
Distinguishing Antonymy, Synonymy
and Hypernymy with

Distributional and Distributed Vector
Representations and Neural Networks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität
Stuttgart zur Erlangung der Würde eines Doktors der Philosophie (Dr. phil.)

genehmigte Abhandlung.

Vorgelegt von

Kim Anh Nguyen
aus Vietnam

Hauptberichter PD. Dr. Sabine Schulte im Walde
Mitberichter Prof. Dr. Ngoc Thang Vu

Tag der mündlichen Prüfung: July 31, 2018

Institut für Maschinelle Sprachverarbeitung
der Universität Stuttgart

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/160827592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In the last decade, computational models that distinguish semantic relations have become
crucial for many applications in Natural Language Processing (NLP), such as machine
translation, question answering, sentiment analysis, and so on. These computational
models typically distinguish semantic relations by either representing semantically re-
lated words as vector representations in the vector space, or using neural networks to
classify semantic relations. In this thesis, we mainly focus on the improvement of such
computational models. Specifically, the goal of this thesis is to address the tasks of
distinguishing antonymy, synonymy, and hypernymy.
For the task of distinguishing antonymy and synonymy, we propose two approaches.

In the first approach, we focus on improving both families of word vector representations,
which are distributional and distributed vector representations. Regarding the improve-
ment of distributional vector representation, we propose a novel weighted feature for
constructing word vectors by relying on distributional lexical contrast, a feature capa-
ble of differentiating between antonymy and synonymy. In terms of the improvement
of distributed vector representations, we propose a neural model to learn word vectors
by integrating distributional lexical contrast into the objective function of the neural
model. The resulting word vectors can distinguish antonymy from synonymy and pre-
dict degrees of word similarity. In the second approach, we aim to use lexico-syntactic
patterns to classify antonymy and synonymy. To do so, we propose two pattern-based
neural networks to distinguish antonymy from synonymy. The lexico-syntactic patterns
are induced from the syntactic parse trees and then encoded as vector representations
by neural networks. As a result, the two pattern-based neural networks improve perfor-
mance over prior pattern-based methods.
For the tasks of distinguishing hypernymy, we propose a novel neural model to learn

hierarchical embeddings for hypernymy detection and directionality. The hierarchical
embeddings are learned according to two underlying aspects (i) that the similarity of
hypernymy is higher than similarity of other relations, and (ii) that the distributional hi-
erarchy is generated between hyponyms and hypernyms. The experimental results show
that hierarchical embeddings significantly outperform state-of-the-art word embeddings.
In order to improve word embeddings for measuring semantic similarity and relat-

edness, we propose two neural models to learn word denoising embeddings by filtering
noise from original word embeddings without using any external resources. Two proposed
neural models receive original word embeddings as inputs and learn denoising matrices
to filter noise from original word embeddings. Word denoising embeddings achieve the
improvement against original word embeddings over tasks of semantic similarity and re-
latedness. Furthermore, rather than using English, we also shift the focus on evaluating
the performance of computational models to Vietnamese. To that effect, we introduce
two novel datasets of (dis-)similarity and relatedness for Vietnamese. We then make use
of computational models to verify the two datasets and to observe their performance in
being adapted to Vietnamese. The results show that computational models exhibit sim-
ilar behaviour in the two Vietnamese datasets as in the corresponding English datasets.

iii

Zusammenfassung

Komputationalle Modelle, die in der Lage sind, semantische Relationen zu unterschei-
den, sind für eine Vielzahl von Anwendungen im Bereich der Computerlinguistik nütz-
lich. So kann das Wissen über semantischen Relationen für maschinelle Übersetzung,
Frage-Antwort Systeme oder auch Sentimentanalyse hilfreich sein. Ansätze dieser Art
nutzen in der Regel Vektorraummodelle, um semantisch ähnliche Wörter darzustellen,
oder neuronale Netze um semantische Relationen zu klassifizieren. Das zentrale Thema,
der vorliegenden Dissertation, ist die Verbesserung von komputationellen Modellen zur
korrekten Unterscheidung und Erkennung von den folgenden drei semantischen Relatio-
nen: Antonymie, Synonymie sowie Hyperonymie.
Wie präsentieren zunächst zwei Ansätze für die binäre Unterscheidung zwischen Ant-

onymie und Synonymie. Der erste Ansatz verwendet lexikalischen Kontrast, ein Merkmal
zur Unterscheidung der beiden Relationen, dass wir in unterschiedliche Arten von Wort-
repräsentationen integrieren. Für distributionelle Vektoren präsentieren wir eine Merk-
malsgewichtung, die lexikalischen Kontrast induziert. Für distributed Vektoren (Em-
beddings) präsentieren wir ein neues neuronales Netz, dass lexikalischen Kontrast beim
Lernen der Repräsentationen berücksichtigt. Unsere Ergebnisse zeigen, dass unsere neu-
en Wortrepräsentationen Synonymie und Antonymie unterscheiden können und darüber
hinaus Wortähnlichkeiten verbessert vorhersagen können.
Der zweite Ansatz verwendet lexikalisch-syntaktische Muster, basierend auf Korpus-

Kookkurrenz sowie Parsebäumen. Wir präsentieren zwei muster-basierte neuronale Net-
ze, die bisherige Ansätze verbessern.
Für die Erkennung von Hypernymie präsentieren wir ein neues neuronales Modell,

dass hierarchische Repräsentation erlernt. Die hierarchischen Repräsentation beinhalten
dabei zwei wichtige Aspekte i) Die Hyperonymy relation erhält eine höhere Ähnlich-
keit als andere semantische Relationen und ii) Aufgrund der hierarchischen Struktur
der Wortrepräsentationen kann zwischen Hyponym und Hyperonym unterschieden wer-
den. Unsere Experimente zeigen, dass unsere hierarchischen Räpresentationen signifikant
bessere Ergebnisse erzielen, als bisherige Ansätze mit Wortrepräsentationen.
Des Weiteren präsentieren wir zwei Denoising-Methoden, diese Ansätze bereinigen

Wortrepräsentationen, sodass diese verbessert Wortähnlichkeiten vorhersagen. Beide Me-
thoden verwenden hierbei keine externen Resourcen, sondern benötigen lediglich Wort-
repräsentationen als Eingabe. Unsere Evaluation zeigt Verbesserungen durch unsere Me-
thode für die Vorhersage von semantischer Ähnlichkeit.
Darüber hinaus präsentieren wir zwei neue Datensätze, die komputationelle Modelle

nutzen können, um Ähnlichkeiten zwischen Wörtern vorherzusagen. Während die Li-
teratur überwiegend Ressourcen für die englische Sprache beinhaltet, präsentieren wir
Datensätze für die Vietnamesische Sprache. Des Weiteren erstellen wir komputationelle
Modelle um beide Datensätze zu verifizieren. Unsere Ergebnisse zeigen, dass kompu-
tationelle Modelle auf unseren neuen Datensätzen ähnliches Verhalten zeigen wie auf
entsprechenden englischen Datensätzen.

v

List of Publications

Parts of the research described in this thesis have been published in the papers listed
below:

• Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2016a). Integrating distri-
butional lexical contrast into word embeddings for antonym-synonym distinction.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 454–459, Berlin, Germany

• Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2016b). Neural-based noise fil-
tering from word embeddings. In Proceedings of the 26th International Conference
on Computational Linguistics (COLING), pages 2699–2707, Osaka, Japan

• Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2017b). Distinguishing
Antonyms and Synonyms in a Pattern-based Neural Network. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 76–85, Valencia, Spain

• Nguyen, K. A., Köper, M., Schulte im Walde, S., and Vu, N. T. (2017a). Hierarchi-
cal embeddings for hypernymy detection and directionality. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 233–243, Copenhagen, Denmark

• Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2018). Introducing two
vietnamese datasets for evaluating semantic models of (dis-)similarity and relat-
edness. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HTL), pages 199–205, New Orleans, Louisiana

vii

Acknowledgments

I would like to thank my advisors, Sabine Schulte im Walde and Ngoc Thang Vu, for
the patience guidance, encouragement, and advice they have provided throughout my
time as their Ph.D student. Without Sabine’s adopting me as her Ph.D student at first,
I would not have gone that far in the doctoral journey, and I would not have such a
chance to discover and maximise my potentials. I also want to extend my gratitude to
small but in-time encouragement such as coffee and cookies in the meetings with all the
group members.
I expect to lend this chance to thank all the colleagues in IMS, especially Maximillian,

whose ideas and knowledge made a significant contribution to one of my research. He
is also the best coffee mate ever whose sharing about family and Germany enriches my
experience during Ph.D time.

Last but not least, this thesis would not have been made possible without the whole-
hearted support from my family, especially my wife, Nuong, who always takes care of
the kids and lends me a great source of motivation in every step I take.

This research received the grant from the Ministry of Education and Training of the
Socialist Republic of Vietnam (Scholarship 977/QD-BGDDT), the DFG Collaborative
Research Centre SFB 732, and the DFG Heisenberg Fellowship SCHU-2580/1 led by
Sabine Schulte im Walde.

ix

Contents

Abstract iii

Zusammenfassung v

List of Publications vii

Acknowledgments ix

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Strategies . 2
1.3 Contributions . 4
1.4 Outline . 5

2 Background 9
2.1 Semantic Relations . 9

2.1.1 Synonymy . 9
2.1.2 Antonymy . 10
2.1.3 Hypernymy . 11

2.2 Distributional Word Vector Representations 11
2.2.1 Context . 12
2.2.2 Window-size . 13
2.2.3 Weighting . 14
2.2.4 Measuring Similarity . 15

2.3 Distributed Word Vector Representations 16
2.3.1 Classic Language Model . 17
2.3.2 Word2vec Embedding Models . 18

2.4 Neural Networks . 20
2.4.1 Input Layer . 21
2.4.2 Hidden Layer . 21
2.4.3 Output Layer . 24
2.4.4 Training . 25

3 Distinguishing Antonymy and Synonymy with Vector Representations 27
3.1 Introduction . 27
3.2 Related Work . 28
3.3 Approach . 29

3.3.1 Improving the weights of feature vectors 29
3.3.2 Integrating the distributional lexical contrast into word embeddings 30

3.4 Experiments . 32
3.4.1 Experimental Settings . 32

xi

Contents

3.4.2 Distinguishing antonyms from synonyms 32
3.4.3 Effects of distributional lexical contrast on word embeddings . . . 33

3.5 Summary . 34

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Net-
work 37
4.1 Introduction . 37
4.2 Related Work . 39
4.3 Approach . 40

4.3.1 Induction of Patterns . 40
4.3.2 Recurrent Neural Network with Long Short-Term Memory Units . 41
4.3.3 The Proposed AntSynNET Model 42

4.4 Baseline Models . 44
4.4.1 Distributional Baseline . 44
4.4.2 Distributed Baseline . 44

4.5 Experiment . 45
4.5.1 Dataset . 45
4.5.2 Experimental Settings . 45
4.5.3 Overall Results . 46
4.5.4 Effect of the Distance Feature . 47
4.5.5 Effect of Word Embeddings . 47

4.6 Summary . 48

5 Hierarchical Embeddings for Hypernymy Detection and Directionality 51
5.1 Introduction . 51
5.2 Related Work . 53
5.3 Approach . 54

5.3.1 Extracting Hypernymy . 54
5.3.2 Learning Hierarchical Embeddings 54
5.3.3 Unsupervised Hypernymy Measure 57

5.4 Experiment . 58
5.4.1 Experimental Settings . 58
5.4.2 Unsupervised Hypernymy Detection and Directionality 58
5.4.3 Supervised Hypernymy Detection 61
5.4.4 Graded Lexical Entailment . 62

5.5 Generalizing Hypernymy . 63
5.6 Summary . 65

6 Neural-based Noise Filtering from Word Embeddings 67
6.1 Introduction . 67
6.2 Approach . 69

6.2.1 Complete Word Denoising Embeddings 70
6.2.2 Overcomplete Word Denoising Embeddings 71
6.2.3 Sparse Coding . 72
6.2.4 Loss Function . 72

6.3 Experiment . 73
6.3.1 Experimental Settings . 73
6.3.2 Hyperparameter Tuning . 73
6.3.3 Effects of Word Denoising Embeddings 74

xii

Contents

6.3.4 Effects of Filter Depth . 76
6.4 Summary . 77

7 Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Viet-
namese 79
7.1 Introduction . 79
7.2 Related Work . 80
7.3 Dataset Design . 81

7.3.1 Criteria . 81
7.3.2 Resource for Concept Choice: Vietnamese Computational Lexicon 82
7.3.3 Choice of Concepts . 82
7.3.4 Annotation of ViSim-400 . 83
7.3.5 Agreement in ViSim-400 . 83

7.4 Verification of Datasets . 84
7.4.1 Verification of ViSim-400 . 85
7.4.2 Verification of ViCon . 85

7.5 Summary . 87

8 Conclusion and Future Work 89
8.1 Conclusion . 89
8.2 Future Work . 90

Bibliography 93

xiii

List of Abbreviations

AP Average Precision

CBOW Continuous Bag-of-Words Model

dLCE distributional Lexical-Contrast Embeddings

LMI Local Mutual Information

LSTM Long Short-Term Memory

NLP Natural Language Processing

NNs Neural Networks

PMI Pointwise Mutual Information

PPMI Positive Pointwise Mutual Information

RNN Recurrent Neural Network

SGNS Skip-gram with Negative Sampling

SVM Support Vector Machine

VSM Vector Space Model

xv

1 Introduction

1.1 Motivation

In recent years, NLP has gained impressive achievements in modeling human languages
for end-to-end systems. One of the biggest challenges of making full use of the power of
end-to-end systems on computers is that they comprehend very little meaning of human
language. This obstacle profoundly affects several aspects of computer performance such
as the ability to give instructions to those systems, the way the systems respond intelli-
gently to us, and the systems’ ability to analyse and process raw input. Among those,
understanding and modeling the meaning of words and their semantics is crucial for
many applications in NLP such as machine translation, textual entailment, coreference
resolution, and taxonomy creation.
To carry out the designed tasks, most NLP applications need to access large amounts

of different types of data, which can be unlabeled raw data, labeled data, or parallel data.
These kinds of data often provide both implicit and explicit contents for NLP applications
through the interpretation of linguistic structures such as morphology, syntax, seman-
tics, discourse, and pragmatics. Therefore, among others, modeling and representing
semantics of input data plays a prominent role in most NLP architectures. In linguistic
structures, one can exploit many aspects of semantics, such as semantic typing, lexical
semantics, semantic relations, semantic similarity, and semantic relatedness. In this the-
sis, we mainly focus on studying semantic relations. Concretely, we aim to address the
tasks of distinguishing antonymy (e.g. good/bad), synonymy (e.g. formal/conventional),
and hypernymy (e.g. bird/animal). In addition, we also distinguish degrees of semantic
similarity and semantic relatedness, where semantic similarity represents semantic rela-
tions of synonymy and co-hyponymy (e.g. car/bicycle); and semantic relatedness stands
for semantic relations such as hypernymy, antonymy, or meronymy (e.g. wheels/bicycle).
Distinguishing between antonymy and synonymy in the computational perspective is

typically addressed by modeling those semantic relations in vector space models. These
models tend to use the co-occurrence of words and their contexts to represent the mean-
ing of words in vector spaces. Two families of vector space models have entered common
usage: distributional and distributed vector representations. However, since words that
occur in the same contexts tend to have similar meanings (Harris, 1954), the two fam-
ilies of vector representations are not sufficient to discriminate between synonymy and

