term excitement, engagement, meditation and

frustration. The output that Emotiv generates of the raw signal from the 14 chan-

nels is provided at 128 samples per second (SPS) and the affective states at 2 SPS.

The affective states defined by Emotiv Affective suite (2010) are the following: 1)

short-term excitement, is a feeling of physiological arousal that is experienced with

a positive value; 2) long-term excitement, it is similar to short-term excitement but

it is measured over longer periods of time, typically minutes; 3) engagement, expe-

rienced as alertness and attention. The lack of engagement could be characterized

as distraction; 4) meditation, experienced as relaxed and a clearness of the mind; 5)

frustration, occurs when the difficulty level of a task is much higher than the skill

level of the subject. This may cause a disconnection from expectation and reality.

2.3.4 Error Tracking

In addition to the EEG signal from the 14 channels and Emotiv affective states,

the total number of errors for each of the seconds of the songs was also recorded.

An error is made every time the player fails to hit the correct note. It is important

to notice that for the hard song there is a guitar solo in the second half where there

could be up to 15 notes per second. This means that the participant could make more

than one error on a given second. Once the affective state features were generated,

we plotted them along with errors against time to visualize the data. (See Fig. 2.2).
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Figure 2.2: Number of Errors and the Affective State Meditation.

2.3.5 The Event-Crossover (ECO) Applied

In this study, the events are represented by the errors made by the participants

when playing the video game. This is not a subjective measure because errors are

reflected on the participant’s score and there are also visual and audio cues that clarify

when the errors happen. The reasons for errors include mistakes such as the right hand

did not strum, the left hand pressed the incorrect button or buttons were not pressed

at all, the note was played too soon or too late, the note was not held the required

time, or any combination of these situations. The physiological input is defined by

the measurements of the affective constructs provided by Emotiv EEG: short term

excitement, long term excitement, frustration, meditation and engagement. We set

h = 1s as the interval length. Because Emotiv provides 2 samples per second of the

affective states and our interval under study is 1 second length we averaged these

two values to produce only one value per interval. From now on we will refer to

this value as the affective state measurement instead of the affective state ”average”.

Then we identified all of the intervals where at least one error happened among all

participants, which are our events. Next, for each event we randomly selected a

h = 1 second interval without error which defines the control. The controls were
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searched within the same participant playing the same song; as explained in the

previous section. We performed this procedure using 4 different combinations for

analysis: easy-novice, (novices playing the easy song), hard-novice, easy-expert and

hard-expert. We applied a paired t-test to the results (a one t-test for the differences).

To evaluate the effect of the random selection of control intervals, we replicated this

process 15 times for each combination of participant skill and song difficulty.

In order to show that the methodology can be modified to serve different needs, we

defined the events in three different ways: (1) a second in the song where at least one

error occurred (> 0); (2) a second in the song where more than one error occurred

(> 1); and (3) a second in the song where more than five errors occurred (> 5).

This was done to study the relationship between the degree (or severity) of errors

and the affective state. This also illustrates that the definition for the event can be

modified for a different video game analysis. As mentioned, a player’s affective state

might not be related immediately to the players performance (the number of errors

made). The affective state might predict errors, or result from errors. Consequently,

we considered additional analyses. We also compared the participant’s affective state

value in intervals w = 3 seconds before and after, w = 1 second before and after.

Including the interval that contains error(s), this provides 5 event intervals to be

compared to control intervals. The intervals can be defined by the experimenter

according to scientific or even empirical experience.

2.4 Main Results

For this analysis R statistical software version 3.0.3 was used. Table 2.1 shows the

results for the analysis where the transient effect is immediate. This table shows the

average of the p values and the average of the mean differences for the 15 replicates

and the total number of events that satisfied each of the error conditions (> 0, > 1
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Table 2.1: Results for the 4 Combinations in the Current Time (yei).

Combination → Easy-Novice Hard-Novice Easy-Expert Hard-Expert

No. of errors → > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5

n → 153 46 NA 1513 1316 214 23 7 NA 658 410 75

Engagement p value 0.512 0.558 NA < 0.01 < 0.01 < 0.01 0.666 0.518 NA < 0.01 0.003 0.396

mean -0.006 0.007 NA 0.027 0.029 0.045 0.003 -0.001 NA -0.034 -0.028 -0.015

Long Term Excitement p value 0.593 0.541 NA < 0.01 < 0.01 0.585 0.049 0.146 NA < 0.01 < 0.01 < 0.01

mean 0.008 0.002 NA -0.023 -0.025 0.004 -0.141 -0.218 NA -0.137 -0.156 -0.215

Short Term Excitement p value 0.52 0.468 NA 0.489 0.618 0.238 0.087 0.098 NA < 0.01 < 0.01 < 0.01

mean 0.003 -0.026 NA 0.002 -0.002 0.037 -0.176 -0.377 NA -0.187 -0.21 -0.3

Frustration p value 0.198 0.333 NA < 0.01 < 0.01 0.133 0.016 0.056 NA < 0.01 < 0.01 0.003

mean -0.025 0.023 NA -0.036 -0.038 -0.033 0.208 0.248 NA -0.164 -0.16 -0.172

Meditation p value 0.611 0.53 NA < 0.01 < 0.01 0.243 0.002 0.258 NA < 0.01 0.001 0.196

mean -0.001 0.003 NA -0.017 -0.016 0.009 0.066 0.053 NA -0.041 -0.032 -0.026

and > 5). Because the range provided by Emotiv for each affective state is from 0

to 1 we can think of the mean difference as the percentage of variation between the

affective state value during the hazard period and control period.

For the first column where an event was defined to be a second with at least

one error (> 0) there are no significant results for the easy-novice combination. A

couple of significant results for the hard-novice dataset were produced but we do

not consider them to be relevant because the average of the mean difference is small

and the large sample size yields the significance of the results (n = 1513). In this

case, and for the rest of the discussion, we defined a mean difference to be large if

the absolute value of the mean differences is greater than 0.1. In the easy-expert

combination, long term excitement (p = 0.049, µ = −0.141, n = 23) and frustration

(p = 0.016, µ = 0.208, n = 23) are significant. Meditation has a significant result,

but according to our previous definition the mean difference is not large enough.

The rest of the affective states for easy-expert do not show significant differences.

Interestingly, for the hard-expert combination once again long term excitement (p <
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0.001, µ = −0.137, n = 658) and frustration (p < 0.001, µ = −0.164, n = 658) had

significant results and a large mean difference. This is intriguing because we see the

same effect even though the games have different difficulty level and were played

with 10 minute breaks between the first and the second song. This time also short

term excitement (p < 0.001, µ = −0.187, n = 658) is significant. Engagement and

meditation were also significant but the mean difference was small.

For the > 1 case once again there were no significant results for the easy-novice

combination. There are 4 out of 5 significant results for the hard-novice combination

but the average of the mean differences is not large and the p values reflect the sample

size (n = 1316). The easy-expert has no significant results (n = 7) and the hard-

expert has the same pattern as in the > 0 case with the difference that this time

n = 410. For the > 5 case we can see that there is a column with NA for the easy-

novice because there are no more than 5 notes in any given second for the easy song. A

similar result is shown for the easy-expert combination. The hard-novice combination

has engagement as a significant result (p < 0.001, µ = 0.045, n = 214), but we

can see that the average mean difference is not very large. The rest of the results

are not significant for that combination. Once again the hard-expert combination

has long term excitement (p < 0.001, µ = −0.215, n = 75), short term excitement

(p < 0.001, µ = −0.3, n = 75) and frustration (p = 0.003, µ = −0.172, n = 75) with

significant results. We can see that even with the sample size n = 75 we are still able

to capture the effect as significant with the average of the mean differences even larger

than the > 0 case (n = 658) and the > 1 case (n = 410). As an exploratory tool

we can make use of the boxplots of the results over the 15 replicates as they allows

us to not only see the central tendency but also the dispersion. Figure 2.3a shows

boxplots of the mean differences for the case > 0 which refers to the interval at the

time of the event (yei) and the easy-expert combination (n = 23). We observe that
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(a) (b)

Figure 2.3: Box Plots for Mean Differences (a) and p Values (b), Easy-Expert.

the distribution of the difference in means has low variation across the replicates. In

Fig. 2.3b we can see an example of the boxplot that shows the dispersion of the p

values for the 15 replicates for the easy-expert combination. We observe, for example,

that short term excitement has a larger mean difference (in absolute value) than long

term excitement.

The 15 replicates procedure is recommended because we do not rely solely on one

random selection that depends on the seed that was used to select the random control

intervals. We also present the results to explore the relation of the affective construct

values in time i±w for w = 3. Figure 2.4 shows the results in the form of boxplots for

the hard-expert combination and the five affective constructs. The average is marked

as a dark red line in the box. In these plots we can clearly see a couple of outliers.

For example the boxplot for the means in engagement (top left plot) we can see an

outlier above the mean. This outlier represents one of the mean differences in one of

the replicates. Also, from the p values boxplot for the same affective construct, we

observe a couple of outliers for engagement 1 second before (EngD1B), 1 second after

(EngD1F) and 3 seconds after (EngD3F). If once again we take the boxplot of means
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Table 2.2: Results for the 4 Combinations Before the Event (ye,i−3).

Combination → Easy-Novice Hard-Novice Easy-Expert Hard-Expert

No. of errors → > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5

n 153 46 NA 1513 1316 214 23 7 NA 658 410 75

Engagement p-value 0.546 0.475 NA < 0.01 < 0.01 < 0.01 0.671 0.446 NA < 0.01 0.014 0.696

mean -0.003 0.014 NA 0.027 0.029 0.044 -0.003 -0.02 NA -0.032 -0.024 0.003

Long Term Excitement p-value 0.565 0.552 NA < 0.01 < 0.01 0.59 0.057 0.157 NA < 0.01 < 0.01 < 0.01

mean 0.009 0.007 NA -0.023 -0.025 0.002 -0.136 -0.209 NA -0.132 -0.15 -0.207

Short Term Excitement p-value 0.346 0.557 NA 0.485 0.56 0.422 0.082 0.171 NA < 0.01 < 0.01 < 0.01

mean 0.03 -0.019 NA 0.004 0.002 0.023 -0.174 -0.308 NA -0.177 -0.2 -0.267

Frustration p-value 0.175 0.595 NA < 0.01 < 0.01 0.047 0.015 0.018 NA < 0.01 < 0.01 0.004

mean -0.026 0.001 NA -0.037 -0.038 -0.043 0.212 0.297 NA -0.16 -0.159 -0.174

Meditation p-value 0.557 0.495 NA < 0.01 < 0.01 0.223 0.001 0.059 NA < 0.01 0.002 0.31

mean -0.005 0.011 NA -0.017 -0.015 0.009 0.07 0.083 NA -0.04 -0.03 -0.02

for engagement we will see that there is a steady increase (in absolute value) in the

mean differences between the physiological measurement and the control point for

different hazard periods w, starting from 3 seconds before (far left) to 3 seconds after

(far right). There is also an interesting pattern in the short term excitement boxplots

for the mean (first column). We observe a U shape from w = −3 to w = 3 seconds.

This suggests that the mean difference in absolute value is greater for the interval at

time of the event (ShortD0). In the case of long term excitement and frustration no

pattern is obvious. For meditation, the mean differences are close to zero and there

is no pattern. Additionally, the p values are far from significant and no pattern is

obvious.

Table 2.2 presents the results for 3 seconds before the event (i − 3) and Table

2.3 contains the results for 3 seconds after the event (i + 3). We also did the same

analysis for w = ±1 but the results are not shown here. The conclusions are very

similar to those presented previously where we analyze events at the time they occur

(yei).
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(a) LTE Mean Differences (b) LTE p Values

(c) STE Mean Difference (d) STE p Values

(e) Frustration Mean Difference (f) Frustration p Values

(g) Meditation Mean Difference (h) Meditation p Values

Figure 2.4: Box Plots for Mean Differences (a) and p Values (b), Hard-Expert.
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Table 2.3: Results for the 4 Combinations After the Event (ye,i+3).

Combination → Easy-Novice Hard-Novice Easy-Expert Hard-Expert

No. of errors → > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5 > 0 > 1 > 5

n 153 46 NA 1513 1316 214 23 7 NA 658 410 75

Engagement p-value 0.38 0.579 NA < 0.01 < 0.01 < 0.01 0.69 0.511 NA < 0.01 < 0.01 0.084

mean -0.012 0.001 NA 0.027 0.029 0.048 0.005 0.012 NA -0.039 -0.035 -0.041

Long Term Excitement p-value 0.61 0.535 NA < 0.01 < 0.01 0.622 0.049 0.143 NA < 0.01 < 0.01 < 0.01

mean 0.006 0 NA -0.024 -0.026 0.002 -0.142 -0.223 NA -0.14 -0.159 -0.215

Short Term Excitement p-value 0.552 0.59 NA 0.524 0.427 0.279 0.162 0.127 NA < 0.01 < 0.01 < 0.01

mean -0.005 -0.006 NA -0.005 -0.01 0.033 -0.147 -0.338 NA -0.188 -0.211 -0.27

Frustration p-value 0.439 0.447 NA < 0.01 < 0.01 0.186 0.02 0.051 NA < 0.01 < 0.01 0.013

mean -0.015 0.016 NA -0.036 -0.038 -0.03 0.201 0.251 NA -0.161 -0.158 -0.148

Meditation p-value 0.64 0.519 NA < 0.01 < 0.01 0.554 0.002 0.277 NA < 0.01 0.001 0.224

mean 0.001 0.006 NA -0.017 -0.016 0.004 0.063 0.047 NA -0.041 -0.032 -0.024

2.5 Conclusion

The lessons learned in this study could be applied to develop more robust HCI

or ITS. It is well known that students disengage overtime when using a HCI [44]

and using noninvasive devices such as the EEG can help identify these signals to

better design systems not only for entertainment but also for education. Furthermore,

the ECO methodology can potentially be applied in real-time and provide feedback

to the user. Making participants aware of their own affective states when making

decisions can increase performance as shown by research focused on metacognitive

processes [45]. The ECO methodology is most appropriate for studies where the

main objective is to evaluate player performance where events are embedded over

time with simultaneous sensors or physiological responses (skin conductivity, eye-

tracking, EEG, heart rate monitors, etc.). The main advantage of our method is

that each subject acts as its own control and no extra resources need to be spent

to obtain controls. Furthermore, the methodology allows us to avoid the traditional

necessity of controlling for other confounded effects such as age, gender, health, skill
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level, gaming experience, etc. The identification of the physiological changes around

events can lead to a better design of HCI interfaces. Moreover, if these interfaces

are optimized for both an effective and an efficient learning they can leverage the

participant’s skills and knowledge [35].

In the last 20 years there has been an explosion in generation of instructional

material, especially online [46]. Thus, this methodology fits well for multimedia in-

structional material where it is desired to evaluate the relation between events which

exhibit a random pattern and occur abruptly (acute) and a physiological measurement

which is provided continuously in real time. In addition, the methodology considers

replicating the results to find the true mean for the mean differences and the p values.

