7 research outputs found

    Antonym-Synonym Classification Based on New Sub-space Embeddings

    Full text link
    Distinguishing antonyms from synonyms is a key challenge for many NLP applications focused on the lexical-semantic relation extraction. Existing solutions relying on large-scale corpora yield low performance because of huge contextual overlap of antonym and synonym pairs. We propose a novel approach entirely based on pre-trained embeddings. We hypothesize that the pre-trained embeddings comprehend a blend of lexical-semantic information and we may distill the task-specific information using Distiller, a model proposed in this paper. Later, a classifier is trained based on features constructed from the distilled sub-spaces along with some word level features to distinguish antonyms from synonyms. Experimental results show that the proposed model outperforms existing research on antonym synonym distinction in both speed and performance

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    Using Mined Coreference Chains as a Resource for a Semantic Task

    No full text

    SEMANTIQUE DISTRIBUTIONNELLE

    Get PDF
    This special issue contains state-of-the-art papers on distributional semantic
    corecore