1

1 Introduction

antonymy.
In addition to vector space models, pattern-based models are also applied to differ-

entiate between antonymy and synonymy. These models make use of lexico-syntactic
patterns, which are string-matching patterns based on lexicon and syntactic structure,
to represent antonymous and synonymous word pairs as vector representations. How-
ever, the sparsity of such patterns is problematic for these kinds of pattern-based models
because of the limited number of lexico-syntactic patterns and their inability to cover all
word pairs of antonymy and synonymy.
In a similar way, the task of distinguishing hypernymy is often complicated by issues of

hypernymy detection and directionality. Approaches-based vector space models typically
detect hypernymy by encoding it as a standard first-order distributional co-occurrence.
However, they also similarly encode other relations such as antonymy, synonymy, and
meronymy. As a result, the ability of these approaches to distinguish hypernymy from
other relations is problematic in terms of accuracy. Further complicating things, hyper-
nymy is an asymmetric relation with a predetermined ordering of the two words in a
hypernym pair.
Distributed vector representations often called word embeddings have achieved great

success in NLP applications in recent years. Apart from being used to encode word
meaning for distinguishing semantic relations, word embeddings can be used as an ef-
ficient means of representing the inputs of various tasks such as machine translation,
question answering, and sentiment analysis. The power of word embeddings is that they
are easily trained on a large corpora, which is freely available on the Internet. However,
such kinds of corpora also contain a lot of unnecessary information that could nega-
tively affect the performance of word embeddings. For example, the word “jump” can be
treated as a context of the target word “cloud” in a particular sentence. Therefore, word
embeddings could be improved by filtering out unnecessary information.
Computation models that distinguish between some aspects of semantic relations are

often performed and evaluated on languages rich in morphology, such as English, Ger-
man, Italian, or Spanish. In other words, these models benefit from the variety of a large
corpora and gold standard resources. However, for low-resource languages that are less
morphologically rich and lack gold standard resources, modeling and evaluating these
computational models remains problematic.

1.2 Strategies

This thesis explores strategies to address the tasks of distinguishing antonymy, synonymy,
and hypernymy by improving vector representations of these semantic relations. For the
task of distinguishing antonymy and synonymy, we investigate two strategies. The first
strategy aims to improve both distributional and distributed word vector representations

2

1.2 Strategies

by integrating distributional lexical contrast of antonymy and synonymy into word vec-
tor representations. As a result, vector representations of antonymous word pairs are
further away from each other, while vector representations of synonymous word pairs are
closer to each other in the vector space. The second strategy exploits lexico-syntactic
patterns between antonymous and synonymous word pairs to distinguish antonymy from
synonymy. Instead of using only a small number of standard lexico-syntactic patterns
to represent antonymy and synonymy, we induce new lexico-syntactic patterns from the
syntactic parse tree of sentences that contain antonymous and synonymous word pairs.
This strategy is motivated by empirical linguistic studies on antonymy and synonymy
where antonymous word pairs co-occur with each other within a sentence more often
than would be expected of synonymous word pairs. By inducing the new lexico-syntactic
patterns, we can handle the sparsity of standard lexico-syntactic patterns. In order to
model the new lexico-syntactic patterns, we make use of neural networks to encode these
patterns as vector representations for distinguishing antonymy from synonymy.

Given the task of distinguishing hypernymy, the strategy is to learn new word embed-
dings for hypernymy. The new word embeddings of hypernymy are learned to encode
two crucial aspects: (i) distributional similarity of hypernymy is strengthened to be
higher than distributional similarity of other relations such as synonymy, antonymy,
co-hyponymy, and so on; and (ii) distributional hierarchy is generated to differentiate
between hyponyms and hypernyms. Regarding these two aspects, the cosine similarity of
hypernymy is higher than the cosine similarity of other relations, and the distributional
hierarchy between hyponyms and hypernyms is treated as an indicator to determine the
directionality of hypernymy.

Word embeddings, as mentioned above, are trained on large raw corpora that contains
a lot of unnecessary information, negatively affecting the ability of word embeddings
to measure semantic similarity and semantic relatedness. The strategy to deal with
this issue is to enhance word embeddings by reducing the negative effects of unnecessary
information. To do so, we make use of neural models to filter out unnecessary information
from word embeddings by strengthening salient features and weakening unnecessary
features. The neural models are designed to receive state-of-the-art word embeddings
as inputs and proceed to generate new word embeddings without using any external
resources. The new word embeddings are expected to measure similarity and relatedness
information better than the state-of-the-art word embeddings do.

At the end of this thesis, the focus shifts from English to Vietnamese, which is a
low-resource language. In this perspective, we aim to verify computational models that
distinguish between semantic similarity and semantic relatedness with Vietnamese which
differs from morphologically rich languages and lacks gold standard resources for evalu-
ating semantic similarity and relatedness. The strategy to deal with this verification is
that we introduce newly annotated datasets of (dis-)similarity and relatedness for Viet-

3

1 Introduction

namese and evaluate computational models on these datasets. This strategy also allows
us to observe the behaviour of these computational models when they are applied to
measure semantic similarity and relatedness in a low-resource language.

1.3 Contributions

The main objective of my thesis research is the improvement of computational models
that distinguish antonymy, synonymy, and hypernymy; and that measure semantic sim-
ilarity and relatedness. Moreover, the focus of my thesis is also shifted to evaluate such
computational models with the low-resource Vietnamese rather than English. Therefore
the contributions of my thesis are summarised as follows:

Vector representations for distinguishing antonymy and synonymy: I investigated
two approaches to improve both distributional and distributed word vector represen-
tations for distinguishing antonymy and synonymy (Nguyen et al., 2016a). In the first
approach, I proposed a novel weighted feature for distributional vector representations of
words by using the distributional lexical contrast obtained from external resources. The
distributional vector representations with novel weighted feature showed an improvement
in differentiating antonymy from synonymy compared to standard weighted features. In
the second approach, I proposed a novel model that integrates the distributional lexical
contrast into the Skip-gram model (Mikolov et al., 2013a) to learn the new word embed-
dings. These word embeddings outperformed the state-of-the-art word embeddings on
distinguishing antonymy from synonymy, and on measuring degrees of word similarity.

Pattern-based neural networks for distinguishing antonymy and synonymy: In
this contribution, I investigated two pattern-based neural networks to distinguish antonymy
from synonymy (Nguyen et al., 2017b). In both models, I induced new lexico-syntactic
patterns of antonymous and synonymous word pairs obtained from the syntactic parse
tree of sentences. The induced patterns differ from prior standard patterns of antonymy
and synonymy in terms of the features of the lexico-syntactic pattern, in which I pro-
posed to include the distance feature. As the lexico-syntactic patterns were induced
from sentences containing antonymous and synonymous word pairs, they mitigated the
sparsity of prior lexico-syntactic patterns. As a result, the two neural networks based
on lexico-syntactic patterns showed an improvement in distinguishing antonymy from
synonymy over the existing pattern-based models.

Hierarchical embeddings for hypernymy: While the previous contributions were in-
vestigated to solve the task of distinguishing antonymy and synonymy, this contribution
focused on addressing tasks concerning hypernymy, which are hypernymy detection and

4

1.4 Outline

directionality. Specifically, I proposed a novel neural model to learn hierarchical embed-
dings for hypernymy (Nguyen et al., 2017a). The hierarchical embeddings are learned
according to two crucial aspects (i) that the similarity score for hypernymy is higher
than the similarity score for other relations; and (ii) that distributional hierarchy dif-
ferentiates between hyponyms and hypernyms. As a result, while previous embedding
models were not sufficient to address either hypernymy detection or directionality tasks,
the hierarchical embeddings achieved a significant improvement compared to state-of-
the-art measures and previous embedding models in both unsupervised and supervised
tasks of hypernymy detection and directionality.

Word denoising embeddings: For this contribution, I introduced two neural models
for unsupervised improvement of word embeddings (Nguyen et al., 2016b). The first
model is referred to as complete word denoising embeddings, while the second model is
described as overcomplete word denoising embeddings. Both neural models automati-
cally filter out noise from word embeddings to generate word denoising embeddings. The
underlying idea in the two neural models is to use a filter to learn the denoising matrix
without using any external resources. To the best of my knowledge, these two neural
models are the first models working on filtering out noise from word embeddings. Conse-
quently, given state-of-the-art word embeddings as inputs of two neural models, a series
of experiments showed that word denoising embeddings outperformed the given word
embeddings on several benchmark tasks of semantic similarity and semantic relatedness.

Evaluating semantic models in Vietnamese: This contribution shifts to evaluate
computational models on Vietnamese, a low-resource language. For this purpose, I in-
troduced two novel datasets of (dis-)similarity and relatedness for Vietnamese (Nguyen
et al., 2018). The first dataset consists of lexical contrast word pairs, aiming to dis-
tinguish between similarity and dissimilarity. The second dataset contains annotated
pairs of semantic relations, reflecting the continuum between similarity and relatedness.
I relied on computational models that measure semantic similarity and semantic relat-
edness to verify these two datasets. As a result, the main findings of this contribution
are twofold: (i) two Vietnamese datasets are introduced to verify computational models
for evaluating (dis-)similarity and relatedness; (ii) computational models show similar
behaviours in the two Vietnamese datasets as in the corresponding English datasets.

1.4 Outline

The remainder of this thesis is structured as follows:

5

1 Introduction

Chapter 2 provides some background on the concepts explored in this thesis. The
first section introduces the phenomenon of semantic relations, which is the focus of this
thesis. The following two sections describe in more detail the approaches to word vector
representations, including distributional vector representations and distributed vector
representations. The final section briefs on some details about architectures of neural
networks.

Chapter 3 describes two approaches to improve both distributional and distributed
vector representations of words. The first approach presents a novel weighted feature
that is used to improve distributional vector representations for distinguishing antonymy
and synonymy. The second approach focuses on presenting a novel neural model to learn
word embeddings that significantly improve upon state-of-the-art word embeddings in
terms of predicting degrees of similarity and distinguishing antonymy from synonymy.

Chapter 4 introduces two novel pattern-based neural networks to distinguish antonymy
from synonymy. The lexico-syntactic patterns of antonymous and synonymous word
pairs are induced from the syntactic parse trees. The first pattern-based neural network
encodes lexico-syntactic patterns as vector representations, which are fed into a classifier
to distinguish antonymy and synonymy. The second pattern-based neural network also
represents lexico-syntactic patterns as vector representations. However, in addition to
using the resulting vector representations of lexico-syntactic patterns, this neural model
takes into account the concatenation of both vector representations of antonymous and
synonymous words. The concatenation of the three vector representations is then used
to classify antonymy and synonymy.

Chapter 5 presents a novel neural model to learn hierarchical embeddings for hyper-
nymy. The hierarchical embeddings aim to solve the two tasks concerning hypernymy,
which are hypernymy detection and directionality. Therefore, the hierarchical embed-
dings are trained to handle two aspects (i) that strengthens similarity of hypernymy to
be higher than similarity of other relations; and (ii) that generates distributional hierar-
chy between hyponyms and hypernyms. These two aspects of hierarchical embeddings
are then utilised to address the two tasks of hypernymy.

Chapter 6 describes two novel neural models to improve word embeddings. The two
neural models learn word denoising embeddings by filtering out noise from original state-
of-the-art word embeddings. The first neural model generates complete word denoising
embeddings whose dimensions are equal to those of the original word embeddings. The
second neural model generates overcomplete word denoising embeddings whose dimen-
sions exceed those of the original word embeddings. In order to compare them to the

6

1.4 Outline

state-of-the-art word embeddings, the word denoising embeddings are evaluated on sev-
eral benchmark tasks of similarity and relatedness.

Chapter 7 introduces two novel datasets of (dis-)similarity and relatedness for Viet-
namese. The first dataset contains synonymous and antonymous word pairs across noun,
verb, and adjective classes. It aims to distinguish between similarity and dissimilarity in
Vietnamese. The second dataset comprises 400 rated word pairs across the three main
word classes and five semantic relations. This dataset offers data to reflect the continuum
between similarity and relatedness.

Chapter 8 summarises the main findings and results of this thesis, and outlines ideas
for future work.

7

2 Background

From a computational point of view, distinguishing antonymy, synonymy, and hyper-
nymy is addressed by modeling those semantic relations in vector spaces or neural net-
works. While vector spaces in both distributional and distributed vector representations
offer a means of representing the meaning of words and determining the semantic rela-
tions between them, neural-based methods distinguish semantic relations by exploiting
both semantic and syntactic information between word pairs to model those relations.
In this chapter, we present an overview of semantic relations and the approaches used
to model semantic relations. This chapter first introduces the phenomena of synonymy,
antonymy, and hypernymy (Section 2.1). Section 2.2 and Section 2.3 then illustrate the
background of distributional and distributed vector representations, respectively. Sec-
tion 2.4 elucidates some basics of neural networks used in our approaches.

2.1 Semantic Relations

Semantic relations between words have been the focus of research in various fields such
as philosophy, cognitive psychology, linguistics, literary theory, and computer science.
In the literature, the term “semantic relations” is occasionally used to refer to phrasal or
sentential relations such as paraphrase, entailment, and contradiction, but in the scope
of this dissertation, it is used to denote semantic relations among words.
Among others, semantic relations such as antonymy, synonymy, and hypernymy are

central to the organisation of the mental lexicon (Deese, 1965; Miller and Fellbaum,
1991; Murphy, 2003) where these semantic relations provide a structure for the lexical
concepts that words express. Specifically, antonymy plays a central role in organising
the adjective lexicon and provides a crucial structure in the mental lexicon for verbs. In
contrast, hypernymy plays a role as a natural relation for organising the noun lexicon,
and has a minor importance for verbs and unnatural for adjectives. In the following, we
briefly describe these semantic relations.

2.1.1 Synonymy

The synonym relation is a relation between two words that map to the same meaning
(Murphy, 2003). When a single word is replaced by its synonym in a sentence, the literal

9

2 Background

meaning of the sentence is not changed. For example, the nouns mother, mum and mom
are synonyms of each other, thus the literal meaning of the two following sentences is
the same: “His mother gave me an apple” and “His mom gave me an apple”. There are
two kinds of synonymy: full synonymy and near-synonymy.

Full synonymy is a relation of two words identical in every sense. In natural language,
candidates for full synonymy tend to be words with relatively limited number of senses,
such as the full synonym of groundhog and woodchuck. Moreover, Clark (1992) conducted
research utilising the principle of contrast, namely that “every two forms contrast in
meaning,” to show that language works to eliminate full synonymy. This means that full
synonymy is limited mostly to dialectal variation and technical terms.