The effectiveness of this methodology was illustrated using an example where partic-

ipants played two Guitar Hero songs with different level of difficulty. The acute cases

were defined in three different ways: intervals with at least one error (> 0), more than

1 error (> 1), and more than 5 errors (> 5). The physiological input was the values

of 5 affective constructs provided by an EEG headset: engagement, frustration, med-

itation, long term excitement and short term excitement. The flexibility added to our

methodology can easily be adapted to ITS in an inexpensive way both considering

educational outcomes as well as machine learning issues. We are aware that this is

only the first step and that further analyses need to be done which also include a

cognitive task analysis and extensive evaluation. However, we believe that being able

to understand the affective state of a subject at a given moment of time through the

use of EEG is an important achievement. This methodology is even more relevant if

we consider that the majority of the traditional ITS designs consider invasive ways

of collecting information such as ”think aloud” which can be very disruptive during

a cognitive task [47]. Finally, the ECO approach identified the affective constructs

of long term excitement, short term excitement and frustration as significant in the
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hard-expert combination for all type of cases. This implies that the affective state

value of the participant for these emotional states is different when the player is mak-

ing errors (events) than when the player is not making errors (control). A similar

result was observed for the easy-expert combination in the > 0 case. Further analysis

is needed to establish why this effect was observed in expert participants, but not in

the novices. Nevertheless, once these differences are understood they can be used to

perform individualized changes in HCI or ITS which respond to the user experience,

something called the zone of proximal development, and have proven to be one of the

most effective ways to enhance performance and learning [48].
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Chapter 3

ANALYTICAL METHODS TO EVALUATE EVENTS AND PERFORMANCE IN

AN EVENT-DRIVEN SIMULATOR

3.1 Introduction

Several studies have shown that emotions play an essential role in human cognition

and perception [4] . Moreover, human performance depends not only on training and

knowledge but also in the way a person is able to respond to different scenarios given

his emotional baggage. In the field of affective computing the challenge for a human

computer interface (HCI) is to recognize and respond to human emotions. Lately,

several applications have been developed using the principles of affective computing

in different areas such as: gaming, mental health and education [17]. In addition to the

emotional component, cognitive load and memory are also related to performance and

researchers have tried to study them through the use of physiological signals such as

electroencephalogram (EEG). For example, in [21] evidence was found that the power

spectral density (PSD) of EEG in the bandwidths alpha and theta were related to

cognitive and memory performance. The relationship between emotions and workload

are thus critical to better understand human performance and to design systems that

adapt better to human emotional response.

The idealistic state would be to develop systems which employ real-time measure-

ments of physiological inputs to predict the emotional state of a subject and adapt

the system accordingly. Information provided by physiological measurements can

help monitor and quantify the user’s experience and proactively adapt in real-time

[15]. The design of these dynamic difficulty adjustment (DDA) systems would not
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discard the information provided by traditional performance metrics, but it would

complement it with affective feedback. This has already been done on simple games

such as Anagram and Pong where a DDA mechanism was designed to adapt the level

of the games by inferring probable anxiety levels in participants [49].

DDA systems are a growing area of research because the current state of intelligent

tutoring systems (ITS) as well as video games for education or entertainment provide

inaccurate challenge levels and they are normally based solely on performance but not

in the affective states of user experience [50]. The aim of a DDA systems or an ITS

should be to provide an experience tailored to users’ specific characteristics. The most

common method used to analyze affective states for a DDA consists of a real-time

physiological signals that are constantly being monitored. For example, in [51] the

authors developed a closed-loop real-time EEG-based drowsiness detection system.

The system was designed to provide feedback to drivers just before sleep onset to try

to prevent a car accident. In another study [30], a BCI was used to assess flow in games

by adapting the system to different levels of difficulty and modeling the affective state

of ”flow” using machine learning methods such as support vector machines where the

power spectral density characterization of the EEG was used as input. These studies

while successful have been mainly focused on the continuous real-time physiological

signal where a target is set and the DDA is expected to fluctuate around that target.

However, few studies have focused on more complex scenarios where different

decisions are made and where events happen randomly sometimes as part of the

system configuration and some other times as a direct result of the user’s previous

actions. One of these studies was conducted by [52] where instead of continuously

analyzing an affective state throughout the session they focused around specific events

for participants playing two scenarios: one in a virtual golf game and another one

on a combat marksmanship simulator. Analyzing affective changes around events
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instead of continuously monitoring the physiological signal can provide more rich and

complex information to try to understand the cognitive process and decision making

of a participant under different scenarios.

It is in this line of event-based analysis that we propose this study. The current

study describes three approaches to analyze events that occur randomly during a

learning environment session where a multi-sensor physiological signal is provided in

real-time. Instead of analyzing each of the signal components separately we propose

a multivariate approach to simultaneously examine different patterns around events

related to the participant’s performance. Multivariate techniques can provide greater

sensitivity to detect physiological responses and also help to dramatically decrease the

number of statistical tests. On the other hand, univariate analysis normally ignores

the relation or correlation between predictors while multivariate approaches take into

account the joint distribution of the physiological signal.

The high dimensionality on this type of study is caused by the availability of differ-

ent devices simultaneously recording physiological signals such as: electromyograms

(EMG) to detect muscle activity, electrodermal activity (EDA) for skin conductiv-

ity, electrocardiogram (EKG, EOG) for heart rate, electrooculogram (EOG) for eyes

movement and EEG to record brain activity. Furthermore, each of these devices could

have multiple sensors to gather topographical information from the body and they

could be combined at the same time. This multi-sensor combination makes the use of

multivariate approaches more relevant when trying to analyze high dimensional input

signals.

In our previous work to analyze affective effects [53], a video game with a simple

graphical user interface was used and the task complexity was fairly simple. The

techniques proposed in this study are applied to a much more complex learning en-

vironment where activities and decisions don’t follow a predefined order and where
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the final outcome can greatly vary from participant to participant. It is under this

scenario of high-dimensionality and user interface complexity that we present these

approaches.

This chapter is organized as follows. Section 3.2 provides background. In section

3.3 different multivariate approaches to analyze events are presented. The experi-

mental protocol explaining the learning environment, the physiological signal used

and participants is presented in section 3.4. Results are shown in section 3.5. Finally,

discussion and conclusions are developed in section 3.6.

3.2 Background

3.2.1 Event-Crossover Methodology (ECO)

An ECO methodology was proposed by [53] to explore the relation of physiological

signals and events which alternate over time on a given learning environment which

can be a simulator, a tutoring system, a video game or any type of HCI. The events are

defined by the experimenter and it could be a person answering a question in a ITS,

clicking some button, or in a video game environment a player turning right, making

a mistake, jumping, dying during the simulation, etc. Events are related to decisions

from the user and occur randomly while the physiological measurement is provided

continuously in real time. The objective is to find if an event triggers a physiological

response in the subject or, the other way around, if a sudden physiological change

causes some type of event or decision. An advantage of this methodology is the

detection of significant differences in the physiological response around events when

compared to a control point. Moreover, control points are chosen within subjects

so they act as their own control. Using controls from the same subject is a major

advantage of the ECO methodology because it compensates for possible confounding
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effects such as age, gender, expertise, etc.

The ECO methodology focuses in the analysis of a physiological signal near the

time an event happens [53]. A hazard period is the time at which an event occurs

and, therefore, a change in the physiological response is expected. A control period

is the time where an event does not occur. In this sense, the event-control pairs are

used to study physiological changes within the same subject. A paired t-test is used

to identify significant differences between event-control pairs. Another key attribute

of the ECO methodology is that the hazard period could be set before, during or

after an event occurs. This allows us to study the effect of a physiological signal on

an event or the other way around, the effect of an event on a physiological response.

The first step in the univariate ECO [53] is to partition the time length into equal

intervals of sized h (such as 1 second). For high-frequency physiological signals these

intervals can contain several sample points. In this case, an average can be taken to

associate a single measurement per interval. Denote ne as the total number of events

that we record in a session. A physiological measurement at event i = 1, 2, . . . , ne is

denoted as yei. For each of the events, a control interval without an event is randomly

chosen within the same participant. The physiological measurement for this control

interval is denoted as yci. The subscripts e and c are used to denote an event interval

and a control interval, respectively. A paired t-test is applied to test for significant

differences in the mean physiological values between the event and control intervals.

A significant difference would imply that the mean affective state of the participant

is lower/higher at the time of the event when compared to a control point. This

information can help discover different behaviors and patterns which can be included

in an ITS design.

In addition, to explore the relationship of the physiological signal before and

after the event happens we can defined a hazard period w intervals before or after the
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event. If yei is the physiological measurement at event interval i then ye,i−w and ye,i+w

represent the physiological measurement before and after an event, respectively. In

this case intervals i−w and i+w represent new hazard periods. The control points are

selected and denoted as before and a paired t-test is applied between the physiological

measurements at these new hazard periods and the control intervals.

In order to analyze the stability of this procedure a series of R replicates is rec-

ommended. Depending on the number of events and the length of the session, the

methodology can provide different results depending on the random seed that it is

used to sample the control points. In each of the r = 1, 2, . . . , R replicates the mean

difference
∑ne

i=1(yei − yci)/ne of the physiological measurement between events and

controls is recorded.

3.2.2 Self-Organizing Map (SOM)

Artificial neural networks (ANN) can be divided into two categories: supervised

and unsupervised. In the supervised case there is a target which the ANN is trained

to learn and guide the formation of the parameters. In the unsupervised case there

is not a target and data is clustered using features inherent to the problem. SOMs

belong to the unsupervised learning category and little knowledge is needed about the

characteristics of the data [54]. The objective of the SOM is to map high-dimensional

data into a lower dimension representation, usually a two-dimensional grid, therefore

creating a discrete and spatially organized representations of input signals[55].

A SOM consists of an output layer normally arranged on a two-dimensional grid

or lattice. The literature refers to the elements in the output layer in different ways:

map units, cells, nodes, output nodes, neurons, etc. Each of these output nodes is

fully connected to all of the input nodes (See Fig. 3.1) and each of these connections

is associated with a weight wkq from input node q for q = 1, 2, . . . , Q to output node
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Figure 3.1: SOM Architecture.

k for k = 1, 2, . . . , K. At the end of the training each output node has a weight vector

wk with Q elements and each weight vector represents a physiological pattern. It is

critical for the formations of the SOM that weights are not updated independently,

but in a manner that tries to preserve the topology [55]. A SOM provides a topology

preserving map which means that if two instances are close to each other in terms of

Euclidean distance in the original data space then they are expected to be mapped

to nearby nodes in the output grid.

A SOM is trained as follows: first the topology for the output layer is defined in

terms of the number of nodes and either a rectangular or hexagonal arrangement. In

the first iteration weights are randomly initialized with small values. Next, an instance

or feature vector yi is selected and the Euclidean distance is computed between this

instance and the weight vector wk for each of the k output nodes. The output node

k that provides the minimum distance is called the ”best matching unit” (BMU) and

it is denoted with the letter z. In order to preserve the topology a neighborhood of

radius Bz around the BMU is defined to update the weights for the output nodes.

Then, all the weights in the neighborhood of Bz are updated to more closely match
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the input vector yi . The neighborhood could also be denoted as a function of time

by Bz(t) because at the beginning of the training the radius of the neighborhood

is recommended to be wide to provide a coarse solution and as time goes by the

neighborhood is decreased to provide a more refined update. This training process is

repeated until a number of iterations defined by the user is reached.

Once the SOM is trained, all of the instances are presented to the SOM model

and each is assigned to a single output node k that it matches most closely based on

Euclidean distance, each of these mappings is called a node activation. This is the

reason why SOMs are also seen as a dimensionality reduction technique. Once the

SOM is trained each of the output nodes represent an affective state pattern expressed

in the form of weights combinations. Moreover, the SOM has generalization properties

because a new and never seen instance can be presented to the trained SOM and it

will be assigned to one of the output nodes following the same minimum Euclidean

distance criteria to select a BMU.

Finally, there is no a specific procedure to define the total number of output nodes.

Each output node is a cluster itself and, therefore, large maps (maps with many

output nodes) produce small but compact clusters while small maps have less output

nodes and, therefore, instances assigned to each node will tend to be less compact.

In unsupervised learning, compactness is a measure that is used to evaluate cohesion

and as a consequence explain how closely related the instances inside a cluster are.

Moreover, there are other evaluation measurements expressed in terms of cluster

separation (isolation) to determine how well separated the clusters are from each

other [56] .
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3.3 Multivariate Analytical Methods.

3.3.1 Multivariate Event-Crossover

The objective of the next methodology is to see if the decision making around

events can alter the physiological signal produced by the subject or the opposite, if

the physiological signals interfere with the participant’s decision making. The main

disadvantage of the original approach is that correlations between features are not

considered, hence, univariate tests can miss multivariate patterns. In the univariate

ECO each of the attributes was analyzed separately and conclusions were made inde-

pendently. Instead on analyzing the different input signals separately we are using all

the multivariate physiological signal distribution to make inferences about the par-

ticipant’s cognitive state. If the differences are significant the conclusion would be

that the multivariate distribution of the physiological input around a certain event

is significantly different from that of a control point or interval. Knowing about the

different affective states of the participant around events where an ITS can be aware

of these behavioral cues is a prerequisite to design and implement adaptive systems

with the ability to respond to user’s needs [15]. Moreover, given the complexity of the

task at hand focusing the analysis on specific events can provide a common starting

point among participants and their decision making process.

For the proposed multivariate approach, once again we define ne as the total

number of events found during a session. The event intervals are indexed by i =

1, 2, . . . , ne. Furthermore, assume that a vector of Q physiological features are mea-

sured in each time interval. The physiological measurements for each of these intervals

is given by yeiq where q = 1, 2, . . . , Q is the index for the features. For each of these

measurements a control interval without an event is randomly chosen within each

participant to form the event-control pair. Similarly, the notation yciq is used to
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denote measurement q at the control interval that corresponds to event interval i.

The subscripts e and c are used to denote an event and a control interval respec-

tively. We define the difference as diq = yeiq − yciq and the vector of differences as

Di = [di1, di2, . . . , diQ]ᵀ. In addition, if we let E[Di] = δ it is of interest to test

H0 : δ = 0 and H1 : δ 6= 0. In other words, we are testing if the mean differences are

zero. If mean differences are zero, the conclusion is that there is no difference between

the physiological measurements at the event and control intervals. If the difference is

significant, then we can further explore if the physiological measurement tends to be

higher or lower at the event interval when compared to a random control point. We

reject H0 if:

T 2 = neD̄
ᵀS−1

d D̄ >
(ne − 1)Q

(ne −Q)
FQ,ne−Q(α) (3.1)

where

D̄ =
1

ne

ne∑
i=1

Di and Sd =
1

ne − 1

ne∑
i=1

(Di − D̄)(Di − D̄)ᵀ (3.2)

The relation between the physiological signal and the event can also be analyzed

before and after the event happens. We can define a hazard period as w intervals

before or after an event interval. That is, we denote ye,i−w,q and ye,i+w,q as the

physiological measurements w intervals before and after events, respectively. Tests

between events and controls can also be conducted for different w’s.

In order to analyze the stability of this methodology, similar to the univariate

ECO, for the multivariate ECO we run R replicates. At each replicate, a new set

of random control intervals is selected and matched with the intervals containing

events and the mean difference vector D̄ and the p values given by the T 2 statistic

are recorded. Boxplots then can be used to explore the central tendency and the

dispersion of each of the vector of mean differences D̄r and the p values denoted as αr

for each of the r replicates. In order to define the number of replicates we recommend
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observing the convergence of the average of the mean differences vector
∑R

r=1 D̄r/R

as well as the convergence of the
∑R

r=1 αr/R average. Empirically we have observed

that with R = 15 both averages stabilize and we have enough samples to make use

of boxplots to observe the central tendency and dispersion for the mean difference

vectors D̄r and the αr in each of the r replicates.

3.3.2 Self-Organizing Maps with Event-crossover

We are interested in discovering patterns around events that we can interpret.

We are also interested in finding if these patterns around events are different from

those without events. Therefore, the question is whether certain affective patterns are

significantly different from other affective patterns at randomly chosen control points.

SOMs are a good way of representing a continuous multidimensional physiological

signal into discrete weight representations. As explained in the background section,

each node activation represents a pattern at a certain point in time. The presence or

absence of these activations can indicate certain cognitive patterns among participants

given the weights observed in the corresponding node. In this section, we propose

what could be considered as a discrete version of the ECO, where the multivariate

input vector is decomposed into discrete time events using a SOM similar to that

performed by [57].

In this approach, instead of using the original physiological signal, we use a SOM

to find the different sources of variation or patterns by lowering the high dimensional

feature vector into a two-dimensional space. The main motivation of using this ap-

proach is interpretability. The two-dimensional grid formed by the SOM enables us

to see different patterns that can be more interpretable by the domain expert in

the form of weights and their magnitude. In addition, because the topographical

properties of the higher dimension are preserved in the two-dimensional space output
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nodes in the same neighborhood Bk would tend to have similar patterns in terms of

weights. Besides interpretability another advantage of this method is that we can

reduce a high-dimensional input signal to a few of patterns (nodes) learned empiri-

cally. The hexagonal grid is preferred over the square shape because it provides six

adjacent neighbors enhancing isotropy quality and providing smoother maps [58]. In

the discrete approach, a SOM is trained with the feature vector constructed with

the physiological signals. This vector could contain not only the raw signal but also

the features that the experimenter may want to include based on knowledge domain.

Linear combinations of the original features could also be used to train the SOM.

Once the SOM is trained we have the final weights wkq according to the topography

initially defined.

Modern EEG headsets such as Emotiv and ABM B-alert provide measurements

that are associated with certain affective states such as: engagement, workload,

drowsiness, meditation, excitement and frustration [10, 42, 9]. Having information

about which states are activated around specific events and how they differ from in-

tervals where there are no events open new opportunities for researchers and designers

to explore different systems configurations and interfaces [59] . One way of doing this

is to observe which nodes in the SOM output layer are activated (or not activated)

before, during and after a specific event and which nodes are activated for their con-

trol intervals. Each output node represents an affective state pattern expressed as a

weight combination.

Similar to the ECO methodology, we find all the intervals which contain an event

and for each of these intervals we randomly choose within the same participant a

control interval without any event. Hence, the total number of event intervals is

equal to the total number of control intervals and it is denoted as ne. Table 3.1

shows the four possible combinations where nab, a = 1, 2, b = 1, 2 represents the

45



Table 3.1: Contingency Table for a Specific Node k.

Node k activated

during event interval

Node k activated during

control interval
True False

True n11 n12

False n21 n22

counts (frequencies) of activations for an event and the corresponding control interval.

The total number of activations is ne = n11 + n12 + n21 + n22. Once we have the

contingency table, we compute the proportions πab = nab/ne of activations for each

node k. The challenge is to know if the activations at event intervals are significantly

different from the control intervals. In others words, we want to know if the affective

state of the participant at the event is significantly different from intervals without

events. One statistic technique that can be adapted to analyze this type of data is

McNemar’s test [60]. This test can be used for judging differences between correlated

proportions. This test takes into account that the marginal proportion for events

activations (π11 +π12) and the marginal proportion for controls activations (π11 +π21)

are not independent because the event-control interval pairs are sampled within the

same participant. The null hypothesis states that the two marginal probabilities for

activations at events and activations at controls are the same: π11 + π12 = π11 + π21.

Because we have the same term π11 at both sides of the equality the null hypothesis

can be stated as: H0 : π12 = π21 and H1 : π12 6= π21. If the null hypothesis is true,

this would imply that the affective state expressed as a discretized pattern is not

different at an event when compared to a control interval. On the other hand, if the

null hypothesis is rejected then we can conclude that the affective state at the event

46



has a significantly different pattern when compared to a control point. Moreover,

if the counts for events interval is higher than the controls n12 > n21 we can say

that pattern k is present during the event. On the contrary, if the counts of node

activations is low at the event n12 < n21 then this implies that pattern k is absent at

the event or is very uncommon. Thus, the McNemar’s test statistic is defined by

Z0 =
(n21 − n12)

2

n21 + n12

∼ χ2
1 (3.3)

Here Z0 is a random variable distributed as a chi-squared with 1 degree of freedom.

The test is repeated for each of the k nodes to find significant differences in the

proportion of activations.

The McNemar’s test works only for 2×2 contingency tables and therefore can only

consider the proportions of activations for a single output node k or in other words,

the frequency a specific cognitive pattern is present or absent around an event. We

could instead be interested in whether the distribution of affective states at events

and the distribution of affective states for control points are in general the same

across all nodes. The Generalized McNemar or Stuart Maxwell test [61, 62] can

be used to test for differences in a distribution of K nodes. This test compares

all the marginal probabilities for the event intervals and the control intervals. If

the marginal probabilities are equal, then the proportions are said to have marginal

homogeneity [61, 62] . This test is well suited for data that comes from repeated

measures of subjects in which due to the matching of a control point the two samples

are not statistically independent. Table 2 shows the information needed to compute

the Generalized McNemar or Stuart-Maxwell test where each of the column/row

correspond to a node k in the output layer of the SOM and the values at each cell

are the counts of the activations for an event interval and its corresponding control

interval expressed as nab, a = 1, 2, . . . , K, b = 1, 2, . . . , K. The marginal frequencies
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Table 3.2: Counts of Activations for an Event-Control Interval.

Node k activated

during event interval

Node k activated during

control interval
1 2 · · · K

1 n11 n12 · · · n1K

2 n21 n22 · · · n2K

...
...

...
...

...

K nK1 nK2 · · · nKK

are the row and column totals that are obtained in the following way:
∑K

b=1 nab = na+

and
∑K

a=1 nab = n+b. In order to perform the Generalized McNemar’s test we first

define g as the (K − 1) × 1 vector of differences of the form ga = na+ − n+a for

a = 1, 2, . . . , K − 1. The vector of differences is important because it contains the

information to know if the distribution of affective states (expressed as weights in the

output nodes) at events is different from the distribution found at random intervals

without events. The Stuart Maxwell test (unlike the McNemar’s test) evaluates these

marginal frequencies simultaneously. If there is no significant difference between the

affective state at an event interval and the control interval the vector of marginal

differences is expected to be zero. On the other hand, if, for example, g1 is positive

then this implies that n1+ > n+1 or that the proportion of node 1 activations is higher

for events than for control points. Furthermore, define S as the (K − 1) × (K − 1)

matrix of variances and covariances of the elements of g. The hypothesis test is that

H0 : (πa+ − π+a = 0) and the alternative hypothesis is H1 : (πa+ − π+a 6= 0) for

a = 1, 2, . . . , K. The hypothesis testing is important because it can detect patterns

at events that can help monitor, analyze and respond to covert psychophysiological
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activity from the participant in real time. These patterns can be detected without

any overt response from the participant and they can be used as a control signal for

a ITS [15]. The Stuart Maxwell statistic is then defined as:

Z1 = gᵀS−1g ∼ χ2
K−1 (3.4)

where Z1 has a chi-squared distribution with K−1 degrees of freedom. We reject the

null hypothesis if Z1 > χ2
K−1,α. When the number of categories or nodes is K = 2,

this reduces to McNemar’s test.

3.3.3 Comparing Performance Around Events

In the previous sections different approaches were proposed to analyze affective

patterns around specific events considering all participants. However, we could also

analyze the affective states around events dividing the participants between two

groups. The objective in the following methodology is to test for differences at events

for two different groups. Depending on the experiment under study these groups can

be represented by: gender, level of expertise, type of training, type of treatment, etc.

Analyzing differences between groups can shed some light about how to improve ITS

and better understand the different group dynamics. For example, there are educa-

tional materials which aggravate differences between groups and put minority groups

and women at a disadvantage [63].

As an example, consider two groups: participants who succeed in a task and

participants who fail. Let ysi for i = 1, 2, . . . , ns and yfg for g = 1, 2, . . . , nf denote

the physiological measurements at the event intervals for success and failure groups

respectively. Here ns and nf are the total number of events for success and failure

groups respectively. Then we can apply a two sample t-test with H0 : µs = µf and

H1 : µs 6= µf . If we reject the null hypothesis, then we can conclude that the mean of
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the physiological signal for participants in the successful group (µs) around a specific

event is significantly different from the mean of the physiological signal for the other

group (µf ) at the time of the same type of event. In the learning science context

this could imply that participants from two groups have a different physiological

response at the time of the event under analysis and this knowledge can potentially

be integrated into ITS to customize and adapt a learning environment.

We can perform multiple comparisons in the univariate case. In fact, a test needs

to be performed for each type of event defined in the learning environment as well as

for each physiological signals. If the total number of physiological signals is Q and the

total number of different types of events is E then the total number of tests is QE.

However, care should be taken when performing many hypothesis tests because the

likelihood of incorrectly rejecting a null hypothesis (Type I error) increases with the

number of hypotheses tested. One strategy to compensate this multiple comparison

problem is to use the Bonferroni correction [64]. This correction maintains the overall

error rate at a desired level of statistical significance. The statistical tests which are

being performed may be dependent or independent because no assumption about

dependence is made between p values [65]. Another strategy would be to use a

multivariate approach as explained below.

This process can also be extended to the multivariate approach where we follow

a similar procedure but instead of analyzing the physiological signals separately, we

perform a multivariate two-sample Hotelling’s T 2 test for differences between groups

(success and failure). In this case, instead of a single value for a physiological signal

q we take all the available Q physiological signals. In the same way we define the

Q × 1 vectors ysi = [ysi1, ysi2, . . . , ysiQ]ᵀ and yfg = [ysg1, ysg2, . . . , ysgQ]ᵀ for success

and fail participants, respectively. If we let µs be the unknown vector of means for

the successful group and µf the mean vector for the other group then we can test
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the hypothesis H0 : µs = µf and H1 : µs 6= µf .

In the univariate case, multiple comparisons need to be performed for each type of

event and physiological signal combination. In the multivariate case, the comparison

is only done by type of event because all the physiological signals are being consid-

ered on a single input vector. The multivariate approach dramatically decreases the

number of tests and provides further advantages already explained in the multivariate

ECO such as: ability to detect interactions, reveal multivariate differences and can

help to control for type I error.

3.4 Experimental Protocol

In the following section we illustrate an example of the methodologies previously

explained. In our experiment we are using the affective states provided by ABM B-

alert series EEG headset and using a damage control simulator as our HCI or learning

environment.

3.4.1 Learning Environment

The Damage Control Simulator (DCS) was created by researchers at UCLA’s Na-

tional Center for Research on Evaluation, Standards, and Student Testing (CRESST).

The main task in this simulator is firefighting aboard a ship and the participant’s spe-

cific objective is reporting, putting out and preventing re-occurrences of fires. In this

simulator the participant has to make several critical decisions in order to successfully

complete the missions. For this purpose, the participant has available different team

members in the ship repair locker but only a few are essential in firefighting. One

of the main members is the scene leader (SL) whose principal activities are: report

the fire, request and set isolation, manage and request other teams, request testing,

debrief and final report. Among the team members the SL is the only capable of re-
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Figure 3.2: Ship Repair Locker of the Damage Control Simulator (DCS).

questing the fire fighter team (FI), desmoke team (DS) and reflash (R). The FI team

is normally comprised of three persons and they are mainly responsible of putting

out the fire. The DS is a two person team and they are responsible for clearing the

area of smoke during and after the fire is put out. The reflash is normally one person

who watches over extinguished fire to insure it stays out.

The participants are trained to follow 5 steps when fighting a fire: 1) reporting, 2)

choosing the right equipment, 3) putting out a fire, 4) removing smoke from the area

and 5) debrief/final report. The participant is also introduced to the 3 types of agents

he has available for fighting the fire: carbon dioxide (CO2), aqueous fil forming foam

(AFFF) and potassium bicarbonate (PKP). Furthermore, the participant is instructed

to select any of these agents according to different types of fires: alpha fire (white

or gray smoke, ash producing material on fire), bravo fire (black smoke, flammable

liquid on fire) and charlie fire (blue smoke, electrical fire).

The DCS has a catalog of equipment where to choose from. The options vary
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Figure 3.3: Types of Fire (Alpha, Bravo and Charlie).

from type of extinguisher, hose and fans to clothing, headgear, etc. The simulator

also provides real time feedback such as the fire health (0 meaning the fire was put

out and 100 meaning the mission was failed) and smoke intensity. The participant is

supposed to perform several activities before sending a team to attack the fire such

as: testing the air is on, testing the type of agent, checking for electrical isolation

among other activities. Monitoring the health of each member of the team is also

critical and the participant should make the decision of taking a member out of the

fire area if the person’s health is in danger. The mission is successfully completed

when the team is able to put out the fire. At this point the SL debriefs and sends the

final report. As we can see the simulation environment is complex because it tries to

resemble the situation a firefighter would normally find in a real scenario. Moreover,

the time and the tasks are not fixed and they don’t have to follow a specific order.

Therefore, the traditional methods like time-locked ERP for analyzing events using

an EEG fail and more flexible techniques that are able to consider short and long

term affective states need to be considered.

The simulator keeps a log regarding the activities and times they were executed.

Among the main activities that are tracked are: report, request fire team, set zebra,

investigate, request set boundaries, test agent, turn air on, report casualty out, request

desmoking team, request reflash watch, return to station and check equipment. The
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Figure 3.4: DCS Equipment Selection Window.

simulator provides an output file with the timestamp during the simulation at which

each of these activities were performed. Consequently, it is possible to analyze events

off-line with high precision.

3.4.2 EEG and Constructs

Although other methods to analyze the brain are normally used such as near-

infrared spectrography (fNIRS), functional magnetoresonance imaging (fMRI) and

magnetoencephalography (MEG), EEG headsets have proved to be practical, nonin-

vasive, safe, portable and low cost devices [66] . Traditionally, EEG has been used to

analyze very short term events under carefully controlled laboratory conditions in the

form of event related potential (ERP). In contrast, video game and simulator sessions

last more than a couple of milliseconds, sometimes minutes or even hours and as a

consequence different techniques are needed to take into account a more long term

approach. For this purpose, several portables headsets exist that provide with mid

and long term affective constructs which are derived by building classification or dis-
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criminative models using a reasonable sample size of participants. For example, [57]

tried to model neurodynamics in submarine navigation teams using a measurement

of engagement provided by a low cost but medical grade EEG headset.

For this experiment the ABM B-Alert X10 series were used. This device is 9-

channel EEG headset comprising the midline and lateral EEG sites with an optional

channel for ECG, EMG or EOG data. The sampling rate is 256 Hz and allows a

wireless signal transmission (up to 10 meters) via Bluetooth. The headset requires

the application of electro conductive gel to the sensors which are positioned in: Fz,

F3, F4, Cz, C3, C4, POz, P3 and P4 locations. B-alert provides 4 classifications or

affective constructs: high engagement, low engagement, distraction and drowsiness as

well as three measures for workload: workload average, workload FDS (forward digit

span) and workload BDS (backwards digit span). Average workload is computed by

ABM as the average between the workload FDS and workload BDS. Depending on the

task the participant is performing engagement and workload have been shown to work

either concordantly or independently [10] . ABM requires all participants to complete

three neurocognitive tests: three-choice vigilance test (3CVT), eyes-open (EO) and

eyes-closed(EC). This process creates definition files that are needed to compute the

B-alert affective states and workload in real time and offline. The classification models

developed by ABM use general features from the tested population but also uses

subset of additional features from the subjects’ baseline to accommodate for individual

differences, [10, 9]. The affective states as well as the workload measures are given as

a probability (range from 0 to 1).

3.4.3 Participants and Protocol

A total of 60 participants were recruited from the Arizona State University from

which 31 were female and 29 males. Ages ranged from 18 to 31 years old with mode of
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19 and average of 20.7 years old. Participants were compensated and had the option

to leave at any time during the study. Participants were required to participate in

two different sessions with a maximum of two weeks between sessions. The purpose

of session 1 was to train the participant in the concepts of firefighting, to get familiar

with the simulator user interface and to collect demographic information. First, the

participant undertook a tutorial for the damage control simulator developed by our

team. This tutorial contained information about the different types of fires, team

names and their responsibilities (scene leader, fire team, desmoking team, etc.) as

well as the type of equipment. Once the participant was aware of the terminology he

was asked to play a tutorial embedded in the simulator which was more oriented to

get familiar with the keyboard and mouse commands to perform the desired activities

in the simulator. The participant then had to play a session where the settings were

pre-adjusted to make it easier (slow fire grow, little smoke, high efficiency in the

extinguisher, etc). Subsequently, the participant was asked to successfully complete

at least one game which was normally done in 2 or 3 attempts. The reason for doing

this was that we wanted the participant to be familiar with the controls during session

2 so her affective states reflected the decisions made during the game instead of the

struggle to remember how to use the keyboard and the mouse appropriately. Session

1 finished with a pre-test to know how much knowledge the participant acquired and a

demographic survey. Session 1 lasted between 45 and 60 minutes and the participant

didn’t wear any type of physiological equipment.

In session 2 the participant wore the ABM headset. An impedance check was

performed at the beginning of the session to make sure the values were below 40 kΩ.

Next, participants took a baseline test needed to compute the B-alert classifications

(affective states and workload). Participants were required to play 3 scenarios in

the damage control simulator representing three levels of difficulty: easy, moderate

56



and difficult. The difficulty was modified changing different parameters such as: the

intensity of the fire, the grow rate of the fire, the intensity of the smoke and the

efficiency of the equipment among others. The difficult level was set up expecting

to have 50% of the participants failing. The purpose of doing this was to challenge

participants to make fast decisions and to induce pressure.