Near-synonymy are words that are close in meaning, or are very similar but not iden-
tical. In language, near-synonymy has no senses that are exactly the same, but each
member of a near-synonym pair has a sense which is similar to the sense of its coun-
terpart. Therefore, something described by a member of a near-synonym pair can be
described by the other; i.e, near-synonyms like foggy ≈ misty or mob ≈ crowd. Near-
synonymy thus is what we often find in thesauri, and is usually what people mean when
they use the term synonymy (Murphy, 2003). For instance, lie, falsehood, untruth, fib
and misrepresentation are near-synonyms of each other. These words all refer to a state-
ment that does not comfort to the truth but they differ from one another in the fine
aspects of their denotation.

2.1.2 Antonymy

The term “antonymy” was coined in 1867 by C.J.Smith as the opposite of “synonymy”.
Since 1867, many attempts have been made to define antonymy, with the caveat that
definitions of antonymy tend towards illustration rather than description. Specifically,
it is more effective to explain what antonymy is by providing some examples such as
hot/cold, buy/sell, bad/good, young/old, rather than give a definition of antonymy. Lyons
(1977) defined antonyms as words opposite in meaning and antonymy as the oppositeness
between words. In general, the term “antonymy” can be understood in two senses: a
broad and a narrow sense. In the broad sense, antonymy includes a wide range of word
pairs that are the opposite of each other and are expressed by different word classes. In
the narrow sense, antonymy is a relation that holds between a small number of adjective
pairs that are the opposite of each other. In this thesis, we refer to “antonymy” in its
broad sense, in which any word pair that is opposite in meaning is called an antonymous
pair.

Theoretical research has further categorised antonymy into two major classes, which
are gradable and non-gradable antonymy. Non-gradable antonymy is a term that refers
to antonymous word pairs such as man/woman, alive/dead, active/passive. Thus, any

10

2.2 Distributional Word Vector Representations

antonymous word pair that does not admit a midpoint is categorised as non-gradable
antonymy. For instance, in the antonymous pair male/female, there is no midpoint be-
tween the absolute male and female extremes. In contrast, the more common gradable
antonymy, such as hot/cold, good/bad, exists on a scale that contains a midpoint. Con-
sidering the antonymous pair hot/cold, “hot” and “cold” are two points in the dimension
of “temperature” with a midpoint like “tepid” that is neither “hot” nor “cold” but some-
where in between. As a result, gradable antonymy opens up possibilities for comparison
in a particular dimension.

2.1.3 Hypernymy

Hypernymy also referred to as “Is-a” is an asymmetric relation that differs from symmetric
relations such as synonymy and antonymy. Hypernymy holds the relationship between a
generic term, a “hypernym” (or superodinate), and a specific instance of it, a “hyponym”
(or subordinate). In other words, a hypernym is a word or phrase whose semantic field is
more abstract than that of its hyponym. For example, animal - cat and bird - eagle are
hypernymy where “animal” is a hypernym of “cat”, and “eagle” is a hyponym of “bird”.
Being part of an asymmetric relation, a hyponym necessarily implies its hypernym but

not vice versa. For example, while “wheels” is a part of “bicycle,” it does not make sense
to say that “bicycle is part of wheels.” Nevertheless, hypernymy is a transitive relation
in which a particular word can be both a hypernym and a hyponym. In particular, if X
is a hyponym of Y, and Y is a hyponym of Z, then X is a hyponym of Z. For instance,
since “eagle” is a hyponym of “bird” and “bird” is a hyponym of “animal,” “eagle” is a
hyponym of “animal.”

2.2 Distributional Word Vector Representations

Vectors are common in the areas of computer and cognitive science, and had been used
before the Vector Space Model (VSM) introduced by Salton et al. (1975). The novelty
of VSM was to make use of frequencies of text in a corpus as a clue to discover se-
mantic information. Salton et al. (1975) focused on measuring document similarity by
constructing a term-document matrix in which the row vectors of the matrix correspond
to the terms (usually terms are the words in the documents) and the column vectors
of the matrix stand for the documents. In a term-document matrix, each vector of the
document and query is represented as a bag of words in which the weights of the vector
indicate the frequency of the words in the bag. Figure 2.1 shows an example of the
structure of the term-document matrix. Hence, the relevance of a document to a query
can be estimated through the similarity of two corresponding vectors. Moreover, the
similarity between two column vectors is also used to estimate the relevance between

11

2 Background

two corresponding documents in the term-document matrix.

Doc1 Doc2 Doc3 Doc4 Doc5



England 1 0 5 2 0
Germany 2 0 4 3 7
football 6 1 2 1 5
cricket 2 0 1 7 4
India 0 5 1 1 4
sport 4 2 1 0 3
play 3 1 6 1 0

Figure 2.1: An example of the term-document matrix where the rows indicate the terms,
the columns stand for the documents, and the values are the frequencies of
terms occurring in the documents.

Deerwester et al. (1990) proposed to measure word similarity instead of document
similarity by considering the row vectors rather than the column vectors in the term-
document matrix. Their reasoning was that words (or terms) are similar if they tend to
occur in the same documents. Furthermore, the distributional hypothesis (Harris, 1954)
claimed that words that occur in similar contexts tend to have similar meanings. In
general, a word can be represented by a vector whose each element is derived from the co-
occurrence of the word in various contexts such as words, phrases, sentences, documents,
patterns, paragraphs, or sequences of characters. Not unlike document similarity, the
similarity between two words can be estimated across the similarity of two row vectors
in a term-context matrix whose given row indicates the vector of the corresponding word
(or term) and whose given column represents the context. Therefore, each row vector of
the term-context matrix represents the vector of a unique word in the lexicon. Figure 2.2
illustrates an example of the term-context matrix in which contexts (in the columns of
the term-context matrix) are derived corresponding to the target words (in the rows of
the term-context matrix) from the sentences.

2.2.1 Context

As discussed above, a word can be encoded as a vector in which the weights of the vector
are derived from various contexts, such as documents (Salton et al., 1975), contextual
windows of words (Lund and Burgess, 1996; Turney and Pantel, 2010), grammatical
dependencies (Lin, 1998; Padó and Lapata, 2007), and patterns (Lin and Pantel, 2001).
Once the contexts are considered as documents, the vectors of similar words tend to
represent similar topics. For example, the vectors cricket and football are close to each
other, because cricket and football often occur in documents related to the topic of sport.
Although using documents as contexts can help generate words that belong to the same
topic, the similar meaning of those words is problematic.

12

2.2 Distributional Word Vector Representations

In order to represent vectors of words with similar meaning, we can narrow the context
down to the contextual windows of words where the words in a fixed-size window co-
occur on both sides of the target word1. The intuition behind this approach is that
words with similar meaning, such as car and bus, tend not to occur in the same sentence
(or even document). Therefore, in the term-context matrix, the row vectors of words
with similar meaning are close to each other in the VSM. For example, in Figure 2.2,
the vectors of football and basketball are similar to each other because both football and
basketball co-occur in the contexts of team, sport, and player.

Football is a family of team sports that involve, to varying degrees, kicking
a ball with a foot to score a goal. The various codes of football share certain
common elements: Players in American football , Canadian football, rugby
union and rugby league take up positions in a limited area of the field at the
start of the game.
Basketball is a limited-contact sport played on a rectangular court. While
most basketball players often played as a team sport with five players on
each side, three-on-three, two-on-two, and one-on-one competitions are also
common.

team sport player family goal court



football 1 1 2 1 1 0
basketball 1 2 1 0 0 1
American 0 0 1 0 0 0
Canadian 0 0 1 0 0 0
game 0 1 0 0 0 1
score 0 0 1 0 1 0
play 1 2 2 0 0 1

Figure 2.2: Simple example of the term-context matrix where the rows indicate the terms,
the columns stand for the contexts, and the values are the frequencies of terms
occurring in the contexts.

2.2.2 Window-size

In order to structure the term-context matrix, each target word is represented by contexts
that co-occur with the target word within a certain contextual window-size. A window-
size is a window of contextual words that co-occur with a certain target word in a given
length (or size). The contextual window-size simply spans a number of contextual words
occurring around the target word on both the left and right side of the word. Figure 2.3
illustrates an example of a window size of four contextual words where the target word
football receives four words on each side as its contexts.

1The target word refers to the word where we are constructing the corresponding vector in the term-
context matrix.

13

2 Background

Recent studies in vector semantic models have found that window-size impacts a par-
ticular task in various ways. Among others, Hill et al. (2013) investigated the impact of
window-size on measuring the similarity of concrete and abstract nouns. They found that
smaller window-sizes work best for measuring concrete nouns, whereas larger window-
sizes are better for measuring the similarity of abstract nouns. Schulte im Walde et al.
(2013) claimed that a larger window-size worked well for measuring compositionality
on the dataset of German noun-noun compounds. Kiela and Clark (2014) conducted
a systematic study on training parameters for semantic space models. The authors ex-
perimented with window-sizes of 3, 5, 7, 9 and a full sentence. Their experiments in a
variety of similarity tasks showed that the highest similarity score is typically achieved
with a large corpora and a small window-size.

The various codes of football share certain common elements.

0 1 2 3 41234

position

window-size = 4

Figure 2.3: An example of a window-size with the target word at position 0 and four
contextual words occurring on each side of the target word.

2.2.3 Weighting

The term-context matrix in Figure 2.2 represented each cell of the matrix by the fre-
quency of the co-occurrence of terms (target words) and contexts. However, a problem
arises with high frequency contexts, which tend to co-occur with many different target
words. It turns out that such high frequency contexts can affect the discrimination of
different kinds of target words. For example, contexts like a, the, is or it that occur
frequently with all kinds of words like tomato, computer or information, are not able
to discriminate between tomato and computer. Ideally, contexts that are particularly
informative should indicate the frequency of two target words co-occuring above chance.

Pointwise mutual information (PMI): is a weighting or measure of association be-
tween words. PMI was proposed by Church and Hanks (1990), based on the motivation
of mutual information. Given the target word w and the context c, the PMI association
value between w and c is computed as follows:

PMI(w, c) = log2

P (w, c)

P (w)P (c)
(2.1)

where P (w, c) denotes the joint probability between the target word w and context c;
and P (w) stands for the marginal probability of the target word w. The numerator

14

2.2 Distributional Word Vector Representations

of Equation 2.1 observes how often target word w co-occurs with context c. The de-
nominator of Equation 2.1 expresses the expectation of target word w and context c
in co-occurring with each other. PMI values range from negative to positive infinity.
Negative values, however, tend to express unreliable information between target words
and contexts because they imply observations that co-occur less often than would be
expected by chance. In order to mitigate this issue, it is reasonable to use positive PMI
(PPMI), which replaces all negative values by zero. As a result, the PPMI value is
defined as follows:

PPMI(w, c) = max(0, log2

P (w, c)

P (w)P (c)
) (2.2)

Local Mutual Information (LMI): is an extension of the pointwise mutual information
measure from the information theory (Evert, 2005). In comparison to PMI, LMI improves
the problem of propagating low-frequent events by taking into account the multiplication
of observed frequency and mutual information. The LMI association value between target
word w and context c is formulated as follows:

LMI(w, c) = P (w, c)× log2

P (w, c)

P (w)P (c)
(2.3)

2.2.4 Measuring Similarity

To measure similarity between two target words u and v in the term-context matrix,
we need to take the two corresponding row vectors of u and v and then compute the
similarity between two such vectors. There are various similarity measures such as cosine,
Jaccard (Jaccard, 1912), and Kullback-Leibler divergence (Kullback and Leibler, 1951).
By far the most common metric used to compute the similarity between two vectors
is the cosine measure. Therefore, in this thesis we mainly focus on using the cosine
similarity to measure the similarity between two target words. The cosine similarity
metric between two vectors ~u and ~v is defined as follows:

cosine(~u,~v) =
~u · ~v
|~u||~v| (2.4)

where ~u · ~v denotes the dot product (or inner product) between two vectors ~u and ~v;
and |~u| indicates the vector length (or vector norm). The dot product between two
vectors tends to receive the high value when the two vectors have large values in the
same dimensions. The dot product between two vectors (~u,~v) and the vector length of
~u are defined as in equations 2.5 and 2.6, respectively:

~u · ~v =
N∑
i=1

uivi (2.5)

15

2 Background

|~u| =

√√√√ N∑
i=1

u2i (2.6)

By combining all three equations 2.4, 2.5, and 2.6 together, the cosine similarity
measure can be computed as in equation 2.7:

cosine(~u,~v) =
~u · ~v
|~u||~v| =

N∑
i=1

uivi√
N∑
i=1

u2i

√
N∑
i=1

v2i

(2.7)

2.3 Distributed Word Vector Representations

Distributed word vector representations (often called word embeddings) are a means to
represent words in vector space so that they are embedded as low-dimensional dense
vectors. The term word embeddings was originally coined by Bengio et al. (2003), who
used word embeddings trained in a neural language model together with the model’s
parameters. The power of word embeddings was first demonstrated by Collobert and
Weston (2008), whose models treated word embeddings as a highly effective tool when
used in a downstream task. Subsequently, word embeddings gained increased popularity
with Mikolov et al. (2013a) who proposed two models to learn word embeddings effec-
tively. The following year, Pennington et al. (2014) introduced GloVe, an approach to
learn competitive word embeddings.

Word embeddings can be considered to be among a small number of successful applica-
tions of unsupervised learning so far. The advantage of word embeddings is that they are
trained on unannotated corpora, helping us to obtain word embeddings in many different
languages easily. Moreover, although word embeddings are encoded in low-dimensional
vector representations, the information regarding word similarity is still retained. The
pre-trained embeddings can be used in downstream tasks that use a small amount of
labeled data.

In general, every feed-forward neural network that takes words from the vocabulary
as inputs embeds those words as vectors into a low-dimensional space. The feed-forward
neural model then fine-tunes their parameters through back-propagation to yield word
embeddings that are weights of the first layer (usually referred to as Embedding layer).
However, learning word embeddings through such neural models is simply too computa-
tionally expensive for a large vocabulary. Mathematically speaking, consider a training
corpus containing a sequence of T training words w1, w2, ..., wT that belong to a vocab-
ulary V whose size is |V|. Embedding models generally consider a context of n words to
train a target word. Each word in the vocabulary V is associated with an input embed-

16

2.3 Distributed Word Vector Representations

ding vw with d dimensions, and with an output embedding v′w. Embedding models then
optimize an objective function Jθ with respect to parameters θ, and the models output
the score fθ(w) for every target word w.

2.3.1 Classic Language Model

Word embedding models are closely related to language models in the fact that the
quality of language models is measured based on their ability to learn a probability
distribution over the vocabulary V . Similarly, embedding models also try to predict the
next word in a sequence. Among others, the classic neural language model (Bengio et al.,
2003) consists of input, projection, hidden and output layers. The architecture of the
classic language model is illustrated in Figure 2.4.