3.4.4 Features

Out of the seven constructs provided by ABM B-alert three were selected: high en-

gagement, distraction and workload. Low engagement is negatively correlated by high

engagement. Preliminary analysis also showed that participants who failed tended to

have higher levels of distraction, as a result it was included. The feature vector is

built similarly to the approach followed by [52] with the difference that in our case

heart rate was not included and at the same time they didn’t include distraction.

Time was partitioned in intervals of h = 1s. ABM provides two affective states

measurements per second, therefore we took an average of these two values to provide

a single measurement by interval. A feature vector was constructed from these three

affective states by taking the measurement 3 intervals before and 3 intervals after

current time. The objective was to reduce autocorrelation from consecutive inter-

vals. We empirically observed that 3 intervals was a good tradeoff between reducing

autocorrelation and still being close enough in time to an event during study. In

mathematical notation the feature vector is defined as:

yi = [yi−w,dis, yi,dis, yi+w,dis, yi−w,wl, yi,wl, yi+w,wl, yi−w,he, yi,he, yi+w,he]
ᵀ (3.5)

Where i−w and i+w represent the physiological signal w intervals before and after

current time respectively. For this specific study w = 3, dis represents distraction, wl

is workload and he is high engagement. In order to avoid the cluttering notation and
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to express everything in terms of the current interval i for the rest of the chapter the

feature vector is denoted as:

yi = [yi1, yi2, . . . , yi9]
ᵀ (3.6)

each element represents: distraction 3 second before the event (DIm3), distraction

at the current time (DI0), distraction 3 seconds after the event (DIp3), workload 3

seconds before the event (WLm3), workload at the current time (WL0), workload 3

seconds after the event (WLp3), high engagement 3 seconds before the event (HEm3),

high engagement at the current time (HE0) and high engagement 3 seconds after the

event (HEp3).

The length of the sessions varies among participants and it also depends on either

the participant completing the mission successfully or failing. Participants who suc-

ceeded were, in general, more inclined to last longer, but this was not always true.

Sometimes a given participant would finish the mission successfully quickly and other

times the participant would take longer time to play only to fail at the end. The

different length implies that some participants would tend to have more events dur-

ing their session than others. If the number of events by participant is unbalanced,

the experiment would tend to capture the effect in the physiological response for the

participants with higher frequency of events and this may not represent the behavior

of all the population. As long as the number of participants is large enough and the

number of events is not substantially disproportional between participants then an

adjustment might not be necessary. We did not adjust for differences in our experi-

ments. Also, the total number of events have a direct influence in the results because

large sample sizes tend to yield significant results.

Finally, the feature vector could be z-scored or mean-centered depending on the

domain knowledge. For this study we didn’t perform any type of scaling because the
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measurements are already restricted to the range 0-1 and also normalized by the EEG

headset software to account for individual differences using a baseline correction.

3.4.5 Events

The DCS provides a log file which contains a time stamp and type of events as they

happened during the simulation. Therefore, we cannot only know with high precision

the time an event happens but also the sequence in which they happen. Among the

most common events there were: report, attack, request fire team, air on, test agent

and debrief/report. The synchronization between the events provided by the log file of

the DCS and the affective states output file provided by ABM B-alert series was done

with R statistical software using the time stamp of both sources as the reference to

merge both files. The time stamp provided in the log file of the DCS allows knowing

the exact time up to milliseconds precision when an event happens. Once we know

the exact time an event happens when can precisely locate the physiological signal in

the ABM B-alert output file searching in the time stamp the closest time indicated

by the DCS log file.

In this study, we selected only those events that had high representation, this is,

were performed by the majority of the participants. The different frequency of events

happens because the tasks or actions can sometimes be performed in a different order

or a participant omits an event at a given time. For example, active desmoking is

a task that very few participants requested because is not completely necessary, but

it could in general help to have a better vision of the scene. On the other hand, an

activity such as report or request fire team could be very difficult, if not impossible,

to omit.
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Table 3.3: Univariate ECO for Participants Who Passed.

DIm3 DI0 DIp3 WLm3 WL0 WLp3 HEm3 HE0 HEp3

Report (n=42) p value 0.45 0.58 0.061 0.399 0.609 0.591 0.525 0.32 0.042

mean diff 0.027 0.016 0.092 0.026 0 0.012 -0.036 -0.092 -0.162

Attack (n=179) p value 0.45 0.374 0.623 0.598 0.264 0.123 0.031 0.066 0.564

mean diff 0.017 0.016 0.007 0 0.02 0.027 -0.093 -0.081 0.015

Request Fire Team (n=79) p value 0.427 0.499 0.341 0.399 0.677 0.298 0.399 0.357 0.138

mean diff 0.02 0.001 0.032 0.022 -0.004 -0.024 -0.05 -0.054 -0.101

Air on (n=163) p value 0.462 0.572 0.545 0.45 0.587 0.501 0.443 0.41 0.488

mean diff 0.014 0.008 0.006 0.013 0.003 -0.003 -0.029 -0.03 -0.024

Test Agent (n=94) p value 0.529 0.639 0.617 0.534 0.352 0.407 0.469 0.349 0.506

mean diff 0.011 0.002 0.009 -0.01 0.02 -0.016 -0.034 -0.042 -0.037

Debrief and Report (n=34) p value 0.44 0.779 0.426 0.483 0.148 0.492 0.5 0.588 0.684

mean diff 0.031 0.006 0.038 -0.028 -0.059 0.021 0.046 -0.031 -0.013

3.5 Results

3.5.1 Event-Crossover

The univariate ECO was applied to the data set of the difficult scenario as ex-

plained in the methodology section using R = 15 replicates. Table 3.3 shows the

results for those participants who passed. We can see that the only significant result

for the event report (n = 42) is high engagement 3 seconds after (HEp3), p = 0.042.

The table also provides the average of mean differences across those 15 replicates,

in this case -0.162. This means that the high engagement 3 seconds after the event

report happens is in general lower when compared to a random control point. For

attack (n = 179) there is also one significant result in high engagement 3 seconds

before (HEm3), p = 0.031. The average of the mean difference for the 15 replicates is

-0.093 which implies that on average this affective construct is lower 3 seconds before

the event attack happens when compared to a control point. Fig. 3.5 shows a visual
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Figure 3.5: Univariate ECO of Mean Differences Plot, Participants Who Passed.

representation of the results presented in the previous table. In this plot the average

of the mean differences for those participants who passed are shown for each of the

event. At the bottom right of the plot we can see the large difference for the event

report in high engagement 3 seconds after (HEp3). The event report (n = 42) for

DIp3 also shows a large difference and on average it was close to significance with

p = 0.061 . Another interesting pattern is that the majority of the mean differences

tend to be near zero, which implies that no large differences around events where

found when compared to a random control point. However, if we look at the high

engagement pattern we see that in general this affective construct tends to be lower

around all the types of events when compared to a control point. In order to analyze

the stability of our methodology, R = 15 replicates were run, each time using a dif-

ferent random seed. The rationale behind this procedure is that because each time

we are randomly sampling control points there is variability in the results. For each

of the r replicates we kept track of the mean differences vector and also the p values
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(a) (b)

Figure 3.6: Box Plots for Report, a) Mean Differences and b) p Values, Pass.

for the hypothesis tests. Boxplots of these mean differences and p values for the 15

replicates are shown in Fig. 3.6. In Fig. 3.6a the mean differences for report and

participants who passed are shown. Again the majority of the differences are around

zero and we can see a trend in the high engagement group. The box plots show not

only the central tendency, but also the spread of the data. Looking at the length of

the whiskers, we can argue that the results for mean differences across the 15 repli-

cates seem to be very consistent. On the other hand, in Fig. 3.6b the p values for the

same mean differences are shown. All features present relative high variation except

for HEp3 which is significant and DIp3 which was close to significance. Fig. 3.7 shows

the same box plots but this time for the event attack (n = 179), and again only for

those participants who passed. Most of the mean differences shown in Fig. 3.7a are

around zero except for HEm3 and HE0 which show a large absolute mean difference,

-0.09 and -0.08 respectively. The p values are shown in Fig. 3.7b and we observe that

for HEm3 the dispersion of the p values across replicates is very tight with only 1 or

2 outliers outside the whiskers. For HE0 the spread of the p values also looks tight

with two outliers possibly pulling the average up to 0.07. Table 3.4 shows results for
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(a) (b)

Figure 3.7: Box Plots for Attack, a) Mean Differences and b) p Values, Pass.

those participants who failed. This time we see that only one significant differences

was detected in the average of the 15 replicates. The event attack (n = 83) has a

significant average results (p = 0.041) for workload current time (WL0). The average

mean difference for this event-feature combination is 0.046 which is a moderate mag-

nitude. Fig. 3.8 shows the average of the mean differences for those participants who

failed. We see that for the event report (n = 22) HEp3 has a large absolute mean

difference (-0.125) but the average of the p values across the 15 replicates didn’t turn

out to be significant (p = 0.309). The other event-feature combination that shows

large mean difference is report in WLm3 but the average p value was 0.144, which

although not significant was one of the lowest in the table.

Fig. 3.9a shows the boxplots for the mean difference and the event attack (n = 83)

for those participants who failed. Workload current time (WL0) as well as high

engagement 3 seconds after (HEp3) show large absolute differences but only WL0

has a stable and low p value average (p = 0.04) as shown in Fig. 3.9b. The rest of the

p values are on average large and have a greater variation as seen in the same figure.

Perhaps only WLp3 has a low p values but it is still far away from 0.05. Similar to
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Table 3.4: Univariate ECO for Participants Who Failed.

DIm3 DI0 DIp3 WLm3 WL0 WLp3 HEm3 HE0 HEp3

Report (n=22) p value 0.465 0.568 0.368 0.144 0.664 0.665 0.421 0.747 0.309

mean diff 0.061 -0.021 0.063 -0.07 0.02 0.008 0.021 -0.024 -0.125

Attack (n=83) p value 0.561 0.627 0.484 0.554 0.041 0.169 0.584 0.482 0.553

mean diff 0.018 0.004 -0.023 0.009 0.046 0.031 -0.022 0.033 -0.036

Request Fire Team (n=71) p value 0.571 0.478 0.545 0.658 0.626 0.68 0.658 0.608 0.568

mean diff 0.018 0.029 -0.006 -0.008 0.01 0.003 -0.003 -0.018 -0.022

Air on (n=77) p value 0.497 0.191 0.402 0.44 0.226 0.615 0.308 0.505 0.38

mean diff 0.024 0.06 0.025 0.017 0.033 -0.005 -0.06 -0.031 0.047

Test Agent (n=52) p value 0.484 0.611 0.671 0.467 0.37 0.475 0.596 0.527 0.453

mean diff -0.035 -0.012 -0.012 0.023 0.022 0.013 0.025 -0.038 -0.037

Debrief and Report (n=0) p value NA NA NA NA NA NA NA NA NA

mean diff NA NA NA NA NA NA NA NA NA

Figure 3.8: Univariate ECO of Mean Differences Plot, Participants Who Failed.
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(a) (b)

Figure 3.9: Box Plots for Attack, a) the Mean Differences and b) p Values, Fail.

the univariate ECO, we present the results for the multivariate event-crossover (See

Table 3.5). In this case, only attack (n = 179) was on average significantly different

from the control point (p = 0.02) for those participants who passed. This result

is somehow consistent with the univariate ECO because we also found that attack

had an average significant difference. The multivariate ECO didn’t show significant

results for those participants who failed with attack and air on as the events with

the lowest average p value but none of them below 0.05.

3.5.2 SOM-ECO

We trained the self-organizing map using R version 3.2.2 and the package ”Koho-

nen” version 2.0.19 using a hexagonal grid with 3 columns and 3 rows. The feature

vector was defined in equation 3.5 and the short notation in equation 3.6. We will

use the last notation to express physiological signal interval in terms of i. Because

the feature vector was constructed with rows representing seconds, the number of

activations we expect to see from each participant is the total number of seconds that

they played in the simulator. Moreover, the time of each session is not fixed but
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Table 3.5: Multivariate ECO for Participants Who Passed and Failed.

Event
Pass Fail

T 2 df1 df2 p value T 2 df1 df2 p value

Report 1.71 9 33 0.22 0.79 9 13 0.64

Attack 2.56 9 170 0.02 1.65 9 74 0.21

Request Fire Team 1.77 9 70 0.21 0.53 9 62 0.82

Air on 0.8 9 154 0.62 1.63 9 68 0.2

Test Agent 0.87 9 85 0.56 0.74 9 43 0.68

Debrief and Report 1.42 9 25 0.38 NA NA NA NA

depends on the participant’s performance. For this reason the number of activation

by participant varies.

The grid is traditionally built using a
√
K×
√
K configuration where K is the total

number of desired nodes (patterns) to explore. However, other asymmetric grids can

be built. Empirically we observed that a 3× 3 arrangement provided good results in

terms of compactness in our experiments. We also used a 4× 4 SOM, but it provided

clusters that were not as well separated. Separation is a measure of cluster evaluation

for unsupervised learning which determine how well distant the clusters are from each

other [56]. A 2× 2 was another setting. In this case the weights for each of the four

nodes (clusters) were well separated but the instances assigned to each cluster were

not very compact (low cluster cohesion), this is, instances assigned to a cluster were

not closely related within the cluster. All the measures in the feature vector range

from 0 to 1 so no additional scaling was needed. The node and weights are shown in

the following Fig. 3.10. Although the grid looks rectangular the nodes are really on

a hexagonal grid. As explained in the background section nodes close to each other
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Figure 3.10: Weights for Each of the Nodes in the SOM.

in the two-dimensional grid will tend to have similar weights. We can see that node

1 is a combination of low distraction and moderate workload and high engagement.

If we go to the opposite side of the map to node 9, we see, as expected, the opposite

configuration with high distraction and high workload, but very low high engagement.

An advantage of the SOM is this easy visualization of the nodes. Another interesting

fact is that workload never appears low in any of the weight combinations. The

total activation counts are shown in the following Fig. 3.11. Node number 1 has the
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Figure 3.11: Activation Counts.

most activations followed by node number 5. Node number 3 has the least number

of activations. Figure 3.12 shows how the node activation can help create a discrete

version of the time series. In Fig. 3.12a we see a physiological time series with only one

feature (univariate). Fig. 3.12b shows a multivariate time series with three affective

constructs: high engagement, distraction and workload. Finally, Fig. 3.12c shows the

activations of node k at interval i. Note that there can be only one activation per

interval because each time an instance is presented to the SOM it chooses the BMU

by computing the minimum Euclidean distance. Moreover, it is easy to see that as the

number of physiological signals increase, the more difficult it is for the human eye to

detect patterns in the traditional multivariate time series representation as shown in

Fig. 3.12b. Table 3.6 contains the p values for each of the event-node combinations.

The number of node activations at each of the events is also shown (n). The events

appear in the first column as well as the number of events that were used for each

computation. This table only presents results for those participants who passed.

Node 1 and event report (n = 42) have a significant results with p = 0.04. Fig.
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(a)

(b)

(c)

Figure 3.12: A Time Series of Physiological Input (a), a Multivariate Signal (b) and

Node Activations of a 5× 5 SOM (c).
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Table 3.6: McNemar’s Test Results for Participants Who Passed.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Report (n=42) 0.04 1.00 0.25 1.00 0.58 1.00 1.00 0.72 0.08

Attack (n=179) 0.17 0.56 0.82 0.86 0.20 0.74 0.73 0.06 1.00

Request Fire Team (n=79) 0.19 0.26 1.00 0.23 0.69 0.77 0.63 0.06 0.50

Air on (n=163) 0.76 0.39 0.42 0.74 0.43 1.00 0.61 0.20 1.00

Test Agent (n=94) 0.52 0.02 0.72 0.80 0.72 0.18 1.00 0.42 0.68

Debrief and Report (n=34) 0.23 0.34 1.00 1.00 0.23 1.00 0.50 0.37 1.00

3.10 can be used as a road map for the interpretation of the weights. For example,

node 1 has almost zero distraction in any of the three distraction features, it also has

moderate workload and moderate high engagement. This implies that participants

who succeeded the mission normally lack this pattern when they were first reporting

the situation when compared to randomly chosen control point. The node 2 at event

test agent (n = 94) has also a significant result (p = 0.02). Node 2 is very similar

to the previously described node 1 because they are next to each other in the two-

dimensional grid. Fig. 3.13a shows the node distribution for the event report for

those participants who passed. The red arrow shows the large difference between the

number of activations for control and events, therefore confirming the results observed

in Table 3.6. Fig. 3.13b shows the same type of plot only this time for test agent.

Again node 2 shows a large difference between controls and events. Table 3.7 presents

the results for the McNemar’s test for those participants who failed. There are two

significant results. The first one is the node 5 at event report (n = 22) with p = 0.04.

In Fig. 3.14a we can see there is a large difference in node 5 activations around the

event report when compared to a control interval. If we observe node 5 in Fig. 3.10

we notice that distraction is very low, there is moderate to high workload and there

is a decreasing level of high engagement, going from high 3 second before the event to
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(a) (b)

Figure 3.13: Node Distribution for Controls and Events, Pass.

Table 3.7: McNemar’s Test Results for Participants Who Failed.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Report (n=22) 1.00 1.00 1.00 0.68 0.04 1.00 0.62 0.37 0.62

Attack (n=83) 0.55 1.00 1.00 0.42 0.40 0.27 0.31 1.00 0.34

Request Fire Team (n=71) 0.34 1.00 1.00 0.11 1.00 1.00 0.77 0.79 0.22

Air on (n=77) 0.34 0.58 1.00 1.00 0.61 0.07 0.04 0.79 0.22

Test Agent (n=52) 0.45 0.34 0.22 0.55 0.10 0.68 0.15 0.34 0.37

Debrief and Report (n=0) NA NA NA NA NA NA NA NA NA

low 3 seconds after the event. The other significant result is in node 7 at event air on

(n = 77) with p = 0.04. In Fig. 3.14b we can see that the node 7 activations around

the event air on are unusually low when compared to a random interval. Table 3.8

provides with information about the Stuart-Maxwell test or Generalized McNemar’s.

The way of interpreting the results of this table is that the distribution of nodes

activations around the events under study is significantly different (or not) from the

proportion of nodes chosen randomly, where the random selection is done within each

participant working as its own control. If we put all participants together we have
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(a) (b)

Figure 3.14: Node Distribution for Controls and Events, Fail.

Table 3.8: Generalized McNemar’s Test.

All Pass Fail

Report 0.041 0.065 0.287

Attack 0.403 0.299 0.457

Request Fire Team 0.093 0.075 0.474

Air on 0.335 0.522 0.117

Test Agent 0.029 0.023 0.074

Debrief and Report 0.339 0.269 NA

significant results for report (n = 64) and for test agent (n = 146) with p = 0.041

and p = 0.029 respectively. If we only consider those participants who passed then

test agent (n = 94) is significant p = 0.023 . There were other results that were close

to significance for this group, namely report (n = 42) with p = 0.065 and request

(n = 79) with p = 0.075 . No significant results were found in the fail group, with

perhaps test agent (n = 52) close to significance p = 0.074. In order to analyze the
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Figure 3.15: Node Distribution for Participants Who Passed at Event Test Agent.

finding of Table 3.8, we look to Fig. 3.15 which displays the activations distribution

across all 9 nodes for those participants who passed and for the event test agent. We

can clearly see for example that nodes 1 and 2 have low counts when compared to the

controls and that nodes 5, 6 and 8 have relatively high counts around events when

compared to controls.

3.5.3 Contrasting Performance

In the univariate pass vs fail results we found that there are significant differences

between the affective states of the participants who passed from those who failed

around certain events as seen in Table 3.9. For the event attack (n = 262) there

were significant results for all three workload features. There is also a significant

result for HEp3 (p = 0.036) with mean difference -0.102, where participants who

failed had lower values for this feature than those who passed. Request (n = 140)
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Table 3.9: Results of the One-Sample t-Test for Differences in Pass vs Fail.

DIm3 DI0 DIp3 WLm3 WL0 WLp3 HEm3 HE0 HEp3

Report (n=64) p values 0.437 0.903 0.866 0.13 0.362 0.705 0.568 0.609 0.817

mean diff 0.068 0.007 0.015 -0.067 0.042 0.017 0.059 0.052 0.022

Attack (n=262) p values 0.093 0.155 0.407 0.023 0.002 0.024 0.878 0.239 0.036

mean diff 0.067 0.054 0.031 0.05 0.061 0.046 0.007 0.055 -0.102

Request Fire Team (n=150) p values 0.167 0.026 0.393 0.938 0.201 0.181 0.932 0.883 0.5

mean diff 0.064 0.102 0.037 -0.002 0.033 0.038 -0.005 -0.009 0.039

Air on (n=240) p values 0.033 0.018 0.042 0.023 0.001 0.074 0.099 0.371 0.559

mean diff 0.089 0.106 0.087 0.045 0.071 0.039 -0.079 -0.046 0.03

Test Agent (n=146) p values 0.394 0.15 0.278 0.005 0.074 0.01 0.86 0.71 0.679

mean diff 0.037 0.068 0.052 0.083 0.046 0.071 0.011 -0.024 -0.026

Debrief and Report (n=0) p values NA NA NA NA NA NA NA NA NA

mean diff NA NA NA NA NA NA NA NA NA

has one significant result, air on (n = 240) has 5 significant results and test agent

(n = 146) has 2 significant results. The event debrief and report could not be done

(marked as NA’s) because those who failed in theory are not supposed to debrief and

report because this is the last action that needs to be taken after putting out the

fire. In general there were no significant differences between pass/fail participants for

the event report (n = 64). Fig. 3.16 shows the visual summary for mean differences

for all events. HEp3 for the event attack has a large absolute value and it clearly

departs from zero and from the other mean differences. As we saw in Table 3.9 this

value turned out to be significant. Distraction in current time (DI0) also has two

large mean differences for the event request and air on both with significant pvalues

(p < 0.05). Fig. 3.17 shows an additional visual aid. This time the event air on is

further analyzed by a more detailed data visualization for the simple reason that it has

the most significant results from Table 3.9. We observe that distraction is consistently

higher for those who failed when compared to those who passed. This could imply
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Figure 3.16: Plot for Mean Differences for Participants Who Passed vs Failed.

that more successful players tend to express lower levels of distraction. Another

interesting fact is that the distraction feature group presents a greater number of

outliers when compared to the other two groups (workload and high engagement).

Workload is also higher for those participants who failed and the significance of the

results was confirmed in the previous table for WLm3 and WL0. High engagement

on average shows similar differences than workload in terms of magnitude but the

spread of the data is larger and therefore no significant results were obtained. Each

of the other events can be analyzed using this type of plots to increase the detail of

analysis. Finally, Table 3.10 presents the results for the multivariate approach for

pass vs fail. The event attack (n = 262) and air on (n = 240) have significant results

with p = 0.002 and p = 0.004 respectively. No significant results were found in the

rest of the events.
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Figure 3.17: Box Plots for Mean Differences Between Pass vs Fail.

Table 3.10: Results for Multivariate 2-Sample Hotelling’s T 2.

Hotelling-Lawley num Df den Df pvalue

Report 0.11 9 54 0.73

Attack 0.11 9 252 0.002

Request Fire Team 0.07 9 140 0.331

Air on 0.11 9 230 0.004

Test Agent 0.11 9 136 0.123

Debrief and Report NA NA NA NA
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3.6 Discussion and Conclusions

The aim of our work was to introduce a set of analytical tools to analyze events in

a learning environment and where a physiological input is recorded in real-time. The

methodologies proposed here are suitable for situations where events occur randomly

and are embedded in time. In this study the methodology was explained in detail and

an applied example was illustrated using a damage control simulator. The experiment

used data from 60 participants and its objective was to identify differences around

events.

The first proposed methodology was the multivariate ECO. First, the univariate

ECO was applied where report-HEp3 and attack-HEm3 had significant results for

those participants who passed. This implies that high engagement 3 seconds after

the event report happens is lower when compared to a control point. Something

similar happens with high engagement 3 seconds before attack, it is in general lower

than the control points. The methodology suggests using box plots to further analyze

patterns and trends. For example, we learned that in general high engagement for

those who passed tends to be lower at events than at control intervals and there are

few outliers across replicates. The p value boxplots for report shows that DIp3 and

HEp3 have low variation when compared to the rest. For participants who failed the

mission the event attack at WL0 was the only significant (p = 0.041) , this implies

that this group has higher workload at the exact moment the event happens. This is

consistent with other studies where they have found that subjects who are struggling

with a learning task tend to have higher cognitive load [67] . On the other hand, in

the in the multivariate ECO only the event attack (n = 179) shows a significant result

(p = 0.02) for those participants who passed. This is consistent with the univariate

approach which also detected this event as significant but only for a single feature.
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In the second approach we tried to address the question: Given a multidimensional

physiological signal from a subject, what is the affective state of this subject at a given

time or event and how can this state be represented? We proposed a discrete version

of the ECO methodology where the high dimensional feature space was lowered to a

two-dimensional space using a SOM. The characteristics of interpretability and the

preservation of topographical properties make this approach suitable for the analysis

of physiological signals. Once the SOM was trained the feature vector was presented to

the model and the node activations were tracked. The McNemar’s test for participants

who passed showed that node 1 was significantly different from a random chosen

interval for the event report. Node 1 is characterized by very low distraction, moderate

workload and high high-engagement. In this regard, the number activations at the

time of this event are unusually low. The combination node2 and test agent also had

a significant results. Node 2 is similar to Node 1 with the difference being that it has

very low high engagement in the current time. For the participants who failed, node

5 and report had a significant result where the proportion of activation for this event

is large when compared to the controls. Node 5 is characterized by low distraction, a

moderate workload that increases over time, and high engagement that starts high 3

seconds before the event, goes to moderate during the event and falls abruptly after

3 seconds. This is an interesting pattern that requires further analysis because it was

observed only in failed participants but not in those who succeeded. Lastly, node 7

at event air on also had a significant result.

The Generalized McNemar’s or Stuart-Maxwell test showed two significant results

for report and test agent when all participants were considered as a whole group.

When groups were split between pass and fail only the first ones showed a significant

results in the event test agent. This event is normally done as a control check before

sending the fire team to attack. The significant results implies that the node distri-
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bution is very different at the time of this event in comparison with the rest of the

session.

Finally, when directly comparing both groups (pass/fail) we found that workload is

consistently different from these two groups where the poor performers group tend to

have high workload. As a consequence, a good strategy to maximize the probability

of success could be to minimize the workload in this type of participants. Similar

patterns of workload are observed at events air on and test agent where once again,

good performers have lower workload levels. Another interesting result seen in request

fire team and air on events is that poor performers have high levels of distraction

when compared to good performers. This is true at current time (DI0) were the largest

mean difference is observed, but also before and after the event air on happens. The

result makes sense as one would expect poor learner to be more distracted compared

to successful participants. This finding suggests that in order to successfully finish

the mission in the simulator a participant needs to have low levels of distraction and

on the other hand, high levels of distraction could be an early warning for failures and

an intervention could be triggered. The multivariate comparison between pass and

fail further confirm the hypothesis for differences between these two groups especially

around the events attack and air on.

In summary, the methodologies proposed in this work can be used to better under-

stand the decision making process around events in a complex learning environment.

The conclusions drawn by applying these tools can enable researchers and educators

to improve the design of HCI and ITS by enhancing the user experience and improving

learning.
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Chapter 4

BAG OF AFFECTIVE STATES TO PREDICT PERFORMANCE EARLY IN AN

EVENT-DRIVEN SIMULATOR

4.1 Introduction

Several efforts have been made in the last couple of years to develop mechanisms

which allow computers to adapt and automatically tailor learning experience to a

participant profile [50]. It is thought that students emotions need to be considered

in order to motivate them and improve learning [13]. In spite of the challenge of

identifying or even defining human emotions, the consensus is that if we are to create

an effective Intelligent Tutoring System (ITS) it should be able to recognize feelings

and mood in order to maximize learning experience. Unfortunately the current state

of communication between machine and participants is asymmetric, this is, humans

are able to obtain a lot of information from a computer such as operating system,

memory, processor speed, etc. but the machine has very little information about

the user[15]. The asymmetry is even greater when the participant is a person with

motor impairments where conventional computer interfaces such as mouse, keyboard

or game controllers cannot be used. Given this challenge several biometric sensors

have been proposed to interact with these environments such as: heart rate, skin con-

ductivity, electromyography (EMG), respiration, electroencephalogram (EGG) and

electrocardiograms (ECG). Brain computer interfaces (BCIs) have the capacity to en-

able humans to control and interact with different learning environments from video

games to military simulators. Valuable information regarding the cognitive state of

the subject can be derived from BCIs and this information can be sent back to the
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computer with the goal of narrowing the communication gap between the user and the

computer. The basic believe in the area of Affective Computing is that if a computer

automatically recognizes and adapts to the user’s emotions and affective states the

quality of the interaction is enhanced and as a consequence the learning environment

becomes more enjoyable and thus more effective [17]. However, detecting emotions is

a hard task and many individual differences across participants is very challenging.

Performance prediction is a new area under research in ITS and EEG has been

used to provide information about the ability of a user to successfully accomplish a

task. In addition, EEG provides technological benefits to model different affective

states that are task-independent and non-intrusive [9] which allows monitoring a sub-

ject’s emotional state in real time and in quantitative way [30]. BCIs can also be

used to accommodate individual differences in skills and emotional traits that are

largely ignored in learning environments which have static difficulty levels [50]. In

order to accomplish this goal performance has to be predicted ahead of time to avoid

participants getting low engaged due to an easy difficulty level or overwhelmed and

frustrated when the level doesn’t match their skills. Furthermore, several studies

have shown that traditional performance metrics are not enough to adapt learning

environments but affective information should also be considered. ITS that detect

and respond to user’s affective states should be able to more accurate predict per-

formance. For example, in [52] EEG was used to assess the impact of fatigue on a

cognitive test and they were able to predict with high accuracy future performance.

In another study, EEG was used to identify potentially impaired drivers in an un-

predictable and dynamic driving simulator where researcher were able to group poor

and good performers [68]. Performance can not only be predicted for individuals, in

[57] complexity theory principles were used to derive physiologic models for teams

on a submarine simulation using EEG. This is possible because is hypothesized that
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an individual’s affective state is affected by other individuals during interactions.

The number of applications in this new research can be applied to any field, from

health-care, education and public safety. For example, in [51] a close-loop system

was developed using EGG which is capable of detecting drowsiness and responds by

sending alarms in a driving simulator. Advances in technology like wearables inte-

grate hardware and software solutions that are able to respond and adapt to users in

real time and the applications go from fashionable smartwatches to sensory eyewear.

Physiological signals, in fact, can provide very valuable information about the user

to understand his affective state.

In this chapter we address the challenge of predicting performance on a learning

environment using a bag of states model where the final outcome is a binary classi-

fication problem (e.g. success/ fail). The intention of the methodology presented is

to provide cognitive scientists with the statistical and machine learning tools to be

able to design a feedback system which considers different user’s profiles in order to

increase engagement, provide enjoyment, stimulate attention while preventing fail-

ure. The methodology makes use of self-organizing maps (SOMs) to define different

affective states. Once the SOM is trained with the physiological signal the number of

activations is counted for each of the output nodes and fed into a machine learning

model. We have named the methodology Bag of Affective States (BAS) because it

resembles a bag-of-words model which is one of the most popular techniques for object

categorization [28] and it has been widely adopted and successfully used in language

processing as well as computer vision [69], [70], [71]. The novelty of our approach

is that we are able to make predictions early on the learning session using only the

available information at time t unlike other studies where prediction is a posteriori

using all available information from the session and where participants are grouped

given certain physiological information. The methodology is explained on an applied
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experiment where affective constructs provided by a research-grade EEG device is

used as our main input on a damage control simulator.

The rest of the chapter is organized as follows. Section 4.2 explains the background

of SOMs. Section 4.3 explains the methodology of Bag of Affective States while

section 4.4 describes the simulation environment, participants and EEG recordings.

Main results are detailed in section 4.5 and final conclusions are drawn in section 4.6.