Figure 2.4: The architecture of the classic language model (Bengio et al., 2003)

The model is then trained to maximize the average of log probabilities of all words in
the vocabulary V given their previous n words as follows:

Jθ =
1

T

T∑
1

log p(wt|wt−1, ..., wt−n+1) (2.8)

the probability log p(wt|wt−1, ..., wt−n+1) can be computed by using the softmax layer
and the output vector of a hidden layer h as in equation 2.9:

log p(wt|wt−1, ..., wt−n+1) =
exp(hTv′wt

)∑
wi∈V exp(hTv′wt

)
(2.9)

17

2 Background

wt

wt−2

wt−1

wt+1

wt+2

INPUT PROJECTION OUTPUT

SUM

Figure 2.5: The CBOW architecture that predicts the target word based on the contexts.

The architecture of such language model becomes complex for computation between
projection and hidden layers over the vocabulary because values in the projection are
dense. Moreover, finding ways to mitigate the computational cost associated with the
softmax layer is one of the key challenges in learning word embeddings effectively.

2.3.2 Word2vec Embedding Models

This section introduces word2vec models that were proposed by Mikolov et al. (2013a).
Word2vec models are arguably the most popular word embedding models and offer two
main benefits over previous embedding models: they do away with the expensive hidden
layer and enable the language model to take additional context into account. Word2vec
models consist of two neural architectures: continuous bag-of-word and continuous skip-
gram models.

Continuous Bag-of-Word Model

The continuous bag-of-word model (CBOW) is similar to the classic neural model (Bengio
et al., 2003); however, the non-linear hidden layer is removed and the projection layer is
shared for all words in the vocabulary. While the classic language model is only able to
look at the previous words for the prediction of the target word, CBOW model uses n
words both before and after the target word wt to predict it as depicted in Figure 2.5.

The objective function of CBOW model is slightly different compared to the objective

18

2.3 Distributed Word Vector Representations

wt

wt−2

wt−1

wt+1

wt+2

INPUT PROJECTION OUTPUT

SUM

Figure 2.6: The skip-gram architecture that treats the target word as an input to predict
words around the target word.

function of the classic language model, defined as follows:

Jθ =
1

T

T∑
1

log p(wt|wt−n, ..., wt−1, wt+1, ..., wt+n) (2.10)

Instead of feeding n previous words into the model to train the target word, CBOW
model considers a window of n words around the target word wt at each time step t.

Continuous Skip-gram Model

The continuous skip-gram model is similar to the CBOW model; however, while the
CBOW model predicts the target word based on the contexts around it, the skip-gram
model tries to maximize classification of a target word based on another word in the same
sentence. Specifically, each target word is treated as an input to a log-linear classifier with
a continuous projection layer. The target word is then used to predict words within a
certain window-size before and after the target word. Figure 2.6 depicts the architecture
of the skip-gram model.
The skip-gram objective function thus sums the log probabilities of the surrounding

n words to the left and to the right of the target word wt as the following objective
function:

Jθ =
1

T

T∑
1

∑
−n≤j≤n

log p(wt+j|wt) (2.11)

Since the skip-gram architecture removes the hidden layer that produces an output

19

2 Background

vector h as in the architecture of the classic language model, the output vector h of
the skip-gram model is simply the word embedding ~vwt of the input word wt. Thus the
probabilities log p(wt+j|wt) can be computed as follows:

log p(wt+j|wt) =
exp(vTwt

v′wt+j
)∑

wi∈V exp(vTwt
v′wi

)
(2.12)

Negative Sampling

The output of embedding models can be computed by using a softmax layer, but the
complexity of computing the final softmax layer is too expensive. Thus mitigating such
complexity has been one of the main challenges in training word embeddings. In the
last decade, different strategies have been proposed to approximate the softmax such
as hierarchical softmax (Morin and Bengio, 2005), CNN-softmax (Kim et al., 2016),
differentiated softmax (Chen et al., 2016), and noise contrastive estimation (Gutmann
and Hyvärinen, 2010).
Mikolov et al. (2013c) proposed negative sampling to train the skip-gram model so

that it can be seen as an approximation of noise contrastive estimation. While noise
contrastive estimation can be shown to approximate the loss of the softmax layer as
the number of samples k increases, the negative sampling approach is used simply to
learn high quality word embeddings. Negative sampling can be defined by the following
objective function:

log θ(v′wi

T
vwi

) +
k∑
j=1

Ewi
∼ Pn(w)[log θ(−v′wj

T
vwi

)] (2.13)

where k is the number of negative samples; Pn(w) is noise distribution with respect to
the target word w.

2.4 Neural Networks

Neural networks (NNs) are computational models that are inspired by biology of the
human brain. NNs contain a large number of neurons (i.e., computational nodes) that are
trained to map the inputs to the outputs through mapping functions. NNs usually consist
of several layers including an input layer, one or several hidden layers, and an output
layer. Each layer of NNs contains multiple computational neurons. In the architecture
of NNs, the input layer is in charge of receiving the input signals from the training data.
The hidden layers are responsible for computing and transforming input signals into
representations of training data. The output layer then transforms representations of
hidden layers to the particular output format.

20

2.4 Neural Networks

In recent years, approaches based on NNs have gained impressive achievements in
solving tasks in NLP. In the following, we discuss how neural networks are used to deal
with NLP tasks. Specifically, we introduce the input layer, certain kinds of hidden layers,
and the output layer.

2.4.1 Input Layer

The input layer in NNs is used to represent basic units of training data under suitable
formats providing for hidden layers of NNs. In the NLP task, there are various kinds of
basic units that the input layer presents, such as words (Kim, 2014), characters (Kim
et al., 2016), morphemes (Botha and Blunsom, 2014), patterns (Shwartz et al., 2016),
and even sentences (Kiros et al., 2015). More specifically, each unit will be assigned to a
unique index, which is then mapped to a corresponding distributed vector representation,
as discussed in Section 2.3. This procedure is carried out for all units in the vocabulary
of training data. The resulting vector representations of units are stored in a matrix
called the lookup table. For example, if the dimension of a vector representation that
encodes units of training data is d and the vocabulary size of units is V , the dimension
of a look table will be V × d.
In NLP tasks, input data are often fed into NNs through sequences of basic units that

reserve information such as semantics, syntax, and ordering of units. Given a sequential
input x1x2...xk where xi is a unit of the input sequence and k is the length of the input
sequence, we encode each unit xi with a d-dimensional vector representation xi ∈ Rd.
Thus, the representation of a sequential input will be a matrix X ∈ Rk×d as follows:

X =



x11 x12 x13 . . . x1d

x21 x22 x23 . . . x1d

x31 x32 x33 . . . x1d
...

...
...

xk1 xk2 xk3 . . . xkd


(2.14)

where the row i of matrix X represents the vector representation of unit ith in the input
sequence.

2.4.2 Hidden Layer

The hidden layer is the most important layer in the architecture of NNs where represen-
tations of the input layer will be computed and transformed to the output layer. The
architecture of the hidden layer can be typical, such as feed-forward, recurrent, and con-
volution; or a combination of different architectures. The names of some typical NNs are
followed by integrating the corresponding typical hidden architectures. In this section,

21

2 Background

we briefly introduce feed-forward and recurrent neural networks in which feed-forward
and recurrent architectures are considered hidden layers.

x1

x2

x3

x4

x5

Input layer

∫
∫
∫
∫
∫
∫
∫

Hidden
layer 1

∫
∫
∫
∫
∫
∫

Hidden
layer 2

y1

y2

Output
layer

Figure 2.7: A fully connected feed-forward neural network with two fully connected hid-
den layers followed by an output layer. The input units are represented by
vectors xi.

Feed-forward Neural Network

The feed-forward neural network consists of at least three layers including an input layer,
a hidden layer, and an output layer. The total number of layers determines the depth of
the NN. In the feed-forward neural network, there is no “feedback” of the output layer
toward the input layer throughout the hidden layers. That is why we call it the feed-
forward neural network. Figure 2.7 depicts a full connected feed-forward neural network
with an input layer, two hidden layers, and an output layer. In this neural network, the
input layer has five input units, the first and second hidden layers contain seven and six
neurons respectively, and there are two output neurons in the output layer. Each neuron
of the two hidden layers is computed by using a linear transformation as follows:

hi = f(Wihi−1) (2.15)

where f(·) is a non-linear activation function applied to the linear transformation between
the previous hidden unit hi−1 and the matrix Wi. The non-linear activation function
can be tanh, sigmoid, or ReLu (rectified linear unit) function.

22

2.4 Neural Networks

h1 h2 h3
h0

x1 x2 x3

y1 y2 y3

Figure 2.8: An example of a recurrent neural network where ht is updated by considering
both input xt and previous hidden state ht−1.

Recurrent Neural Network

The recurrent neural network (RNN) is also called the Elman network (Elman, 1990). It
receives the previous hidden state and the current input as inputs of the current hidden
state. The RNN can thus store information about the past inputs for a time. Specifically,
given a sequence of k words X = [x1, x2, ..., xk] as input data, the RNN processes each
word xt at a time and returns a vector of state hk for the complete input sequence. For
each time step t, the RNN updates an internal memory state ht that depends on the
current input xt and the previous state ht−1 as follows:

ht = σ(Vxt + Uht−1 + b) (2.16)

where V and U are learnable matrices; b is a bias; h0 is assigned to zero at the time
step t = 0. Figure 2.8 illustrates an example of the RNN.

Yet, if the sequential input is a long-term dependency, an RNN faces the problem
of gradient vanishing or exploding, leading to difficulties in training the model. Long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) units were proposed to
address these problems. The underlying idea of the LSTM is to use an adaptive gating
mechanism to decide on the extent to which LSTM units keep the previous state and
memorize the extracted features of the current input. More specifically, the LSTM is
comprised of four components: an input gate it, a forget gate ft, an output gate ot, and
a memory cell ct. The state of the LSTM at each time step t is formalized as follows:

it = σ(Wi · xt + Ui · ht−1 + bi)

ft = σ(Wf · xt + Uf · ht−1 + bf)

ot = σ(Wo · xt + Uo · ht−1 + bo)

gt = tanh(Wc · xt + Uc · ht−1 + bc)

ct = it ⊗ gt + ft ⊗ ct−1

23

2 Background

W refers to a matrix of weights that projects information between two layers; b is a
layer-specific vector of bias terms; σ denotes the sigmoid function. The output of an
LSTM at a time step t is computed as follows:

ht = ot ⊗ tanh(ct)

where ⊗ denotes element-wise multiplication.

2.4.3 Output Layer

In a neural network, the output layer is responsible for generating a prediction for output
variables based on the input variables and hidden states of the neural model. Figure 2.9
shows an example of an output layer. For a particular task, the number of output
variables depends on the number of classes, such as binary or multiple classes. Each
unit of an output layer represents a score or probability prediction of a neural network
for each corresponding class. Since the number of units in the last hidden layer is often
larger than the number of classes, there is usually a full connected layer to transform the
size of the last hidden layer to the size of classes. Thus, the output layer can be defined
as follows:

ŷ = f(Woh) (2.17)

in which h is the state of the last hidden layer. Wo stands for the weight matrix between
the last hidden layer and the output layer. f(·) is the activation function where f is
often the sigmoid function for binary classification or the softmax function for multiple
classification. ŷ accounts for the prediction of the corresponding class.

∫
∫
∫
∫
∫
∫

Hidden
layer

ŷ1

ŷ2

Output
layer

Figure 2.9: An example of an output layer with two units.

24

2.4 Neural Networks

2.4.4 Training

In order to train the neural network, we need to minimize the predictions of the model
with the gold labels over all classes. To do so, we rely on loss functions to minimize
the difference between the predictions and the gold labels across classes of the output.
There are several common loss functions such as cross entropy loss, logistic loss, and
mean squared error loss. The cross entropy loss function is often chosen to deal with the
classification task. The cross entropy loss function can be defined as follows:

−
|y|∑
i

(
yi log ŷi + (1− yi) log(1− ŷi)

)
(2.18)

where |y| is the number of classes. yi and ŷi are the gold label and the prediction of
class ith, respectively.
To minimize the loss function, stochastic gradient descent algorithms are applied to

optimize the loss function by updating the parameters of the neural network. There are
several common stochastic gradient descent algorithms such as AdaGrad (Duchi et al.,
2011), AdaDelta (Zeiler, 2012), and ADAM (Kingma and Ba, 2014).

25

3 Distinguishing Antonymy and
Synonymy with Vector
Representations

3.1 Introduction

Antonymy and synonymy represent lexical semantic relations that are central to the
organization of the mental lexicon (Miller and Fellbaum, 1991). While antonymy is de-
fined as the oppositeness between words, synonymy refers to words that are similar in
meaning (Deese, 1965; Lyons, 1977). From a computational point of view, distinguishing
between antonymy and synonymy is important for NLP applications such as machine
translation, coreference resolution, and recognizing textual entailment, which go beyond
the general notion of semantic relatedness and require identification of the specific se-
mantic relations. However, due to interchangeable substitution, antonyms and synonyms
often occur in similar contexts. For example, considering the sentences “the girl loves
the cat” and “the girl hates the cat,” the antonymous pair love/hate co-occurs with the
same contexts in the two sentences. As a result, the vector of “love” is close in word
vector representations to the vector of “hate.” This issue has been challenging automatic
systems in distinguishing between antonymy and synonymy.
Numerous approaches have been proposed to distinguish antonymy from synonymy.

Among others, approaches based on word vector representations have received many
impressive results in dealing with this task. Two common approaches that represent
words as vectors are distributional and distributed vector representations. They both
rely on the distributional hypothesis (Harris, 1954; Firth, 1957), which states that words
with similar distributions are related in meaning. In the distributional vector represen-
tation, each word is represented by a weighted feature vector, whose features typically
correspond to words that co-occur in a particular context. Moreover, features are often
weighted by applying several weighting methods, such as PMI, PPMI or LMI. However,
since all these weighting methods are based on normalizing the co-occurrence of words
and their contexts, using distributional vector representations tends to retrieve both syn-
onyms (such as formal–conventional) and antonyms (such as formal–informal) as related
words, and therefore cannot sufficiently distinguish between the two relations. Unlike

27

3 Distinguishing Antonymy and Synonymy with Vector Representations

distributional vector representations, approaches based on distributed vector represen-
tations represent words as low-dimensional dense vector representations. However, the
motivation behind distributed vector representations is still based on the distributional
hypothesis, in which vector representation of a word is constructed from its contexts.
Consequently, this approach is still not sufficient to handle the issue of distinguishing
antonymy from synonymy.
In this chapter, we present two approaches that improve both distributional and dis-

tributed vector representations for antonym–synonym discrimination. The first approach
is motivated by the fact that feature overlap in synonyms is supposedly stronger than
feature overlap in antonyms. Therefore, in this approach, we incorporate lexical contrast
into distributional vectors and strengthen those word features that are most salient to
determine word similarities or dissimilarities. To establish the most salient features of
antonyms and synonyms, we exploit the difference between the distribution of antonyms
and synonyms.
Regarding the second approach, lexical contrast information is integrated into the

objective function of the skip-gram model with negative sampling (SGNS) described
by Mikolov et al. (2013a). The proposed model optimizes semantic vectors to predict
degrees of word similarity and to distinguish antonyms from synonyms. The resulting
vectors make vector representations of synonymy closer to each other, while forcing
vector representations of antonymy to be further away from each other. The improved
word embeddings outperform state-of-the-art models on antonym–synonym distinction
and the word similarity task. The approaches and experiments described in this chapter
are published in Nguyen et al. (2016a).