4.2 Background

Self-organizing maps (SOM) are a type of artificial neural network that map a high

dimensional input vector into a 2-dimensional grid. The grid is normally arranged on

a
√
K ×

√
K hexagonal layout but other arrangements could be used. In this case

K is the total number of desired nodes and it is defined by the user. SOM belong

to the unsupervised category of algorithms in machine learning because no labels are

required for training. Once the SOM is trained each of the samples used for training

are presented to the model and they are mapped to only one of the K output nodes

by computing the Euclidean distance between the instance to be mapped and each

of the output nodes. The node which provides the minimum distance with respect

to the instance is chosen and we say that a node activation has occurred. The total

number of activations should be equal to the number of instances (samples) in our

training dataset. The SOM model created after training can be fully described by

the node topology as well as the weights associated with each of the output nodes.

Therefore, new or never seen instances can be presented to the SOM and they will

be mapped to a single output node. This property can be very useful when designing

ITS because we only train the model once. In a SOM all the input nodes are fully

connected to the output nodes also called output layer. Each of these connections are

denoted as wkq where index q denotes an input node q = 1, 2, . . . , Q and k the output
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node k = 1, 2, . . . , K. During the training process the weights of output nodes close

to each other in the 2-dimensional grid are updated together. This process allows

the SOM to preserve the topology of the original high dimensional space. In other

words, instances close to each other in the high-dimensional space will be close in the

2-dimensional grid.

4.3 Bag of States Methodology

The first step in the methodology is to train a SOM using a physiological signal

as the input. The high dimensional physiological signal mapped to a specific output

node in the SOM can be seen as cluster where the centroid is the average of all the

instances associated to that node. The centroid is described by the weights of a given

node and can be represented as the vector wk = [wk1, wk2, ..., wkQ]ᵀ. Therefore, each

node can be interpreted as a meta affective state, this is, the combination of different

affective measurements provided by physiological device. For example, a combination

of affective states provided by an EEG headset such as engagement and workload can

be seen as an affective state itself. For instance, a high level of engagement and high

level of workload can be related to a subject that is learning a new task. On the

other hand, low engagement, low distraction and low workload can be related to a

person performing a well-known or automated task, such as driving a car (experienced

driver).

Once the SOM is trained and we have all the nodes K and their respective weights

wk for k = 1, 2, . . . , K, we can present the instances to the model and track their

node activations. The physiological signal that is used as input is a time series

where the time unit will depend on the sampling rate of the device or it can be

defined by the experimenter. For now let’s assume that our time unit is one second.

Denote the number of activations for node k as yk. Hence
∑K

k=1 yk = T where T
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is the total number of seconds in the session. This process is done for each of the

participants. Ideally, we would like to perform this procedure early into the session

so we can predict final performance or in the case of an ITS to be able to adapt

accordingly. Finally, another way to see the number of activations yk is the amount

of time spent by a participant on a node k or in other words, in an affective state wk.

Finally, the input vector to a machine learning algorithm can now be constructed if

we define y = [y1, y2, ..., yK ]. In other words, we are using the distribution of node

activations for each of the participants to make predictions about his performance

where the class label can be defined as a binary classification problem (e.g. pass vs

fail). The methodology can be extended to a multiclass classification problem as long

as the machine learning algorithm used supports it. In the next section an applied

experiment is presented where the Bag of States methodology is illustrated.

4.4 Experimental Protocol

4.4.1 Simulation Environment

The Damage Control Simulator (DCS) was developed by the CREEST lab from

UCLA with the goal of improving Navy warfighter skills while participants respond to

an on-board ship emergencies. The DCS was specifically designed for naval operations

with the intention of developing a low-cost computer-based solution. The simulator

is single player and is played on a third person view where each of the team members

available has a specific skill such as: firefighter, electrician, technicians and a scene

leader, all of them controlled by the player. The game adds realism by introducing

random and unexpected situations while the player tries to put out a fire making

the situation even more challenging. Participants have to make many diverse and

complex decisions in order to successfully accomplish the mission like selecting the
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right equipment, deciding the best strategy, monitor personnel health and prioritizing

tasks. The skills that are targeted to improve are: resource management, personnel

safety, communications, tactical planning and adherence to Navy protocol. The action

required during the game include: reporting, requesting teams, setting boundaries,

investigating spaces, requesting mechanical/electrical isolation, checking equipment

and attacking emergencies. The session is divided in three main parts: the first one

consists in reporting the fire and assessing the initial situation, the second phase is

about fighting the fire and the last part is monitoring the scene and making sure the

fire is under control.

4.4.2 Participants

Sixty participants were recruited from the Arizona State University where 31 were

female and 29 male. They were paid and had the option to leave the experiment at

any time. Subjects were asked to participate in two sessions. The first one lasted 90

minutes and participants were required to fill out a demographic survey, they later

took a training session followed by a pre-test. Participant were asked to review the

tutorial embedded in the DCS and after that they played a damage control scenario

in easy-mode. The goal of the first session was for the participants to get used

to the user interface and also get familiar with the tasks and decisions in order to

successfully finish the mission. Session 2 was on a different day with no more than 2

weeks between sessions. This time the participant wore the EEG headset and played

the DCS in three levels with different difficulty: easy, moderate and hard. At the end

of the session the participant was required to take a post-test.
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4.4.3 EEG Recordings

For this experiment B-alert X series from Advanced Brain Monitoring (ABM)

was used. The head set is a portable, easy-to-use EEG device which provides high

quality recordings. It consists of 9 channels which are located in the mid-line and

lateral sides of the skull (Fz, F3, F4, Cz, C3, C4, POz, P3, P4) plus an additional

channel for ECG, EMG or EOG. The sampling rate is @256 Hz and the setup is

done with gel which takes an average of 15 minutes. In order to check for signal

quality the device performs an automated wireless impedance check and it allows for

the signal to be transmitted up to 10 meters. The devices comes with a suite which

allows providing the most common frequencies for EEG studies: delta, theta, alpha,

beta, gamma and high gamma as well as 4 affective constructs: high engagement, low

engagement, distraction and drowsiness. The suite also provides three measurements

of memory workload: workload average, workload forward digit span (WFDS) and

workload backward digits span (WBDS). The derivation as well as the validity of these

measurements are explained in [9] and [10] while an application using this device in

close-loop system can be found in [51].

4.5 Main Results

4.5.1 Results Using the Full Model

The input vector used to train our SOM consisted in the fours affective constructs

provided by ABM B-Alert: high engagement, low engagement, drowsiness and dis-

traction. These measurements are provided as the probability of a specific affective

state being present at a given time in the subject and they sum up to one. We

also used the three measurements of workload: workload FDS, workload BDS and

workload average all of which were explained in subsection 4.4.3. Several topologies

87



Figure 4.1: SOM Nodes and Weights After Training.

using different number of nodes and grids were studied where the SOM using a 3× 3

hexagonal grid provided the best results. The nodes and weights after training can

be seen in Fig. 4.1. Each node can be interpreted as an affective state itself. For

example, node 7 is a combination of high engagement and low workload while node 3

is represented by low engagement and high workload.

ABM B-alert provides with the measurements per second, therefore a node ac-

tivation occurs every second. From the 60 participants in total the first participant

failed at second 59. Hence, we decided to use the node activations up to second 58.

This way we ensure that all participants have the same number of activations and

most importantly we are interested in using the node activations from the beginning

of the session to predict the final outcome. In this sense, our features are generated
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Figure 4.2: Variable Importance for Full Model.

Table 4.1: Confusion Matrix for Pass/Fail, Full Model

Actual

Predicted
Pass Fail

Pass 32 6

Fail 6 16

by counting the number of activations by node with a total of 58 per participant.

We used logistic regression to predict performance (pass/fail) were the input vector

was constructed as explained in the methodology section 4.3 with a total of 9 nodes

and where the total counts for each of these nodes can be seen as the total time spent

on a specific affective state. The variable importance is shown in Fig. 4.2 where

we see node 6 and 2 as the most important features. The 10-fold cross-validated

confusion matrix is shown in Table 4.1 where 6 pass subjects were misclassified and

6 fail participants were also misclassified. Accuracy was 0.8, true negative rate 0.727

and true positive rate 0.842 where the positive class was pass.

Table 4.2 shows the performance of the Bag of States approach at different times.

89



Table 4.2: Bag of States Performance for Different Seconds.

Seconds Accuracy TPR TNR

5 0.550 0.763 0.182

10 0.650 0.921 0.182

20 0.550 0.763 0.182

30 0.650 0.816 0.364

40 0.700 0.763 0.591

50 0.817 0.842 0.773

58 0.800 0.842 0.727

100 0.850 0.895 0.773

At t = 5 we observe that there is not discriminative power and the prediction has low

accuracy. As time goes by the accuracy starts to increase and around t = 50 we have

achieved an accuracy above 0.80 which remains constant up to t = 58 where we start

losing participants due to mission failure. We went further and made predictions at

t = 100 and the accuracy improved up to 0.85 but we also have to consider the fact

that we have lost more participants and the prediction is unbalanced towards the

successful class.

Fig. 4.3 shows a heatmap where the x axis represents the 9 nodes and the vertical

axis shows all participant in two blocks. The upper part of the axis shows participants

who passed and the lower part participants who failed. The horizontal line is a visual

aid to separate them both. The color represents the counts of node activation for a

given node k and a participant p. Furthermore, within each pass/fail block node 6 is

sorted in descending order. Visually we see that the block of participants who passed

tend to have fewer number of activations in node 6. On the other hand, the block of
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Figure 4.3: Heatmap for Node 6 Activations Counts.

participants who failed have a larger number of activations. Although, node 2 (the

second most important feature) is not sorted we can also see a trend. In case of node

2 participants who passed have more activations than those who failed.

In order to further analyze the instances associated with node 6 and 2 boxplots

were constructed. In Fig. 4.4 we see the central tendency as well as the dispersion

for each of the affective states in node 6. High engagement and low engagement are

close to 0.5 and there are no outliers (instances beyond the whiskers). Distraction is

low with several outliers going from 0.15 to 0.37 approximately. A similar trend is

observed in drowsiness although the mean is very close to zero. The 3 measurements

of workload on average are close to 0.6 where the main box (from percentile 25% yo

75%) ranges from 0.5 to 0.75.

Fig. 4.5 shows the boxplots for node 2. In this case we observe instances for

high engagement with values falling between 0 and 0.25. The opposite is true for low

engagement where instances are on average around 0.85. Distraction and drowsiness
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Figure 4.4: Box Plots for Instances Mapped to Node 6.

Figure 4.5: Box Plots for Instances Mapped to Node 2.

are again low and values for workload are on average below 0.50.

Plotting the number of activations for node 2 and 6 for each of the participants

provides a good idea of why these nodes have good discriminative power. In Fig. 4.6

we see a scatter plot where the x axis represents counts for node 2 and the y axis

counts for node 6 for each participant. Furthermore, participants are identified by

pass/fail. An imaginary line with intercept in the y axis a slightly below 5 and with
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Figure 4.6: Scatter Plot of Activation Counts for Node 2 and 6 with Pass/Fail Color.

a slope around 1 could provide a good separation between these two groups.

Since node 6 appear to be the most important we decided to plot node 6 activations

in time for all participants. Fig. 4.7 shows in green activations for node 6. The x axis

is time in seconds and the y axis is arranged in four groups: the top one is represented

by participants who passed but were misclassified. The next group are participants

who passed and were correctly classified followed by participants who failed and were

misclassified and finally the participants who failed that were correctly classified.

Three horizontal lines separate these groups. Similarly to Fig. 4.3 we observe that

participants that failed have more activations in node 6 when compared to those who

passed. Further patterns are not completely clear. For example, participants who

failed and were misclassified appear to have fewer activations at the beginning of the

session. On the other hand, participants who passed and where correctly classified

appear to have more activations at the beginning of the session. The same type of

plot could be used to further analyze node 2.

We also compare node 6 against the rest of the nodes. In Fig. 4.8 we have

7 subplots, one for each affective construct provided by ABM B-alert. The x axis
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Figure 4.7: Node 6 Activations in Time by Participants.

represents the 9 nodes and the vertical axis represents the weights. In red we see

node 6 and how it compares to the rest. For example, high engagement is very close

to node 5 (around 0.5) but the rest of the nodes are either too low (1, 2, 3, 4 and 9)

or too high (7, 8). Regarding workload, node 6 is similar to node 3, 8 and 9 where

they show mid to high values.

The model was further reduced to include only the 3 most important features:

counts for node 6, 2 and 1. Fig. 4.9 shows the variable importance where node 6

once again was the most important closely followed by node 2. Node 1 importance

was zero. Consequently, we further reduced the model to only two variables: node

6 and 2. The 10-fold cross-validation accuracy was 0.833, the true positive rate was

0.868 and the true negative rate 0.773. The confusion matrix can be seen in Table

4.3 where each of the classes had 5 instances (participants) incorrectly classified.

In previous analyses we observed that distraction didn’t show up among the most

important variables and as a consequence it was probably not contributing too much

to the performance prediction. Moreover, the three workload measurements seem to

be highly correlated and they contain similar information. Therefore, we proceeded
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Figure 4.8: Node 6 (in Red) Compared to the Rest of the Nodes.

Figure 4.9: Variable Importance with the Model Reduced to 3 Predictors.
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Table 4.3: Confusion Matrix for Pass/Fail, Reduced Model with 3 Features

Actual

Predicted
Pass Fail

Pass 33 5

Fail 5 17

Figure 4.10: SOM Nodes and Weights after Dropping Distraction, Workload FDS

and Workload BDS

to train the SOM this time dropping distraction, workload FDS and workload BDS.

The new nodes and their weights can be seen in Fig. 4.10.

The 10-fold cross-validated results using logistic regression yield an accuracy of

0.85, a true positive rate of 0.895 and a true negative rate of 0.773. Once again,

we computed the variable importance and the results are shown in 4.11. Node 2
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was the most important closely followed by node 7 and 6. Node 2 is presented by

having low values for high engagement and high values for low engagement. It also

shows very low levels of drowsiness and moderate levels of workload. The model was

further reduced using only the 3 most important nodes as inputs (Node.2, Node.7

and Node.6 ) yielding the same performance.

4.5.2 Results Using a Subset of Physiological signals

Further efforts were made to reduce the number of affective states used to train

the SOM. Being left with only these four affective constructs we proceeded to try the

four possible combinations: (HE, LE, Dro), (HE, LE, WA), (LE, Dro WA) and (HE,

Dro, WA) using a 3× 3 and 2× 2 topology. Nodes and weights for the 3× 3 topology

are shown in Fig. 4.12 where the four combinations are shown. Unfortunately, the

performance was poor and the highest cross-validated accuracy for any given com-

bination was no better than 63.3%. Nodes and weights for the 2 × 2 topology are

shown in Fig. 4.13. Cross-validated accuracy for this topology was no better than

53% for any of the four combinations. Therefore, we conclude that given the affective

contructs provided by ABM and for this specific learning environment high engage-

ment, low engagement, drowsiness and workload average provide good information

for early on performance prediction and this is the most parsimonious model we can

get without sacrificing accuracy.

4.6 Conclusion

Emotions or affective states play an important role in human performance. The

capacity of detecting and recognizing these affective states is an important aspect of

human interaction[5]. Recent neurological studies show that in order for machines

to be able to efficiently assist humans they should be able to recognize emotions [4].
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Figure 4.11: Variable Importance for the Reduced Model after Dropping Distraction,

Workload FDS and Workload BDS

Moreover, physiological signals have been used to provide objective assessment in

cognitive tasks prior to engaging in more complex learnings scenarios [72].

The aim of our work was to develop a methodology to take a physiological input

and predict performance early on a learning environment. Performance prediction

embedded on a ITS could be used to train participants to maximize learning while at

the same time providing them an enjoyable experience [32]. The methodology con-

siders training a SOM and monitor the number of activations for each of the output

nodes at the beginning of the session. The counts of each of the activations can be

seen as time spent on a certain affective state. The methodology was called Bag of

Affective States because it resembles a bag-of-words approach widely used in machine

learning. The meta affective states generated can be seen as a combination of differ-

ent constructs provided by physiological devices which in the case of an EEG headset

could inclide : high engagement, low engagement, distraction and drowsiness as well
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(a) Low Engagement, Drowsiness and

Workload.

(b) High Engagement, Drowsiness and

Workload

(c) High Engagement, Low Engagement

and Workload

(d) High Engagement, Low Engagement

and Drowsiness

Figure 4.12: Trained SOM Using Different Affective Constructs Combinations on a

3× 3 Grid
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(a) Low Engagement, Drowsiness and

Workload.

(b) High Engagement, Drowsiness and

Workload

(c) High Engagement, Low Engagement

and Workload

(d) High Engagement, Low Engagement

and Drowsiness

Figure 4.13: Trained SOM Using Different Affective Constructs Combinations on a

2× 2 Grid
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as measurements for memory workload. The novelty and utility of this methodol-

ogy relies on the fact that performance prediction is done early on the simulation

using only the available information at time t << T where T is the duration of the

session unlike other approaches were the information about the session is used in

retrospective.

The methodology was applied on a Damage Control Simulator using affective

constructs provided by a EEG headset and were cross-validated results showed an

overall accuracy of 80% for a two class pass/fail prediction and where the true negative

and true positive rates presented good balance. Node 6 and 2 were the most important

features where the first one is characterized by moderate levels of high engagement

and low engagement, low levels of distraction and drowsiness and moderate to high

levels of workload. Participants who failed spent more time in this affective state

when compared to participants who succeeded. On the other hand, participants who

successfully completed the mission spent more time in node 2 which is described by

low values of high engagement and high values of low engagement. This node has

even lower values of distraction and drowsiness when compared to node 6. Node 2

also shows lower levels of workload.

Different time lengths at the beginning of the sessions were tried in order to

identify how early we could predict performance. The first seconds of the session

don’t provide enough discriminative information and the machine learning algorithms

performed poorly. However, as we consider more time in the analysis performance

improves reaching its peak around second 50. The model was further reduced to

considered only two nodes (6 and 2) and the performance was not degraded.

Looking for a more compact model the number of affective constructs used as

inputs to train the SOM was reduced while at the same time preserving similar

performance. We found that with only four affective constructs (high engagement,
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low engagement, distraction and workload average) similar cross-validated accuracy

was achieved. Node 2 in the reduced model looks very similar to node 2 in the original

model with low values for high engagement and high values for low engagement as

well as very low levels of drowsiness and moderate levels of workload. This pattern

was present more frequently in participants who passed. High engagement is generally

associated with visual scanning, sustained attention and information-gathering while

workload is associated with memory load and problem-solving activities [10]. In this

manner, participants who passed showed lower workload and engagement which can

reflect knowledge or expertise gained from session one where they learned how to use

the simulator and where the mission protocol and goals were introduced. On the other

hand, participants who failed spent more time in affective states with higher levels of

engagement which may imply that they spent more time gathering information and

scanning visually the screen which can be an indicator of the struggle to make sense

of the data given certain scenario. Engagement and workload have shown to increase

concordantly when the difficulty of a task is also increased [10] something that is even

more prevalent in participants that find a task very challenging.

BCIs used in conjunction with ITS in simulation environments can maximize

learning and detect areas of improvement as experiments can be conducted before

sending users to dangerous tests [66]. Moreover, we showed that EEG cannot only

be used to discriminate human cognitive activity like in [8] but it can also predict

performance. Future research could include the study of individual differences in

emotion-related cognitive tasks in other types of environments and see if a screening

and categorization of participants is achievable. Different configurations could be

implemented in ITS to accommodate specific needs based on a profile of a subgroup.

Another challenge to address for future research is the lack of temporal infor-

mation of a bag of states approach. It is assumed that the sequence of events on
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learning environment contain important information about the user’s cognitive state

but that information is not considered in the bag of words. Sequential pattern mining

techniques which consider temporal information on streams of data that are delivered

in a sequence could be used in order to find relevant patterns with good prediction

power. EEG raw signals can also be used instead of the affective constructs provided

by a commercial, research or medical-grade headset. A large body of literature dis-

cusses the different frequencies, bandwidths and ratios of the sensors raw signal and

they have been shown to be associated with response-inhibition, affective traits and

attentional control [22]. The work presented here sets the foundation to continuously

monitor affective states and use this information on a close-loop system which is able

to adapt to users’ emotions with the goal of improving performance in a variety of

environments from education to military.
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Chapter 5

BAYESNET FOR PERFORMANCE PREDICTION ON AN EVENT-DRIVEN

SIMULATOR

5.1 Introduction

In order to provide learners with adequate assistance a precise estimation of stu-

dent’s future performance is a prerequisite [73]. A diverse number of factors can

influence present and future student performance such as: educational background,

family environment, teaching strategies as well as personal factors. In the field of ed-

ucation student performance has become increasingly important and even more when

high-stakes tests are each year more and more critical for academic success [48]. For

this reason a promising area for the application of affective computing is performance

prediction which is not only restricted to the educational settings but also to more

diverse fields from health care to military. For example, being able to predict when a

soldier will succeed or fail on a given mission can provide some insights about the cog-

nitive process of the most successful and least skillful participants and in the process

this could probably save lives. A popular approach to model student’s performance

is Bayesian belief networks (BBNs) which use historical information as well as new

evidence to model students’ behavior and has been shown to help the decision-making

process of educators regarding the strategies to enhance learning experience. As a

matter of fact BBN modeling has become increasingly popular in distance education

courses where a tutor keeps track of student progress and guides students according

to their needs and abilities [74]. Educators use BBNs to model behavior because

unlike other machine learning algorithms such as random trees and neural networks
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they provide a structure that is easy to interpret. BBNs are normally built using

a combination of historical information and expert knowledge which also poses the

challenge of continual adaptation of the model as new variations are introduced in

the learning environment. Experts of a research field can easily manipulate the BBNs

layout to include new information and constructs and in this way create more robust

and accurate predictive models [75]. Recently, Intelligent Tutoring Systems (ITS)

have incorporated embedded BBNs which provide real-time analysis of student per-

formance in the form of posterior-probabilities. However, these ITS normally operate

under high uncertainty regarding students’ information and this leads to the BBN

model to be incomplete and unable to capture all the student’s interaction on a given

time [76]. Another disadvantage of traditional BBN is that they are generally mod-

eled to do long-term assessment and prediction of student’s action so they are less

reliable at the beginning of the tutoring session where there is little evidence available

[77]. A mayor challenge is to be able to predict the final outcome of the beginning

or middle part of the session since it is useless from the practical point of view to

predict performance once we know the final outcome. Moreover, if the final objective

is to build a close-loop system this should be able to adapt before is too late or the

participant has already failed. Fig. 5.1 shows a time series of a learning environment

session and we have divided the time in three parts: beginning, middle game and end

game. Ideally we would like to extract features from the first and second part because

the last part is already too late and we probably already know the final outcome.

The methodology in this chapter presents a way of using a BBN and its latent

variables temporal information as inputs for a logistic regression model in order to

make predictions about performance. The utility of this approach is that we consider

time into the analysis and we focus on how early we can predict the final outcome.

Traditionally, BBNs need a lot of evidence in order to be reliable and they are based
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Figure 5.1: Time Series Representation of a Latent Node Score in a BBN.

partly on expert knowledge which sometimes could be biased. Furthermore, the

latent nodes of BNNs are normally associated with specific skills and psychometricians

generally analyze them in a unidimensional manner [29] not considering that students

skills are most of the time highly correlated. In the present investigation we proposed

the use of temporal information provided by a BNNs to predict performance early

on a learning environment. The chapter is divided as follows: in section 5.2 the

theory about BBNs is reviewed and in section 5.3 the methodology used in this

contribution is explained. In section 5.4 the experimental protocol including the

simulation environment, participants and the BayesNet is introduced. The applied

example is illustrated in section 5.5 and the results are described in section 5.6. Finally

conclusions are drawn in section 5.7.

5.2 Bayes Belief Network Background

A very popular machine learning technique used in intelligent tutors is the Bayesian

belief networks [35]. BBNs are used to model student knowledge in a learning en-

vironment and allow making predictions considering past information. The BBN is

a graphical representation of probabilistic relationships between different predictors.

The network is composed of two main elements: 1) an acyclic graph showing the

relation between the predictors (nodes) and 2) the probabilities associated with each

of these nodes [56].
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BBNs are very useful when we only have statistical dependencies among differ-

ent variables. These casual dependencies can be defined by a domain expert which

combined with prior belief can weigh new observable data. Computers have made

easier to compute prior and conditional probabilities to make inferences in real time.

BBNs are normally built using historical information and expert knowledge. One of

the most popular application is in ITS where historical data and information from

experts can help better assess knowledge or skill acquisition of students based on a

set of observable tests or tasks [35]. In a BBN we are trying to infer a posterior prob-

ability after observing some data or collecting evidence. This posterior probability is

derived from the Bayes’ theorem which is given in the formula 5.1.

P (A|B) =
P (B|A)P (A)

P (B)
(5.1)

In Figure 5.2 we can see a simple BBN in which we have 5 nodes: A,B,C,D

and E. Each of the nodes has a probability associated to it. These probabilities

are obtained from historical information, running participants, expert opinion or a

mixture of some of these approaches and they are stored in so called probability tables.

In the same figure we see for example that nodes A and B don’t have precedent nodes

and therefore only prior probabilities are stored in the probability tables. On the other

hand, for nodes C,D and E we have conditional probabilities because these nodes

depend on the state of their respective parent nodes.

In a ITS setting node A could denote the acquisition of skill A while node C could

be the score of a test which we are able to observe. Once we observe C then we

can make inferences about what is the probability of the participant having skill A

given than we observed C, expressed in mathematical notation as P (A|C). Each of

these nodes are represented by discrete states but with continuous-valued associated

probabilities [78]. For example the node A can have two states: the participant has
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Figure 5.2: A Simple Bayes Belief Network with 5 Nodes.

the skill A or the participant does not have the skill A. Sometimes to reduce clutter

notation these states can be simply represented as yes and no. The observable nodes

also have a discrete and finite representation of states. In our current example we

mentioned that C represented a score of a test which would normally be continuous.

However, we can discretized a continuous score by defining ranges such as: 1-3 to

represent low, 4-7 could be moderate and 8-10 representing a high score, assuming

that the score scale goes from 1 to 10. Therefore, it is always recommended to

explicitly define the states when computing the posterior probabilities. For example,

the probability of participant having skill A given that he scored a 6 in test C should

be defined as P (A = yes|C = moderate).

5.3 BayesNet for Performance Prediction Methodology

The methodology presented here allows to use posterior probabilities of latent

variables considering time information to make performance predictions. In order to

accomplish this, let’s define yk,t as the posterior probability of latent node k at time t

where k = 1, 2, ..., K and t = 1, 2, ..., T . This posterior probability can statistically be

defined as yk,t = P ( Skill k = good | all evidence available at time t). In other words,

we will try to estimate the probability of a skill or ability k to be acquired (it’s good)
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at time t using all the information provided by the observable nodes which contribute

to the computation of this probability. In this case, all the evidence is accumulative

which means that all events which happen before time t are considered. Furthermore,

we are assuming that the posterior probabilities are updated every time new evidence

is presented. For example, if no new evidence is presented between time t and t+1 then

yk,t = yk,t+1. Normally in BBNs used in learning environments the observable nodes

are presented as scores and these have to be discretized as explained in the background

section. The next step is to define the feature vector which can be represented as

yt = [yk,t, yk,t+1, ..., yK,t]. This feature vector is the input which will be used in a

machine learning algorithm to make predictions at time t. Finally, depending on the

machine learning algorithm used different variable importance metrics could be used.

For example, in random forest the most common approaches are Gini importance

which considers the mean Gini gain produced by the variable yk,t over all trees and

the permutation importance which tracks the decrease in classification accuracy after

permuting yk,t over all trees. In the case of logistic regression variable importance is

normally computed using the absolute value of the t-statistic for each latent variables

yk,t. The next section will illustrate this methodology with an applied experiment.

5.4 Experimental Protocol

5.4.1 Simulation Environment

The Damage Control simulator (DCS) was developed in UCLA by the National

Center for Research on Evaluation, Standards and Student Training (CREEST). The

simulator provides with realistic shipboard emergencies in which multiple fires can

occur simultaneously. The player is required to respond to different threats by putting

together a team of people with different skills. The primary goal is to put out a
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fire where the player has to make a series of complex decisions based on previous

training. The different characters to choose from the simulator include: technicians,

fire fighters, electricians, investigators, scene leaders, etc. The players can employ

diverse tactics and they respond to a scenario that is not deterministic but introduces

random and unexpected changes like equipment malfunctions which forces the player

to change his strategy and adapt. Instead of focusing on very specific skills such as how

to select the appropriate equipment based on the type of fire or how to fix a mechanical

failure the DCS tries to improve higher order skills which are critical for a marine. The

system has a Bayesian network which provides real time assessment of the situation

which is updated by gathering information from observable actions such as: reporting,

selecting equipment, checking agents, performing mechanical or electrical isolation

and deployment of specific crews. The latent skills that the system is designed to

target are: adherence to Navy protocol, communication, tactical planning, personnel

safety, resource management and situational awareness. The BayesNet embedded

in the simulator was designed using input from participants as well as from expert

Navy instructors. This ensures that the expected skills to be acquired match the

expectation of a human instructor.

5.4.2 Participants

Sixty-nine participants (37 female and 32 male) were recruited from Arizona State

University. The students were paid for their participation and they have the option

to leave at any time during the study. Students participated in two sessions with no

more than 2 weeks in between. In the first session participants were trained to put out

a fire according to the Navy protocol developed for the simulator. Participants also

took a tutorial which is embedded in the simulator in order to get familiar with the

user interface. In the second session participants were asked to play three different
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levels of difficulty: easy, moderate and hard. The difficulty was modified by changing

different parameters such as: fire speed, smoke growth, fire damage, agent modifier,

smoke emissions, etc. For this contribution we selected the outcome of hard session

because it provided a good balance between the number of successful and unsuccessful

results (42 passed, 27 failed). For the easy and moderate sessions the number of

participants who passed was very high making the dataset highly unbalanced and

unfit for this experiment.

5.5 BayesNet Applied Experiment

The UCLA Damage Control Simulator has an embedded BBN which is constantly

being updated as new evidence is presented to the model. Figure 5.3 shows the ar-

chitecture of the BBN which was designed based on expert knowledge. At the top

we can see the node called Damage Control Management which summarizes the ca-

sualty proficiency of two different areas: fire and flood casualty management. In a

lower level we have 6 latent nodes described as: communications, compartment in-

tegrity, personal safety, casualty management, situation awareness/decision making

and checksheet adherence. At the very bottom of the BBN we see the observable

nodes: report, set boundaries, set zebra, mechanical isolation, test agent, request

reliefs, among many others. All the latent and observable nodes have two states:

good performance and bad performance. In order to define the current state on an

observable node a score or rubric is generated according to some evidence collected

in real time during the simulation. These scores are later discretized into two states:

good or bad. Once the observable nodes are updated the effect is propagated to all

the BBN when the posterior probabilities are computed. An output file is provided

by the DCS which computes these probabilities in the following mathematical nota-

tion: P (Communication = Good|Report = Good) in this case the probability of the
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skill communication being good given that the observable action report was done cor-

rectly. Every time new evidence is presented to the BBN new and updated posterior

probabilities are computed considering previous information. Following our exam-

ple P (Communication = Good|Report = Good,Mechanical − Isolation = Bad), in

other words what is the probability of the skill communication being good given that

the observable action report was good and the mechanical isolation was bad. Each

participant has an output file where each row represents a posterior probability which

is generated every time new evidence is presented and the columns are the latent vari-

ables. Therefore, the first row contains only one evidence: report fire the first task

a participant is supposed to perform and it is the same for all participants, while

the last row contains the posterior probabilities considering all evidence presented

throughout the simulation. The question we are trying to address is: How early can

we predict success or failure given the information provided in real-time by the BBN?

In order to answer this question we followed a simple approach: at each point in time

(seconds) we will use the available information provided by the DCS BBN in the form

of posterior probabilities and only using the 5 latent nodes: communications (comm),

compartment integrity (comp-int), personal safety (per-safety), casualty management

(casualty) and situation awareness/decision making (sit-awa).