3.2 Related Work

In recent years, a number of distributional approaches have accepted the challenge to
distinguish antonyms from synonyms, often in combination with lexical resources such
as thesauruses or taxonomies. For example, Lin et al. (2003) used dependency triples
to extract distributionally similar words, and then in a post-processing step filtered out
words that appeared with the patterns ‘from X to Y’ or ‘either X or Y’ significantly of-
ten. Mohammad et al. (2013) assumed that word pairs that occur in the same thesaurus
category are close in meaning and marked as synonyms, while word pairs occurring in
contrasting thesaurus categories or paragraphs are marked as opposites. Scheible et al.
(2013) showed that the distributional difference between antonyms and synonyms can
be identified via a simple word space model by using appropriate features. Santus et al.
(2014a) and Santus et al. (2014b) aimed to identify the most salient dimensions of mean-
ing in vector representations and reported a new average-precision-based distributional
measure and an entropy-based measure to discriminate antonyms from synonyms (and

28

3.3 Approach

further paradigmatic semantic relations).
Lately, antonym–synonym distinction has also been a focus of word embedding models.

For example, Adel and Schütze (2014) integrated coreference chains extracted from large
corpora into a skip-gram model to create word embeddings that identified antonyms.
Ono et al. (2015) proposed thesaurus-based word embeddings to capture antonyms.
They proposed two models: the WE-T model that trains word embeddings on thesaurus
information; and the WE-TD model that incorporated distributional information into
the WE-T model. Pham et al. (2015) introduced the multitask lexical contrast model
(mLCM) by incorporating WordNet into a skip-gram model to optimize semantic vectors
to predict contexts. Their model outperformed standard skip-gram models with negative
sampling on both general semantic tasks and distinguishing antonyms from synonyms.

3.3 Approach

In this section, we present the two contributions: a new distributional vector representa-
tion that improves the quality of weighted features to distinguish between antonyms and
synonyms (Section 3.3.1), and a novel extension of skip-gram models that integrates the
distributional lexical contrast into the objective function of skip-gram model, in order
to predict similarities between words and to identify antonyms (Section 3.3.2).

3.3.1 Improving the weights of feature vectors

We aim to improve the quality of weighted feature vectors by strengthening those features
that are most salient in the vectors and by putting less emphasis on those that are of
minor importance, when distinguishing degrees of similarity between words. We start out
with standard corpus co-occurrence frequencies and apply LMI measure to determine the
original strengths of the word features. Our score weightSA(w, f) subsequently defines
the weights of a target word w and a feature f as follows:

weightSA(w, f) =
1

#(w, u)

∑
u∈W (f)∩S(w)

sim(w, u)

− 1

#(w′, v)

∑
w′∈A(w)

∑
v∈W (f)∩S(w′)

sim(w′, v) (3.1)

The new weightSA scores of a target word w and a feature f exploit the differences
between the average similarities of synonyms to the target word (sim(w, u), with u ∈
S(w)), and the average similarities between antonyms of the target word (sim(w′, v), with
w′ ∈ A(w) and v ∈ S(w′)). Only those words u and v are included in the calculation that
have a positive original LMI score for the feature f : W (f). To calculate the similarity
sim between two word vectors, we rely on cosine distances. If a word w is not associated

29

3 Distinguishing Antonymy and Synonymy with Vector Representations

with any synonyms or antonyms in our resources (cf. Section 3.4.1), or if a feature does
not co-occur with a word w, we define weightSA(w, f) = 0.
The intuition behind the lexical contrast information in our new weightSA is as follows.

The strongest features of a word also tend to represent strong features of its synonyms,
but weaker features of its antonyms. For example, the feature conception only occurs
with synonyms of the adjective formal but not with the antonym informal, or with
synonyms of the antonym informal. weightSA(formal, conception), which is calculated
as the average similarity between formal and its synonyms minus the average similarity
between informal and its synonyms, should thus return a high positive value. In contrast,
a feature such as issue that occurs with many different adjectives, would enforce a feature
score near zero for weightSA(formal, issue), because the similarity scores between formal
and its synonyms and informal and its synonyms should not differ strongly. Last but
not least, a feature such as rumor that only occurs with informal and its synonyms, but
not with the original target adjective formal and its synonyms, should invoke a very low
value for weightSA(formal, rumor). Figure 3.1 provides a schematic visualization for
computing the new weightSA scores for the target formal.
Since the number of antonyms is usually much smaller than the number of synonyms,

we enrich the number of antonyms: Instead of using the direct antonym links, we consider
all synonyms of an antonym w′ ∈ A(w) as antonyms of w. For example, the target word
good has only two antonyms in WordNet (bad and evil), in comparison to 31 synonyms.
Thus, we also exploit the synonyms of bad and evil as antonyms for good.

3.3.2 Integrating the distributional lexical contrast into word

embeddings

Our model relies on Levy and Goldberg (Levy and Goldberg, 2014) who showed that
the objective function for a SGNS can be defined as follows:∑

w∈V

∑
c∈V
{#(w, c) log σ(sim(w, c)) + k#(w)P0(c) log σ(−sim(w, c))} (3.2)

The first term in Equation (3.2) represents the co-occurrence between a target word
w and a context c within a context window. The number of appearances of the target
word and that context is defined as #(w, c). The second term refers to the negative
sampling where k is the number of negatively sampled words, and #(w) is the number
of appearances of w as a target word in the unigram distribution P0 of its negative
context c.
To incorporate our lexical contrast information into the SGNS model, we propose

the objective function in Equation (3.3) to add distributional contrast followed by all
contexts of the target word. V is the vocabulary; σ(x) = 1

1+e−x is the sigmoid func-

30

3.3 Approach

w=“formal”

f=“conception” f=“issue” f=“rumor”

Sw conventional()={ ,

 methodical,

 precise,...}

Aw w()= '=“informal”

Sw unconventional(')={ ,

 irregular,

 unofficial,...}

weight
SA

(formal,conception)↑ weight
SA

(formal,issue)≈0 weight
SA

(formal,rumor)↓

Figure 3.1: Illustration of the weightSA scores for the adjective target formal. The
feature conception only occurs with formal and synonyms of formal, so
weightSA(formal, conception) should return a positive value; the feature ru-
mor only occurs with the antonym informal and with synonyms of informal,
so weightSA(formal, rumor) should return a negative value; the feature is-
sue occurs with both formal and informal and also with synonyms of these
two adjectives, so weightSA(formal, issue) should return a feature score near
zero.

tion; and sim(w1, w2) is the cosine similarity between the two embedded vectors of the
corresponding two words w1 and w2. We refer to our distributional lexical-contrast
embeddings model as dLCE.∑

w∈V

∑
c∈V
{(#(w, c) log σ(sim(w, c)) + k#(w)P0(c) log σ(−sim(w, c)))

+ (
1

#(w, u)

∑
u∈W (c)∩S(w)

sim(w, u)− 1

#(w, v)

∑
v∈W (c)∩A(w)

sim(w, v))}
(3.3)

Equation (3.3) integrates the lexical contrast information in a slightly different way
compared to Equation (3.1): For each of the target words w, we only rely on its antonyms
A(w) instead of using the synonyms of its antonyms S(w′). This makes the word em-
beddings training more efficient in running time, especially since we are using a large
amount of training data.

The dLCE model is similar to the WE-TD model (Ono et al., 2015) and the mLCM
model (Pham et al., 2015); however, while the WE-TD and mLCM models only apply
the lexical contrast information from WordNet to each of the target words, dLCE applies
lexical contrast to every single context of a target word in order to better capture and
classify semantic contrast.

31

3 Distinguishing Antonymy and Synonymy with Vector Representations

Adjectives Nouns Verbs
ANT SYN ANT SYN ANT SYN

LMI 0.46 0.56 0.42 0.60 0.42 0.62
weightSA 0.36∗∗ 0.75∗∗ 0.40 0.66 0.38∗ 0.71∗

LMI + SVD 0.46 0.55 0.46 0.55 0.44 0.58
weightSA + SVD 0.36∗∗∗ 0.76∗∗∗ 0.40∗ 0.66∗ 0.38∗∗∗ 0.70∗∗∗

Table 3.1: AP evaluation on DSMs.

3.4 Experiments

3.4.1 Experimental Settings

The corpus resource for our vector representations is one of the currently largest web
corpora1: ENCOW14A (Schäfer and Bildhauer, 2012; Schäfer, 2015), containing approx-
imately 14.5 billion tokens and 561K distinct word types. As distributional information,
we used a window size of 5 tokens for both the original vector representation and the
word embeddings models. For word embeddings models, we trained word vectors with
500 dimensions; k negative sampling was set to 15; the threshold for sub-sampling was
set to 10−5; and we ignored all words that occurred < 100 times in the corpus. The
parameters of the models were estimated by backpropagation of error via stochastic gra-
dient descent. The learning rate strategy was similar to Mikolov et al. (2013a) in which
the initial learning rate was set to 0.025. For the lexical contrast information, we used
WordNet (Miller, 1995) and Wordnik2 to collect antonyms and synonyms, obtaining a
total of 363,309 synonym and 38,423 antonym pairs.

3.4.2 Distinguishing antonyms from synonyms

The first experiment evaluates our lexical contrast vectors by applying the vector rep-
resentations with the improved weightSA scores to the task of distinguishing antonyms
from synonyms. As gold standard resource, we used the English dataset described in
Roth and Schulte im Walde (2014), containing 600 adjective pairs (300 antonymous pairs
and 300 synonymous pairs), 700 noun pairs (350 antonymous pairs and 350 synonymous
pairs) and 800 verb pairs (400 antonymous pairs and 400 synonymous pairs). For eval-
uation, we applied Average Precision (AP) (Voorhees and Harman, 1999), a common
metric in information retrieval previously used by Kotlerman et al. (2010) and Santus
et al. (2014a), among others.
Table 3.1 presents the results of the first experiment, comparing our improved vector

representations with the original LMI representations across word classes, without/with
applying singular-value decomposition (SVD), respectively. In order to evaluate the

1http://corporafromtheweb.org/
2http://www.wordnik.com

32

http://corporafromtheweb.org/
http://www.wordnik.com

3.4 Experiments

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

−0.5

0.0

0.5

1.0

lmi_DSMs

weight_DSMs

lmi_SVD
weight_SVD

Vector Representation

C
os

in
e

S
co

re

ANT SYN

(a) Adjective pairs

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

1.0

lmi_DSMs

weight_DSMs

lmi_SVD
weight_SVD

Vector Representation

C
os

in
e

S
co

re

ANT SYN

(b) Noun pairs

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

1.0

lmi_DSMs

weight_DSMs

lmi_SVD
weight_SVD

Vector Representation

C
os

in
e

S
co

re

ANT SYN

(c) Verb pairs

Figure 3.2: Differences between cosine scores for antonymous vs. synonymous word pairs.

distribution of word pairs with AP, we sorted the synonymous and antonymous pairs
by their cosine scores. A synonymous pair was considered correct if it belonged to the
first half; and an antonymous pairs was considered correct if it was in the second half.
The optimal results would thus achieve an AP score of 1 for SY N and 0 for ANT . The
results in the tables demonstrate that weightSA significantly3 outperforms the original
vector representations across word classes.
In addition, Figure 3.2 compares the medians of cosine similarities between antony-

mous pairs (red) vs. synonymous pairs (green) across word classes, and for the four
conditions (1) LMI, (2) weightSA, (3) SVD on LMI, and (4) SVD on weightSA. The
plots show that the cosine similarities of the two relations differ more strongly with our
improved vector representations in comparison to the original LMI representations, and
even more so after applying SVD.

3.4.3 Effects of distributional lexical contrast on word

embeddings

The second experiment evaluates the performance of our dLCE model on both antonym–
synonym distinction and a word similarity task. The idea is to examine the effect of the
lexical contrast information also on other important word embeddings tasks such as word
similarity. The similarity task requires to predict the degree of similarity for word pairs,
and the ranked list of predictions is evaluated against a gold standard of human ratings,
relying on the Spearman rank-order correlation coefficient ρ (Siegel and Castellan, 1988).
In this experiment, we use the SimLex-999 dataset (Hill et al., 2015) to evaluate

word embedding models on predicting similarities. The resource contains 999 word pairs
(666 noun, 222 verb and 111 adjective pairs) and was explicitly built to test models
on capturing similarity rather than relatedness or association. Table 3.2 shows that

3χ2,∗∗∗ p < .001,∗∗ p < .005, ∗p < .05

33

3 Distinguishing Antonymy and Synonymy with Vector Representations

SGNS mLCM dLCE
0.38 0.51 0.59

Table 3.2: Spearman’s ρ on SimLex-999.

Adjectives Nouns Verbs
SGNS 0.64 0.66 0.65
mLCM 0.85 0.69 0.71
dLCE 0.90 0.72 0.81

Table 3.3: AUC scores for identifying antonyms.

our dLCE model outperforms both SGNS and mLCM, proving that the lexical contrast
information has a positive effect on predicting similarity.
Therefore, the improved distinction between synonyms (strongly similar words) and

antonyms (often strongly related but highly dissimilar words) in the dLCE model also
supports the distinction between degrees of similarity.
For distinguishing between antonyms and synonyms, we computed the cosine similar-

ities between word pairs on the dataset described in Section 3.4.2, and then used the
area under curve (AUC) to evaluate the performance of dLCE compared to SGNS and
mLCM. The results in Table 3.3 report that dLCE outperforms SGNS and mLCM also
on this task.

3.5 Summary

This chapter introduced two approaches to represent words as vector representations,
which are distributional vector representation and word embeddings. Both approaches
are able to enhance predictions of word similarity. Firstly, we significantly improved
the quality of weighted features in distributional vector representations to distinguish
antonyms from synonyms by using lexical contrast information. The proposed weighted
feature is able to distinguish between antonyms and synonyms by exploiting the distinc-
tive contexts of antonyms and synonyms. Relying on the lexical contrast information,
there are three kinds of contexts among antonyms and synonyms: (i) the distinctive
contexts of synonyms, which only occur with synonymous word pairs; (ii) the distinctive
contexts of antonyms, which only occur with antonymous word pairs; and (iii) the normal
contexts, which co-occur with both synonymous and antonymous word pairs. The ex-
perimental results showed that the proposed weighted feature significantly outperforms
other weighted features for the antonymy-synonymy distinction task.
Secondly, we incorporated the lexical contrast information into a skip-gram model to

to learn word embeddings. The new word embeddings successfully predicted degrees
of similarity and identified antonyms. In comparison to other word embeddings, the

34

3.5 Summary

new word embeddings are able to decrease the distance between word embeddings of
synonymy and to increase the distance between word embeddings of antonymy. Two
experiments on similarity and antonymy-synonymy distinction tasks proved that the
proposed embeddings outperform state-of-the-art word embeddings.

35

4 Distinguishing Antonyms and
Synonyms in a Pattern-based
Neural Network

4.1 Introduction

Distinguishing between antonyms and synonyms is a key task to achieve high perfor-
mance in NLP systems. While this task is notoriously difficult to achieve with the use
of distributional co-occurrence models, pattern-based methods have proven effective to
differentiate between the relations. In this chapter, we focus on distinguishing antonyms
and synonym by using a neural network to exploit lexico-syntactic patterns of antony-
mous and synonymous pairs from syntactic parse trees. From a computational point of
view, two families of approaches to differentiate between antonyms and synonyms are
predominant in NLP: co-occurrence models and pattern-based models. Both of these
make use of vector representations, relying on the distributional hypothesis (Harris, 1954;
Firth, 1957), which states that words with similar distributions have related meanings.
These models offer a means to represent meaning vectors of words or word pairs, and to
determine their semantic relatedness (Turney and Pantel, 2010).
In co-occurrence models, each word is represented by a weighted feature vector, where

features typically correspond to words that co-occur in particular contexts. When us-
ing word embeddings, these models rely on neural methods to represent words as low-
dimensional vectors. To create the word embeddings, the models either make use of
neural-based techniques, such as the skip-gram model (Mikolov et al., 2013a), or use
matrix factorization (Pennington et al., 2014) that builds word embeddings by factoriz-
ing word-context co-occurrence matrices. In comparison to standard co-occurrence vec-
tor representations, word embeddings address the problematic sparsity of word vectors
and have achieved impressive results in many NLP tasks such as word similarity (e.g.,
Pennington et al. (2014)), relation classification (e.g., Vu et al. (2016)), and antonym-
synonym distinction (e.g., Nguyen et al. (2016a)).
In pattern-based models, vector representations make use of lexico-syntactic surface

patterns to distinguish between the relations of word pairs. For example, Justeson and
Katz (1991) suggested that adjectival opposites co-occur with each other in specific lin-

37

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

ear sequences, such as between X and Y. Hearst (1992) determined surface patterns,
e.g., X such as Y, to identify nominal hypernyms. Lin et al. (2003) proposed two tex-
tual patterns indicating semantic incompatibility, from X to Y and either X or Y,
to distinguish opposites from semantically similar words. Roth and Schulte im Walde
(2014) proposed a method that combined patterns with discourse markers for classify-
ing paradigmatic relations including antonymy, synonymy, and hypernymy. Recently,
Schwartz et al. (2015) used two prominent patterns from Lin et al. (2003) to learn word
embeddings that distinguished antonyms from similar words in determining degrees of
similarity and word analogy.

Despite the pattern-based models’ ability to mitigate the interchangeable substitution
of antonymy and synonymy, these models still face the issue of sparsity of patterns since
typical lexico-syntactic patterns cannot cover all antonymous and synonymous pairs. For
example, in the sentence “My old village has been provided with the new services,” the
antonymous pair old–new cannot be derived from any typical patterns. In this chapter,
in order to deal with the sparsity of patterns, we present a novel pattern-based neu-
ral method AntSynNET to distinguish antonyms from synonyms. We hypothesize that
antonymous word pairs co-occur with each other in lexico-syntactic patterns within a
sentence more often than would be expected of synonymous pairs. This hypothesis is in-
spired by corpus-based studies on antonymy and synonymy. Among others, Charles and
Miller (1989) suggested that adjectival opposites co-occur in patterns; Fellbaum (1995)
stated that nominal and verbal opposites co-occur in the same sentence significantly
more often than chance; Lin et al. (2003) argued that if two words appear in the clear
antonym patterns, they are unlikely to represent a synonymous pair.

We start out by inducing patterns between X and Y from a large-scale web corpus,
where X and Y represent two words of an antonym or synonym word pair, and the
pattern is derived from the simple paths between X and Y in a syntactic parse tree. Each
node in the simple path combines lexical and syntactic information; in addition, we
suggest a novel feature for the patterns, i.e., the distance between the two words along
the syntactic path. All pattern features are fed into a recurrent neural network with
LSTM units (Hochreiter and Schmidhuber, 1997), which encodes the patterns as vector
representations. Afterwards, the vector representations of the patterns are used in a
classifier to distinguish between antonyms and synonyms. The experimental results show
that AntSynNET improves performance over prior pattern-based methods. Furthermore,
the implementation of our models is publicly available1. The approaches and experiments
described in this chapter are published in Nguyen et al. (2017b).

1https://github.com/nguyenkh/AntSynNET

38

https://github.com/nguyenkh/AntSynNET

4.2 Related Work

4.2 Related Work

Pattern-based methods: Regarding the task of antonym-synonym distinction, there
exist a variety of approaches which rely on patterns. Lin et al. (2003) used bilingual de-
pendency triples and patterns to extract distributionally similar words. They relied on
clear antonym patterns such as from X to Y and either X or Y in a post-processing
step to distinguish antonyms from synonyms. The main idea is that if two words X

and Y appear in one of these patterns, they are unlikely to represent synonymous pair.
Schulte im Walde and Köper (2013) proposed a method to distinguish between the
paradigmatic relations antonymy, synonymy and hypernymy in German, based on auto-
matically acquired word patterns. Roth and Schulte im Walde (2014) combined general
lexico-syntactic patterns with discourse markers as indicators for the same relations,
both for German and for English. They assumed that if two phrases frequently co-occur
with a specific discourse marker, then the discourse relation expressed by the correspond-
ing marker should also indicate the relation between the words in the affected phrases.
By using the raw corpus and a fixed list of discourse markers, the model can easily be
extended to other languages. More recently, Schwartz et al. (2015) presented a symmet-
ric pattern-based model for word vector representation in which antonyms are assigned
to dissimilar vector representations. Differently to the previous pattern-based methods
which used the standard distribution of patterns, Schwartz et al. used patterns to learn
word embeddings.

Vector representation methods: Yih et al. (2012) introduced a new vector represen-
tation where antonyms lie on opposite sides of a sphere. They derived this representation
with the incorporation of a thesaurus and latent semantic analysis, by assigning signs to
the entries in the co-occurrence matrix on which latent semantic analysis operates, such
that synonyms would tend to have positive cosine similarities, and antonyms would tend
to have negative cosine similarities. Scheible et al. (2013) showed that the distributional
difference between antonyms and synonyms can be identified via a simple word space
model by using appropriate features. Instead of taking into account all words in a win-
dow of a certain size for feature extraction, the authors experimented with only words of
a certain part-of-speech, and restricted distributions. Santus et al. (2014a) proposed a
different method to distinguish antonyms from synonyms by identifying the most salient
dimensions of meaning in vector representations and reporting a new average-precision-
based distributional measure and an entropy-based measure. Ono et al. (2015) trained
supervised word embeddings for the task of identifying antonymy. They proposed two
models to learn word embeddings: the first model relied on thesaurus information; the
second model made use of distributional information and thesaurus information. More
recently, Nguyen et al. (2016a) proposed two methods to distinguish antonyms from syn-

39

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

onyms: in the first method, the authors improved the quality of weighted feature vectors
by strengthening those features that are most salient in the vectors, and by putting less
emphasis on those that are of minor importance when distinguishing degrees of similarity
between words. In the second method, the lexical contrast information was integrated
into the skip-gram model (Mikolov et al., 2013a) to learn word embeddings. This model
successfully predicted degrees of similarity and identified antonyms and synonyms.

4.3 Approach

In this section, we describe the AntSynNET model, using a pattern-based LSTM for
distinguishing antonyms from synonyms. We first present the induction of patterns
from a parsed corpus (Section 4.3.1). Section 4.3.2 then describes how we utilize the
recurrent neural network with long short-term memory units to encode the patterns as
vector representation. Finally, we present the AntSynNET model and two approaches
to classify antonyms and synonyms (Section 4.3.3).

4.3.1 Induction of Patterns

Corpus-based studies on antonymy have suggested that opposites co-occur with each
other within a sentence significantly more often than would be expected by chance. Our
method thus makes use of patterns as the main indicators of word pair co-occurrence,
to enforce a distinction between antonyms and synonyms. Figure 5.1 shows a syntactic
parse tree of the sentence “My old village has been provided with the new services”.
Following the characterizations of a tree in graph theory, any two nodes (vertices) of
a tree are connected by a simple path (or one unique path). The simple path is the
shortest path between any two nodes in a tree and does not contain repeated nodes.
In the example, the lexico-syntactic tree pattern of the antonymous pair old–new is
determined by finding the simple path (in red) from the lemma old to the lemma new.
It focuses on the most relevant information and ignores irrelevant information which does
not appear in the simple path (i.e., has, been). The example pattern between X = old

and Y = new in Figure 5.1 is represented as follows: X/JJ/amod/2 – village/NN/nsubj/1

– provide/VBN/ROOT/0 – with/IN/prep/1 – service/NNS/pobj/2 – Y/JJ/amod/3.

Node Representation: The path patterns make use of four features to represent each
node in the syntax tree: lemma, part-of-speech (POS) tag, dependency label and distance
label. The lemma feature captures the lexical information of words in the sentence,
while the POS and dependency features capture the morpho-syntactic information of
the sentence. The distance label measures the path distance between the target word
nodes in the syntactic tree. Each step between a parent and a child node represents a

40

4.3 Approach

Root

provided/VBN

has/VBZ been/VBNvillage/NN with/IN

services/NNS

the/DT

My/PRP$ old/JJ

new/JJ

ROOT

nsubj

1

prep

1

pobj 2
amod
2

amod

3

Figure 4.1: Illustration of the syntactic tree for the sentence “My old village has been
provided with the new services”. Red lines indicate the path from the word
old to the word new.

distance of 1; and the ancestor nodes of the remaining nodes in the path are represented
by a distance of 0. For example, the node provided is an ancestor node of the simple
path from old to new. The distances from the node provided to the nodes village and
old are 1 and 2, respectively. The vector representation of each node concatenates the
four-feature vectors as follows:

~vnode = [~vlemma ⊕ ~vpos ⊕ ~vdep ⊕ ~vdist]

where ~vlemma, ~vpos, ~vdep, ~vdist represent the embeddings of the lemma, POS tag, depen-
dency label and distance label, respectively; and the ⊕ denotes the concatenation oper-
ation.

Pattern Representation: For a pattern p which is constructed by the sequence of
nodes n1, n2, ..., nk, the pattern representation of p is a sequence of vectors:

p = [~n1, ~n2, ..., ~nk]

The pattern vector ~vp is then encoded by applying a recurrent neural network.

4.3.2 Recurrent Neural Network with Long Short-Term Memory

Units

A recurrent neural network is suitable for modeling sequential data by a vector repre-
sentation. In our methods, we use a long short-term memory network, a variant of a

41

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

recurrent neural network to encode patterns. Given a pattern of nodes p = [n1, n2, ..., nk]

as input data, the long short-term memory network represents each node via output and
hidden state vector representations.
In our methods, we rely on the last state hk to represent the vector ~vp of a pattern

p = [~n1, ~n2, ..., ~nk]. The ~vp is then used for the classifier.

4.3.3 The Proposed AntSynNET Model

In this section, we present two models to distinguish antonyms from synonyms. The first
model makes use of patterns to classify antonyms and synonyms, by using an LSTM to
encode patterns as vector representations and then feeding those vectors to a logistic
regression layer (Section 4.3.3). The second model creates combined vector represen-
tations of word pairs, which concatenate the vectors of the words and the patterns
(Section 4.3.3).

Pattern-based AntSynNET

In this model, we make use of a recurrent neural network with LSTM units to encode
patterns containing a sequence of nodes. Figure 4.2 illustrates the AntSynNET model.
Given a word pair (x, y), we induce patterns for (x, y) from a corpus, where each pattern
represents a path from x to y (cf. Section 4.3.1). We then feed each pattern p of the
word pair (x, y) into an LSTM to obtain ~vp, the vector representation of the pattern
p (cf. Section 4.3.2). For each word pair (x, y), the vector representation of (x, y) is
computed as follows:

~vxy =

∑
p∈P (x,y) ~vp · cp∑
p∈P (x,y) cp

(4.1)

~vxy refers to the vector of the word pair (x, y); P (x, y) is the set of patterns corresponding
to the pair (x, y); cp is the frequency of the pattern p. The vector ~vxy is then fed
into a logistic regression layer whose target is the class label associated with the pair
(x, y). Finally, the pair (x, y) is predicted as positive (i.e., antonymous) word pair if the
probability of the prediction for ~vxy is larger than 0.5.

Combined AntSynNET

Inspired by the supervised distributional concatenation method in Baroni et al. (2012)
and the integrated path-based and distributional method for hypernymy detection in Shwartz
et al. (2016), we take into account the patterns and distribution of target pairs to create
their combined vector representations. Figure 4.3 illustrates the combined AntSynNET
model. Given a word pair (x, y), the combined vector representation of the pair (x, y) is
determined by using both the co-occurrence distribution of the words and the syntactic

42

4.3 Approach

LSTM LSTM LSTM LSTM LSTM LSTM

~vp ~vp

Mean Pooling

Logistic Regression

X/ADJ/amod/0 from/ADP/prep/1 Y/ADJ/pobj/2 X/ADJ/conj/1world/NOUN/pobj/0Y/ADJ/amod/1

~vlemma

~vpos
~vdep
~vdist

Figure 4.2: Illustration of the AntSynNET model. Each word pair is represented by
several patterns, and each pattern represents a path in the graph of the syn-
tactic tree. Patterns consist of several nodes where each node is represented
by a vector with four features: lemma, POS, dependency label, and distance
label. The mean pooling of the pattern vectors is the vector representation
of each word pair, which is then fed to the logistic regression layer to classify
antonyms and synonyms.

path patterns:
~vcomb(x,y) = [~vx ⊕ ~vxy ⊕ ~vy] (4.2)

~vcomb(x,y) refers to the combined vector of the word pair (x, y); ~vx and ~vy are the vectors of
word x and word y, respectively; ~vxy is the vector of the pattern that corresponds to the
pair (x, y), cf. Section 4.3.3. Similar to the pattern-based model, the combined vector
~vcomb(x,y) is fed into the logistic regression layer to classify antonyms and synonyms.

LSTM LSTM LSTM LSTM LSTM LSTM

~vp ~vp

~vx ~vy~vxy

Logistic Regression

X/ADJ/amod/0 from/ADP/prep/1 Y/ADJ/pobj/2 X/ADJ/conj/1world/NOUN/pobj/0Y/ADJ/amod/1

~vlemma

~vpos
~vdep
~vdist

Figure 4.3: Illustration of the combined AntSynNET model. The concatenation of vec-
tors ~vx, ~vy, and ~vxy is considered as the vector representation of each word
pair, and is then fed to the logistic regression layer to classify antonyms and
synonyms.

43

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

4.4 Baseline Models

To compare AntSynNET with baseline models for pattern-based classification of antonyms
and synonyms, we introduce two pattern-based baseline methods: the distributional
method (Section 4.4.1), and the distributed method (Section 4.4.2).