5.6 Main Results

We performed a logistic regression using the inputs described in the previous

section for a two classification model (pass/fail) at each second starting from the

beginning of the session up to when the first participant failed (second 58). Figure

5.4 shows the progression of the error. The model was built using the caret package

in R using the ”glm” method. The error was computed using 10-fold cross-validation.

We observed that there is a trend starting at time 34 and the model achieves its lowest
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Figure 5.3: Bayes Belief Network Provided by the Damage Control Simulator Devel-

oped by UCLA-CRESST.

error rate around second 38. The results for the model at time 38 are shown in Table

5.1. The 10-fold cross-validated accuracy was 0.826, the true positive rate 0.833 and

the true negative rate 0.815 with pass being the positive class.

We performed variable importance where personal safety turned out to be the

most important latent node followed by situational awareness and communication.

The latent nodes casualty management as well as compartment integrity seem to have

very low importance. Results are shown in Fig. 5.5

In Fig. 5.4 we observe that the lowest error rate is achieved around second 38.

However, the error rate starts to increase once again. In order to explain this behavior
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Figure 5.4: 10-fold Cross-Validated Error Using Logistic Regression.

Table 5.1: Confusion Matrix for Pass/Fail at Second 38.

Actual

Predicted
Pass Fail

Pass 35 7

Fail 7 20

and given that personal safety was the most important variable we created a heatmap

shown in Fig. 5.6. In this map the x axis is time in seconds starting at second 1 up to

58 (first participant failes at second 59). The vertical axis represents the participants

and they are further divided into two blocks: the upper block are the participants who

passed and the lower block those who failed. We added a horizontal line to separate

these two groups and a vertical line to point the time where we get the lowest error

rate. The color of the graph represents the score provided as a probability. The lighter

the color the closer to 1 and the darkest the closer to zero. We see that at the beginning

of the session all participants start with the same probability which is close to zero. As

the participant progresses in the simulator by performing several tasks new evidence

is presented to the observable nodes and the probabilities are back propagated to

114



Figure 5.5: Logistic Regression Variable Importance at Second 38.

the latent nodes. Participants in the heatmap were further sorted within each group

(pass/fail) by the average score on personal safety. The top participants in the pass

group seem to increase the score very early while the bottom of the plot (participants

who failed) do it very late in the session. The vertical line at second 38 provides a

good visual aid to demonstrate why we are able to discriminate between pass and

fail around that time. After second 38 those participants who failed catch up again

and they are able to increase the score by performing different tasks and once again

we lose the discriminative power after second 50. This is the reason of the behavior

of the error rate shown in Fig. 5.4. The main take away here is that: we are able to

discriminate between pass and fail based on the latent score of personal safety where

successful participants are able to increase the score very quickly (before 38). On the

other hand, participants who failed tend to be slower and although they are able to

increase the score by performing the same tasks as the successful participants they do

it late (after second 38). Another way to see this pattern is shown in Fig. 5.7. In this

plot we see that the mean of personal safety score for those participants who passed
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Figure 5.6: Heatmap of the Personal Safety Score.

increases sooner than those who failed. Furthermore, not only it increases quicker

but it stays above all the way until second 58. We also plot the standard deviation

where participants who passed have smaller variation.

The analysis presented above showed that personal safety in time was a good

predictor of performance. Instead of relying on a single second to make predictions

we decided to create features out of this latent node. Fig. 5.8 shows how 10-seconds

averages were generated as the new features to predict performance. There were a

total of 5 segments.

Once again we used a 10-fold cross-validation to compute performance as well as

variable importance. Segment 4 which comprises second 31 to 40 turned out to be

the most important followed by segment 5 in a far second place. This confirms our

previous analysis where we found that around second 38 the lowest error rate was

achieved.
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Figure 5.7: Time Series of Mean and Standard Deviation for Pass/Fail on Personal

Safety Score.

Table 5.2: Confusion Matrix for Pass/Fail Using 10-Seconds Averages as Features.

Actual

Predicted
Pass Fail

Pass 35 7

Fail 7 20

The cross-validated accuracy was 0.797 with a true positive rate of 0.833 and

a true negative rate of 0.741. The confusion matrix is shown in table 5.2 where 7

participants were misclassified for each of the classes.

5.7 Conclusion

Setting up rules with fixed cut offs to predict performance is a challenging task.

A lot of research has been devoted to analyze different personal, cultural and social
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Figure 5.8: Features Created on Personal Safety Taking 10-seconds Averages.

information in order to come up with features to make this prediction possible with

mixed results [73]. In this contribution we presented a methodology which uses the

posterior probabilities of latent nodes in a BBN to predict participants’ performance

on a learning environment at a given time t. Moreover, this methodology tries to

overcome the fact that BBNs are difficult to update and they are normally structured

for a very specific goal. If the conditions change or new challenges are introduced

the BBN structure and conditional probabilities become outdated [77]. The approach

presented here can be used to take advantage of the information which is already em-

bedded in most ITS and use it to predict different outcomes. Performance prediction

in the form of a two class classifier for pass/fail was the objective of the applied exper-

iment but other types of goals can be defined. For example, we could be interested in

predicting which participants tend to have deficiencies following emergency protocols
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Figure 5.9: Variable Importance for 10-seconds Averages.

or selecting the wrong equipment or what type of subjects are more likely to reach a

given objective without monitoring staff health. Most importantly, in our approach

we have considered the temporal information provided by the sequence of tasks that

provide evidence to update the latent nodes something that is normally neglected in

Bayesian modeling.

An applied experiment was performed to illustrate the applicability of this ap-

proach were the latent scores of a BayesNet were used as inputs in a logistic regression

to predict participants’ performance in a Damage Control Simulator. The posterior

probabilities were updated in real-time as new evidence was presented. Personal

safety turned out to be the most important predictor. The observable nodes directly

related to personal safety according to the BBN are the following tasks: set zebra,

evacuate, PPE selection, select SCBA, check equipment, test agent, air on and re-

quests reliefs. This implies that how fast and precise these tasks are performed in

the initial seconds into the simulation provide valuable information about the final

outcome.

Our current approach assumes that all participants have the same background

and prior knowledge so the conditional and prior probabilities are the same. It would
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be interesting to consider experience in order to better individualize and personalize

predictions for different group of subjects. Moreover, different models can be built

to consider clusters of students with different set of skills. This approach could be

fruitful because finding individualized priors can be expensive [79] and it can also lead

to overfitting. Creating an effective BBN is not without challenges, this is because

building the structure which encodes the conditional dependence across nodes is not

trivial and different configurations can be generated. Therefore, consensus among

researchers about the ”ideal” BBN for a specific task is sometimes difficult to reach

[75].

Knowledge gained in this contribution can be used to better design ITS by using

BBN information already embedded in the learning environment. Furthermore, by

using latent nodes scores as inputs to a machine learning algorithm we open the

door to explore potential interactions between different latent skills challenging the

”unidimensional” approach that traditionally pychometricians embrace. Ignoring the

fact that the majority of skills for a given objective are highly correlated can lead

to miss important interactions [29]. Finally, one of the key elements of any ITS

is to interpret learners decision in order to enable a model of student learning and

reasoning [80]. We believe that this work leads the way into that direction.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions

This dissertation proposes a new set of analytical methods for high dimensional

physiological sensors which are applicable to numerous problems in learning science

and also in industrial settings where high dimensional signals are present.

The first contribution proposes the event-crossover (ECO) to analyze performance

on any learning environment. The ECO is most appropriate for studies where the

main objective is to evaluate performance on a learning environment where events

are embedded over time with simultaneous sensors or physiological responses being

recorded in real-time. The main advantage of our method is that each subject acts

as its own control. Therefore, the methodology allows us to avoid the traditional

necessity of controlling for other confounded effects such as age, gender, health, skill

level, etc. The effectiveness of this methodology was illustrated on an applied exper-

iment where participants played two songs from the video game Guitar Hero with

different levels of difficulty. In this contribution the ECO was able to identify the

affective constructs of long term excitement, short term excitement and frustration

as significant in the hard-expert combination for all type of cases. This implies that

the affective state value of the participant for these emotional states is different when

the player is making errors (events) than when the player is not making errors (con-

trol). A similar result was observed for the easy-expert combination in the > 0 case.

Learning scientist now have a new tool that can allow them analyze and understand

the cognitive state of participants near specific events.
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Contribution 2 introduced analytical methods to study the relationship between

a multi-dimensional physiological signal and sentinel events that occur randomly on

a learning environment. In the first approach we proposed a multivariate version

of the event-crossover where instead of analyzing the different physiological signals

independently we use all the information of the input vector distribution near time

of events using multivariate methods to draw conclusions. In the second approach we

represented different physiological patterns in the form of weight combinations using

self-organizing maps (SOM) and analyze correlated proportions of node activations

near time of events using different statistical techniques. We proposed a discrete ver-

sion of the ECO methodology where the high dimensional feature space was lowered

to a two-dimensional space. Once the SOM was trained the feature vector was pre-

sented to the model and the node activations were tracked. The McNemar’s test for

participants who passed showed that the output node 1, which is characterized as a

combination of very low levels of distraction, moderate levels of workload and high

levels of engagement was significantly different from a random chosen interval for the

event report. Further exploring the node distribution it was found that this pattern is

absent during this event. The Generalized McNemar’s or Stuart-Maxwell test showed

two significant results for report and test agent when all participants were considered

as a whole group.

In the last methodology proposed in this contribution we compared for differences

in the physiological signals between two groups at the time of specific events using

univariate and multivariate methods. In the multivariate approach it was found that

when directly comparing both groups (pass/fail) workload was consistently different

for poor performers, where this group were more inclined to have high workload.

The methodologies proposed in this contribution can be used to better understand

the decision making process around events in a complex learning environment. The
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conclusions drawn by applying these tools can enable researchers and educators to

improve the design of HCI and ITS by enhancing the user experience and improving

learning.

In contribution 3 a methodology was proposed with the goal of extracting features

that later could be used on a machine learning model to make performance predic-

tions. The methodology was designed to take a high dimensional physiological signal

to train a self-organizing map (SOM) and derive meta affective states which can be

seen as a combination of different affective states. The methodology keeps track of

the time spent in each meta affective state and this information is later used on a

machine learning algorithm to make predictions about performance. The novelty and

utility of this methodology relies on the fact that performance prediction is done early

on the simulation using only the available information at time t << T where T is

the duration of the session unlike other approaches were the information about the

session is used in retrospective. The methodology was called Bag of Affective States

because it resembles a bag-of-words widely used in text and image processing.

The methodology was applied to a damage control simulator where participants

required to perform several complex tasks with the objective of putting out a fire on a

submarine. Cross-validated results showed an overall accuracy of 80% for a two class

pass/fail prediction and where the true negative and true positive rates presented

good balance. The first seconds of the session didn’t provide enough discriminative

information and the machine learning algorithms performed poorly. However, as we

consider more time in the analysis performance improved. The model was further

reduced to consider only two nodes (6 and 2) and the performance was not degraded.

Looking for a more compact model the number of affective constructs used as inputs

to train the SOM was reduced while at the same time preserving similar perfor-

mance. We found that with only four affective constructs (high engagement, low
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engagement, drowsiness and workload average) similar cross-validated accuracy was

achieved. Findings suggest that participants who succeeded the mission were more

likely to spent time in an affective state formed by a combination of low levels of

engagement and drowsiness as well as low to moderate levels of workload in contrast

with participants who failed who showed lower levels of engagement and higher levels

of workload.

In contribution 4 we proposed a methodology to use evidence-driven updates to

Bayesian belief networks (BBNs) to predict performance early on considering tempo-

ral information. Scores of the latent nodes were used as inputs to a machine learning

algorithm in real-time as the observable nodes were updated with new evidence. Fur-

thermore, with this approach it is possible to identify those latent variables which have

more discriminative power by means of variable importance. In order to demonstrate

the methodology a Bayes belief network (BBN) generated from a training simulator

was used as input using information of the first seconds into the session with the ob-

jective of predicting participants’ performance. Significant results were found early

in the learning session which implies that how fast and precise the observable tasks

are performed in the initial seconds into the simulation provide valuable information

about the final outcome. Moreover, this methodology tried to overcome the fact that

BBNs are difficult to update and they are normally structured for a very specific goal.

The approach presented here can be used to take advantage of the information which

is already embedded in most ITS and use it to predict different outcomes. Most

importantly, in our approach we have considered the temporal information provided

by the sequence of tasks that provide evidence to update the latent nodes something

that is normally neglected in Bayesian modeling.

However, several disadvantages exist with this approach in comparison to the

EEG performance prediction from contribution 3. First of all, BBNs are difficult to
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model because they required expert knowledge and historical information from many

participants in order to be reliable. Individualized priors can be expensive [79] and

it can also lead to overfitting. Second, the structure which encodes the conditional

dependence across nodes is not trivial and different configurations can be generated.

Therefore, consensus among researchers about the ”ideal” BBN for a specific task

is sometimes difficult to reach [75]. Third, BBNs on ITS normally operate under

high uncertainty regarding students’ information and this leads to the BBN model

to be incomplete and unable to capture all the student’s interaction on a given time

[76]. Another disadvantage of traditional BBN is that they are generally modeled

to do long-term assessment so they are less reliable at the beginning of the tutoring

session where there is little evidence available [77]. On the other hand, in terms of

portability, reliability and costs EEG turns out to be a very practical tool to use to

model affective states which we showed are good predictors of learners’ performance.

The signals captured by EEG can be associated with different brain processes and

they are detected by the synchronization and desynchronization of neurons in specific

parts of the brain [20] which makes it suitable to model different affective states

as well as measurement of cognitive processes. Finally, we showed that in terms of

prediction accuracy EEG compares pretty well with respect to BBNs.

6.2 Future Work

The natural research path to follow up on this work is to extend these method-

ologies utilizing other physiological devices besides EEG such as: eye-trackers, elec-

trocardiograms (ECG o EKG), electromyogram (EMG) and electrodermal activity

(EDA) just to mention a few. The methodologies presented in this work allow com-

bining different types of physiological signals to form real meta affective states and

they all together can provide a richer interpretation of the user’s cognitive state.
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In the second contribution we explored the use of SOMs in order to lower a

high dimensional signal into a 2-dimensional grid. Other approaches such as deep

autoenconders could be used to lower the dimensionality similarly to that of the PCA

with the advantage that deep autoenconders can capture nonlinear relations unlike

PCA. Deep autoencoders achieve this by training a multilayer neural network with

a hidden layer that is restricted to a few nodes where the goal is to reconstruct the

multidimensional input vector. [81]

The bag-of-states approach introduced in the third contribution neglected the or-

der of the affective states. It is logical to think that the sequence of changes between

affective states could have important information about a user’s cognitive state and

therefore about his performance. The different physiological signals could be dis-

cretized to form a word representation of the affective state and then word embed-

dings techniques such as word2vec [82] could be produced using neural networks. This

technique not only computes the distribution of events but it is also able to capture

information regarding the sequence of events or words and may turn out to be useful

for learning scientists looking to understand emotional changes in time.

Future research could also include the study of individual differences in emotion-

related cognitive tasks in other types of environments and see if a screening and

categorization of participants is achievable. Different configurations could be im-

plemented in ITS to accommodate specific needs based on a profile of a subgroup.

EEG raw signals can also be used instead of the affective constructs provided by a

commercial, research or medical-grade headset. A large body of literature discusses

the different frequencies, bandwidths and ratios of the sensors raw signal that have

been shown to be associated with response-inhibition, affective traits and attentional

control [22].

In the last contribution using the BayesNet, information about the sequence of
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events was indirectly considered because the posterior probabilities take into account

all previous information. However, the order of the events is not considered. Sequen-

tial pattern mining could be applied in this case to come up with a series of rules

with a given minimum support that later could be used as inputs for a prediction

algorithms.

Finally, one of the issues left out for future research is that of considering student’s

previous knowledge to be input to the BBN prior to the beginning of the session.

Our current approach assumes that all participants have the same background and

prior knowledge so the conditional and prior probabilities are the same. It would

be interesting to consider experience in order to better individualize and personalize

predictions for different group of subjects. Moreover, different models can be built

to consider clusters of students with different set of skills. This approach could be

beneficial because finding individualized priors can be expensive [79] and it can also

lead to overfitting.
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