4.4.1 Distributional Baseline

As a first baseline, we apply the approach by Roth and Schulte im Walde (2014), hence-
forth R&SiW. They used a VSM to represent pairs of words by a combination of stan-
dard lexico-syntactic patterns and discourse markers. In addition to the patterns, the
discourse markers added information to express discourse relations, which in turn may
indicate the specific semantic relation between the two words in a word pair. For ex-
ample, contrast relations might indicate antonymy, whereas elaborations may indicate
synonymy or hyponymy.
Michael Roth, the first author of R&SiW, kindly computed the relation classification

results of the pattern–discourse model for our test sets. The weights between marker-
based and pattern-based models were tuned on the validation sets; other hyperparame-
ters were set exactly as described by the R&SiW method.

4.4.2 Distributed Baseline

The SP method proposed by Schwartz et al. (2015) uses symmetric patterns for gener-
ating word embeddings. In this work, the authors applied an unsupervised algorithm
for the automatic extraction of symmetric patterns from plain text. The symmetric
patterns were defined as a sequence of 3-5 tokens consisting of exactly two wildcards
and 1-3 words. The patterns were filtered based on their frequencies, such that the re-
sulting pattern set contained 11 patterns. For generating word embeddings, a matrix
of co-occurrence counts between patterns and words in the vocabulary was computed,
using positive point-wise mutual information. The sparsity problem of vector represen-
tations was addressed by smoothing. For antonym representation, the authors relied on
two patterns suggested by Lin et al. (2003) to construct word embeddings containing an
antonym parameter that can be turned on in order to represent antonyms as dissimilar,
and that can be turned off to represent antonyms as similar.
To apply the SP method to our data, we make use of the pre-trained SP embeddings2

with 500 dimensions3. We calculate the cosine similarity of word pairs and then use
a Support Vector Machine with Radial Basis Function kernel to classify antonyms and
synonyms.

2http://homes.cs.washington.edu/~roysch/papers/sp_embeddings/sp_embeddings.html
3The 500-dimensional embeddings outperformed the 300-dimensional embeddings for our data.

44

http://homes.cs.washington.edu/~roysch/papers/sp_embeddings/sp_embeddings.html

4.5 Experiment

4.5 Experiment

4.5.1 Dataset

For training the models, neural networks require a large amount of training data. We use
the existing large-scale antonym and synonym pairs previously used by Nguyen et al.
(2016a). Originally, the data pairs were collected from WordNet (Miller, 1995) and
Wordnik4.

Word Class Train Test Validation Total
Adjective 5562 1986 398 7946
Verb 2534 908 182 3624
Noun 2836 1020 206 4062

Table 4.1: The size of antonymous and synonymous pairs across three word classes.

In order to induce patterns for the word pairs in the dataset, we identify the sentences
in the corpus that contain the word pair. Thereafter, we extract all patterns for the
word pair. We filter out all patterns which occur less than five times; and we only
take into account word pairs that contain at least five patterns for training, validating
and testing. For the proportion of positive and negative pairs, we keep a ratio of 1:1
positive (antonym) to negative (synonym) pairs in the dataset. In order to create the
sets of training, testing and validation data, we perform random splitting with 70% train,
25% test, and 5% validation sets. The final dataset contains the number of word pairs
according to word classes described in Table 4.1. Moreover, Table 4.2 shows the average
number of patterns for each word pair in our dataset.

Word Class Train Test Validation
Adjective 135 131 141
Verb 364 332 396
Noun 110 132 105

Table 4.2: Average number of patterns per word pair across word classes.

4.5.2 Experimental Settings

We use the English Wikipedia dump5 from June 2016 as the corpus resource for our
methods and baselines. For parsing the corpus, we rely on spaCy6. For the lemma em-
beddings, we rely on the word embeddings of the dLCE model7 (Nguyen et al., 2016a)

4http://www.wordnik.com
5https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
6https://spacy.io
7https://github.com/nguyenkh/AntSynDistinction

45

http://www.wordnik.com
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://spacy.io
https://github.com/nguyenkh/AntSynDistinction

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

which is the state-of-the-art vector representation for distinguishing antonyms from syn-
onyms. We re-implemented this cutting-edge model on Wikipedia with 100 dimensions,
and then make use of the dLCE word embeddings for initialization the lemma embed-
dings. The embeddings of POS tags, dependency labels, distance labels, and out-of-
vocabulary lemmas are initialized randomly. The number of dimensions is set to 10 for
the embeddings of POS tags, dependency labels and distance labels. We use the valida-
tion sets to tune the number of dimensions for these labels. For optimization, we rely
on the cross-entropy loss function and Stochastic Gradient Descent with the Adadelta
update rule (Zeiler, 2012). For training, we use the Theano framework (Theano Develop-
ment Team, 2016). Regularization is applied by a dropout of 0.5 on each of component’s
embeddings (dropout rate is tuned on the validation set). We train the models with 40
epochs and update all embeddings during training.

4.5.3 Overall Results

Table 4.3 shows the significant8 performance of our models in comparison to the base-
lines. Concerning adjectives, the two proposed models significantly outperform the two
baselines: The performance of the baselines is around .72 for F1, and the corresponding
results for the combined AntSynNET model achieve an improvement of >.06. Regarding
nouns, the improvement of the new methods is just .02 F1 in comparison to the R&SiW
baseline, but we achieve a much better performance in comparison to the SP baseline, an
increase of .37 F1. Regarding verbs, we do not outperform the more advanced R&SiW
baseline in terms of the F1 score, but we obtain higher recall scores. In comparison to
the SP baseline, our models still show a clear F1 improvement.

Model Adjective Verb Noun
P R F1 P R F1 P R F1

SP baseline 0.730 0.706 0.718 0.560 0.609 0.584 0.625 0.393 0.482
R&SiW baseline 0.717 0.717 0.717 0.789 0.787 0.788 0.833 0.831 0.832
Pattern-based AntSynNET 0.764 0.788 0.776∗ 0.741 0.833 0.784 0.804 0.851 0.827
Combined AntSynNET 0.763 0.807 0.784∗ 0.743 0.815 0.777 0.816 0.898 0.855∗∗

Table 4.3: Performance of the AntSynNET models in comparison to the baseline models.

Overall, our proposed models achieve comparatively high recall scores compared to the
two baselines. This strengthens our hypothesis that there is a higher possibility for the
co-occurrence of antonymous pairs in patterns over synonymous pairs within a sentence.
Because, when the proposed models obtain high recall scores, the models are able to
retrieve most relevant information (antonymous pairs) corresponding to the patterns.
Regarding the low precision in the two proposed models, we sampled randomly 5 pairs

in each population: true positive, true negative, false positive, false negative. We then
compared the overlap of patterns for the true predictions (true positive pairs and true

8t-test, *p < 0.05, **p < 0.1

46

4.5 Experiment

negative pairs) and the false predictions (false positive pairs and false negative pairs).
We found out that there is no overlap between patterns of true predictions; and the
number overlap between patterns of false predictions is 2, 2, and 4 patterns for noun,
adjective, and verb classes, respectively. This shows that the low precision of our models
stems from the patterns which represent both antonymous and synonymous pairs.

4.5.4 Effect of the Distance Feature

In our models, the novel distance feature is successfully integrated along the syntactic
path to represent lexico-syntactic patterns. The intuition behind the distance feature
exploits properties of trees in graph theory, which show that there exist differences in
the degree of relationship between the parent node and the child nodes (distance =

1) and in the degree of relationship between the ancestor node and the descendant
nodes (distance > 1). Hence, we use the distance feature to effectively capture these
relationships.

Feature Model Adjective Verb Noun
P R F1 P R F1 P R F1

Direction Pattern-based 0.752 0.755 0.753 0.734 0.819 0.774 0.800 0.825 0.813
Combined 0.754 0.784 0.769 0.739 0.793 0.765 0.829 0.810 0.819

Distance Pattern-based 0.764 0.788 0.776 0.741 0.833 0.784 0.804 0.851 0.827
Combined 0.763 0.807 0.784∗∗ 0.743 0.815 0.777 0.816 0.898 0.855∗∗

Table 4.4: Comparing the novel distance feature with Schwarz et al.’s direction feature,
across word classes.

In order to evaluate the effect of our novel distance feature, we compare the distance
feature to the direction feature proposed by Shwartz et al. (2016). In their approach,
the authors combined lemma, POS, dependency, and direction features for the task of
hypernym detection. The direction feature represented the direction of the dependency
label between two nodes in a path from X to Y.

For evaluation, we make use of the same information regarding dataset and patterns
as in Section 4.5.3, and then replace the distance feature by the direction feature. The
results are shown in Table 4.4. The distance feature enhances the performance of our
proposed models more effectively than the direction feature does, across all word classes.

4.5.5 Effect of Word Embeddings

Our methods rely on the word embeddings of the dLCE model, state-of-the-art word
embeddings for antonym-synonym distinction. Yet, the word embeddings of the dLCE
model, i.e., supervised word embeddings, represent information collected from lexical
resources. In order to evaluate the effect of these word embeddings on the performance

47

4 Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network

of our models, we replace them by the pre-trained GloVe word embeddings9 with 100
dimensions, and compare the effects of the GloVe word embeddings and the dLCE word
embeddings on the performance of the two proposed models.

Model Word Embeddings Adjective Verb Noun
P R F1 P R F1 P R F1

Pattern-based Model GloVe 0.763 0.770 0.767 0.705 0.852 0.772 0.789 0.849 0.818
dLCE 0.764 0.788 0.776 0.741 0.833 0.784 0.804 0.851 0.827

Combined Model Glove 0.750 0.798 0.773 0.717 0.826 0.768 0.807 0.827 0.817
dLCE 0.763 0.807 0.784 0.743 0.815 0.777 0.816 0.898 0.855

Table 4.5: Comparing pre-trained GloVe and dLCE word embeddings.

Table 4.5 illustrates the performance of our two models on all word classes. The ta-
ble shows that the dLCE word embeddings are better than the pre-trained GloVe word
embeddings, by around .01 F1 for the pattern-based AntSynNET model and the com-
bined AntSynNET model regarding adjective and verb pairs. Regarding noun pairs, the
improvements of the dLCE word embeddings over pre-trained GloVe word embeddings
achieve around .01 and .04 F1 for the pattern-based model and the combined model,
respectively.

4.6 Summary

In this chapter, we presented a novel pattern-based neural model AntSynNET to dis-
tinguish antonyms from synonyms. Despite the success of the co-occurrence approaches
introduced in chapter 3, there still exist some limitations, such as the issue of out-of-
vocabulary, which prevents the lexical resources from covering all necessary words in the
corpora; and the problem of low-resource languages for which lexical resources are no
longer developed. Unlike these co-occurrence approaches, the AntSynNET, which relies
on lexico-syntactic patterns, is able to mitigate these limitations by hypothesizing that
antonymous word pairs co-occur with each other in lexico-syntactic patterns within a
sentence more often than synonymous word pairs.
Specifically, the lexico-syntactic patterns were derived from the simple paths between

semantically related words in a syntactic parse tree. In addition to lexical and syntactic
information, we suggested a novel path distance feature. The AntSynNET model consists
of two approaches to classify antonyms and synonyms. In the first approach, we used
a recurrent neural network with long short-term memory units to encode the patterns
as vector representations; in the second approach, we made use of the distribution and
encoded patterns of the target pairs to generate combined vector representations. The
resulting vectors of patterns in both approaches were fed into the logistic regression layer
for classification.

9http://www-nlp.stanford.edu/projects/glove/

48

http://www-nlp.stanford.edu/projects/glove/

4.6 Summary

Our proposed models significantly outperformed two baselines relying on previous
work, mainly in terms of recall. Moreover, we demonstrated that the distance feature
outperformed a previously suggested direction feature and that our embeddings outper-
formed the state-of-the-art GloVe embeddings. Finally, since our two proposed models
rely only on corpus data, they are easily applicable to other languages and relations.

49

5 Hierarchical Embeddings for
Hypernymy Detection and
Directionality

5.1 Introduction

In chapters 3 and 4, we presented two approaches to distinguish antonymy and synonymy.
In this chapter, we mainly focus on detecting hypernymy. In the literature on semantic
relations, hypernymy is considered as a major semantic relation and a key organization
principle of semantic memory (Miller and Fellbaum, 1991; Murphy, 2002). It is an
asymmetric relation between two terms, a hypernym (superordinate) and a hyponym
(subordinate), as in animal–bird and flower–rose, where the hyponym necessarily implies
the hypernym, but not vice versa. The tasks of hypernymy detection and directionality
have been a challenge for automatic systems. Specifically, the hypernymy detection
task is to distinguish hypernymy from other relations such as synonymy, antonymy,
meronymy, and so on. The hypernymy directionality task aims to determine which of
the two words is the hypernym and which is the hyponym. From a computational point of
view, automatic hypernymy detection is useful for NLP tasks such as taxonomy creation
(Snow et al., 2006; Navigli et al., 2011), recognizing textual entailment (Dagan et al.,
2013), and text generation (Biran and McKeown, 2013), among many others.
Two families of approaches to identify and discriminate hypernymy are predominant

in NLP, both of them relying on word vector representations. Distributional count
approaches make use of either directionally unsupervised measures or of supervised
classification methods. Unsupervised measures exploit the distributional inclusion hy-
pothesis (Geffet and Dagan, 2005; Zhitomirsky-Geffet and Dagan, 2009), or the distribu-
tional informativeness hypothesis (Santus et al., 2014a; Rimell, 2014). These measures
assign scores to semantic relation pairs, with hypernymy scores expected to be higher
than those of other relation pairs. Typically, AP measure (Kotlerman et al., 2010) is
applied to rank and distinguish between the predicted relations. Supervised classifica-
tion methods represent each pair of words as a single vector by using the concatenation
or the element-wise difference of their vectors (Baroni et al., 2012; Roller et al., 2014;
Weeds et al., 2014). The resulting vector is fed into a Support Vector Machine (SVM) or

51

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

into Logistic Regression (LR), to predict hypernymy. Across approaches, Shwartz et al.
(2017) demonstrated that there is no single unsupervised measure that consistently deals
well with discriminating hypernymy from other semantic relations. Furthermore, Levy
et al. (2015) showed that supervised methods memorize prototypical hypernyms instead
of learning a relation between two words.

Approaches of hypernymy-specific embeddings utilize neural models to learn
vector representations for hypernymy. Yu et al. (2015) proposed a supervised method to
learn term embeddings for hypernymy identification, based on pre-extracted hypernymy
pairs. Recently, Tuan et al. (2016) proposed a dynamic weighting neural model to learn
term embeddings, in which the model encodes not only the information of hypernyms
vs. hyponyms but also their contextual information. The performance of this family of
models is typically evaluated by using an SVM to discriminate hypernymy from other
relations.

In this chapter, we present a novel neural model HyperVec to learn hierarchical em-
beddings that (i) discriminate hypernymy from other relations (detection task), and
(ii) distinguish between the hypernym and the hyponym in a given hypernymy relation
pair (directionality task). Our model learns to strengthen the distributional similarity
of hypernym pairs, relative to other relation pairs, by moving hyponym and hypernym
vectors close to each other. In addition, we generate a distributional hierarchy between
hyponyms and hypernyms. Relying on these two new aspects of hypernymy distribu-
tions, the similarity of hypernym pairs receives higher scores than the similarity of other
relation pairs; and the distributional hierarchy of hyponyms and hypernyms indicates
the directionality of hypernymy.

Our model is inspired by the distributional inclusion hypothesis, which expects promi-
nent context words of hyponyms to appear in a subset of the hypernym contexts. We
assume that each context word that appears with both a hyponym and its hypernym
can be used as an indicator to determine which of the two words is semantically more
general. Common context word vectors that represent distinctive characteristics of a
hyponym are expected to be closer to the hyponym vector than to its hypernym vector.
For example, the context word flap is more characteristic of a bird than of its hypernym
animal ; hence, the vector of flap should be closer to the vector of bird than to the vector
of animal.

We evaluate our HyperVec model on both unsupervised and supervised hypernymy
detection and directionality tasks. In addition, we apply the model to the task of graded
lexical entailment (Vulić et al. (2017)), and we assess the capability of HyperVec on
generalizing hypernymy by mapping to German and Italian. Results on benchmark
datasets of hypernymy show that the hierarchical embeddings outperform state-of-the-
art measures and previous embedding models. Furthermore, the implementation of our

52

5.2 Related Work

models is publicly available.1 The approaches and experiments described in this chapter
are published in Nguyen et al. (2017a).

5.2 Related Work

Unsupervised hypernymy measures: A variety of directional measures for unsuper-
vised hypernymy detection (Weeds and Weir, 2003; Weeds et al., 2004; Clarke, 2009;
Kotlerman et al., 2010; Lenci and Benotto, 2012) all rely on some variation of the dis-
tributional inclusion hypothesis : If u is a semantically narrower term than v, then a
significant number of salient distributional features of u is expected to be included in
the feature vector of v as well. In addition, Santus et al. (2014a) proposed the distri-
butional informativeness hypothesis, that hypernyms tend to be less informative than
hyponyms, and that they occur in more general contexts than their hyponyms. Rimell
(2014) introduced a measure which is the ratio of change in topic coherence, for hyper-
nymy detection. The measure detects hypernyms with reasonable accuracy, and a family
of topic coherence measures is used to perform a multi-way classification of tuples by re-
lation class. All of these approaches represent words as vectors in distributional semantic
models (Turney and Pantel, 2010), relying on the distributional hypothesis (Harris, 1954;
Firth, 1957). For evaluation, these directional models use the AP measure to assess the
proportion of hypernyms at the top of a score-sorted list. In a different vein, Kiela et al.
(2015) introduced three unsupervised methods drawn from visual properties of images
to determine a concept’s generality in hypernymy tasks.

Supervised hypernymy methods: The studies in this area are based on word embed-
dings which represent words as low-dimensional and real-valued vectors (Mikolov et al.,
2013a; Pennington et al., 2014). Each hypernymy pair is encoded by some combination
of the two word vectors, such as concatenation (Baroni et al., 2012) or difference (Roller
et al., 2014; Weeds et al., 2014). Hypernymy is distinguished from other relations by us-
ing a classification approach, such as SVM or LR. Because word embeddings are trained
for similar and symmetric vectors, it is however unclear whether the supervised methods
do actually learn the asymmetry in hypernymy (Levy et al., 2015).

Hypernymy-specific embeddings: These approaches are closest to our work. Yu et al.
(2015) proposed a dynamic distance-margin model to learn term embeddings that cap-
ture properties of hypernymy. The neural model is trained on the taxonomic relation
data which is pre-extracted. The resulting term embeddings are fed to an SVM classifier
to predict hypernymy. However, this model only learns term pairs without considering
their contexts, leading to a lack of generalization for term embeddings. Tuan et al. (2016)

1www.ims.uni-stuttgart.de/data/hypervec

53

www.ims.uni-stuttgart.de/data/hypervec

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

introduced a dynamic weighting neural network to learn term embeddings that encode
information about hypernymy and also about their contexts, considering all words be-
tween a hypernym and its hyponym in a sentence. The proposed model is trained on a
set of hypernym relations extracted from WordNet (Miller, 1995). The embeddings are
applied as features to detect hypernymy, using an SVM classifier. Tuan et al. (2016)
handles the drawback of the approach by Yu et al. (2015), considering the contextual
information between two terms; however the method still is not able to determine the
directionality of a hypernym pair. Vendrov et al. (2016) proposed a method to encode
order into learned distributed representations, to explicitly model partial order struc-
ture of the visual-semantic hierarchy or the hierarchy of hypernymy in WordNet. The
resulting vectors are used to predict the transitive hypernym relations in WordNet.

5.3 Approach

In this section, we present our model of hierarchical embeddings HyperVec. We first
describe the extraction of hypernymy (Section 5.3.1). Section 5.3.2 describes how we
learn the embeddings for hypernymy, and Section 5.3.3 introduces the unsupervised
measure HyperScore that is applied to the hypernymy tasks.

5.3.1 Extracting Hypernymy

The proposed approach makes use of the set of hypernymy to learn the hierarchical
embeddings. For this purpose, we rely on WordNet which is a large lexical database
of English for collecting the set of hypernymy. We extract all of hypernym relations
for noun terms and verb terms, including both direct and indirect hypernym relations.
Before training our model, we exclude all hypernym pairs which appear in any datasets
used for evaluation.
Figure 5.1 shows the direct and indirect hypernymy in WordNet. For example, the

direct hypernym of “frog” is “amphibian”, while the indirect hypernyms of “frog” are
“verterbrate”, “chordate”, and “animal”. For training our model, we exclude all hypernym
relations (the true label) which appear in all datasets used for the evaluation, guaran-
teeing the hypernym relations in the datasets are unseen during training the model. For
example, if the hyponym–hypernym pair of “bird–animal” appears in any dataset, it will
be excluded from the training set.

5.3.2 Learning Hierarchical Embeddings

In the following, Section 5.3.2 first describes the Skip-gram model which is integrated
into our model for optimization. Section 5.3.2 then describes the objective functions to
train the hierarchical embeddings for hypernymy.

54

5.3 Approach

animal.n.01

chordate.n.01

vertebrate.n.01

amphibian.n.03

frog.n.01

bird.n.01

bird of prey.n.01

eagle.n.01

domestic animal.n.01

dog.n.01

Figure 5.1: Illustration of the direct and indirect hypernymy in WordNet.

Skip-gram Model

The Skip-gram model is a word embeddings method suggested by Mikolov et al. (2013a).
Levy and Goldberg (2014) introduced a variant of the Skip-gram model with negative
sampling, in which the objective function is defined as follows:

JSGNS =
∑
w∈VW

∑
c∈VC

J(w,c) (5.1)

J(w,c) = #(w, c) log σ(~w,~c) + k · EcN∼PD
[log σ(−~w,~cN)] (5.2)

where the skip-gram with negative sampling is trained on a corpus of words w ∈ VW and
their contexts c ∈ VC , with VW and VC the word and context vocabularies, respectively.
The collection of observed words and context pairs is denoted as D; the term #(w, c)

refers to the number of times the pair (w, c) appeared in D; the term σ(x) is the sigmoid
function; the term k is the number of negative samples and the term cN is the sampled
context, drawn according to the empirical unigram distribution P .

Hierarchical Hypernymy Model

Vector representations for detecting hypernymy are usually encoded by standard first-
order distributional co-occurrences. In this way, they are insufficient to differentiate
hypernymy from other paradigmatic relations such as synonymy, meronymy, antonymy,
etc. Incorporating directional measures of hypernymy to detect hypernymy by exploiting
the common contexts of hypernym and hyponym improves this relation distinction, but
still suffers from distinguishing between hypernymy and meronymy.
Our novel approach presents two solutions to deal with these challenges. First of all,

the embeddings are learned in a specific order, such that the similarity score for hyper-

55

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

nymy is higher than the similarity score for other relations. For example, the hyper-
nym pair animal–frog will be assigned a higher cosine score than the co-hyponymy pair
eagle–frog. Secondly, the embeddings are learned to capture the distributional hierarchy
between hyponym and hypernym, as an indicator to differentiate between hypernym and
hyponym. For example, given a hyponym–hypernym pair (p, q), we can exploit the Eu-
clidean norms of ~q and ~p to differentiate between the two words, such that the Euclidean
norm of the hypernym ~q is larger than the Euclidean norm of the hyponym ~p.

Inspired by the distributional lexical contrast model in Nguyen et al. (2016a) for
distinguishing antonymy from synonymy, this chapter proposes two objective functions
to learn hierarchical embeddings for hypernymy. Before moving to the details of the
two objective functions, we first define the terms as follows: W(c) refers to the set of
words co-occurring with the context c in a certain window-size; H(w) denotes the set of
hypernyms for the word w; the two terms H+(w, c) and H−(w, c) are drawn from H(w),
and are defined as follows:

H+(w, c) = {u ∈W(c) ∩H(w) : cos(~w,~c)− cos(~u,~c) ≥ θ}
H−(w, c) = {v ∈W(c) ∩H(w) : cos(~w,~c)− cos(~v,~c) < θ}

where cos(~x, ~y) stands for the cosine similarity of the two vectors ~x and ~y; θ is the
margin. The set H+(w, c) contains all hypernyms of the word w that share the context c
and satisfy the constraint that the cosine similarity of pair (w, c) is higher than the cosine
similarity of pair (u, c) within a max-margin framework θ. Similarly, the set H−(w, c)

represents all hypernyms of the word w with respect to the common context c in which
the cosine similarity difference between the pair (w, c) and the pair (v, c) is within a
min-margin framework θ. The two objective functions are defined as follows:

L(w,c) =
1

#(w, u)

∑
u∈H+(w,c)

∂(~w, ~u) (5.3)

L(v,w,c) =
∑

v∈H−(w,c)
∂(~v, ~w) (5.4)

where the term ∂(~x, ~y) stands for the cosine derivative of (~x, ~y); and ∂ then is optimized
by the negative sampling procedure.

The objective function in Equation 5.3 minimizes the distributional difference between
the hyponym w and the hypernym u by exploiting the common context c. More specifi-
cally, if the common context c is the distinctive characteristic of the hyponym w (i.e. the
common context c is closer to the hyponym w than to the hypernym u), the objective
function L(w,c) tries to decrease the distributional generality of hypernym u by moving
w closer to u. For example, given a hypernym-hyponym pair animal–bird, the context
flap is a distinctive characteristic of bird, because almost every bird can flap, but not
every animal can flap. Therefore, the context flap is closer to the hyponym bird than

56

5.3 Approach

to the hypernym animal. The model then tries to move bird closer to animal in order
to enforce the similarity between bird and animal, and to decrease the distributional
generality of animal.

In contrast to Equation 5.3, the objective function in Equation 5.4 minimizes the
distributional difference between the hyponym w and the hypernym v by exploiting the
common context c, which is a distinctive characteristic of the hypernym v. In this case,
the objective function L(v,w,c) tries to reduce the distributional generality of hyponym w

by moving v closer to w. For example, the context word rights, a distinctive characteristic
of the hypernym animal, should be closer to animal than to bird. Hence, the model tries
to move the hypernym animal closer to the hyponym bird. Given that hypernymy is an
asymmetric and also a hierarchical relation, where each hypernym may contain several
hyponyms, our objective functions updates simultaneously both the hypernym and all
of its hyponyms; therefore, our objective functions are able to capture the hierarchical
relations between the hypernym and its hyponyms. Moreover, in our model, the margin
framework θ plays a role in learning the hierarchy of hypernymy, and in preventing the
model from minimizing the distance of synonymy or antonymy, because synonymy and
antonymy share many contexts.

In the final step, the objective function which is used to learn the hierarchical embed-
dings for hypernymy combines Equations 5.1, 5.2, 5.3, and 5.4 by the objective function
in Equations 5.5 and 5.6:

J(w,v,c) = J(w,c) + L(w,c) + L(v,w,c) (5.5)

J =
∑
w∈VW

∑
c∈VC

J(w,v,c) (5.6)

5.3.3 Unsupervised Hypernymy Measure

HyperVec is expected to show the two following properties: (i) the hyponym and the
hypernym are close to each other, and (ii) there exists a distributional hierarchy be-
tween hypernyms and their hyponyms. Given a hypernymy pair (u, v) in which u is
the hyponym and v is the hypernym, we propose a measure to detect hypernymy and
to determine the directionality of hypernymy by using the hierarchical embeddings as
follows:

HyperScore(u, v) = cos(~u,~v) ∗ ‖~v‖‖~u‖ (5.7)

where cos(~u,~v) is the cosine similarity between ~u and ~v, and ‖ · ‖ is the magnitude of the
vector (or the Euclidean norm). The cosine similarity is applied to distinguish hypernymy
from other relations, due to the first property of the hierarchical embeddings, while the
second property is used to decide about the directionality of hypernymy, assuming that
the magnitude of the hypernym is larger than the magnitude of the hyponym. Note

57

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

that the proposed hypernymy measure is unsupervised when the resource is only used
to learn hierarchical embeddings.

5.4 Experiment

In this section, we first describe the experimental settings in our experiments (Sec-
tion 5.4.1). We then evaluate the performance of HyperVec on three different tasks: i)
unsupervised hypernymy detection and directionality (Section 5.4.2), where we assess
HyperVec on ranking and classifying hypernymy; ii) supervised hypernymy detection
(Section 5.4.3), where we apply supervised classification to detect hypernymy; iii) graded
lexical entailment (Section 5.4.4), where we predict the strength of hypernymy pairs.

5.4.1 Experimental Settings

We use the ENCOW14A corpus (Schäfer and Bildhauer, 2012; Schäfer, 2015) with ap-
prox. 14.5 billion tokens for training the hierarchical embeddings and the default SGNS
model. We train our model with 100 dimensions, a window size of 5, 15 negative samples,
and 0.025 as the learning rate. The threshold θ is set to 0.05. The hypernymy resource
for nouns comprises 105, 020 hyponyms, 24, 925 hypernyms, and 1, 878, 484 hyponym–
hypernym pairs. The hypernymy resource for verbs consists of 11, 328 hyponyms, 4, 848

hypernyms, and 130, 350 hyponym–hypernym pairs.

5.4.2 Unsupervised Hypernymy Detection and Directionality

In this section, we assess our model on two experimental setups: i) a ranking retrieval
setup that expects hypernymy pairs to have a higher similarity score than instances
from other semantic relations; ii) a classification setup that requires both hypernymy
detection and directionality.

Ranking Retrieval

Shwartz et al. (2017) conducted an extensive evaluation of a large number of unsu-
pervised distributional measures for hypernymy ranking retrieval proposed in previous
work (Weeds and Weir, 2003; Santus et al., 2014a; Clarke, 2009; Kotlerman et al., 2010;
Lenci and Benotto, 2012; Santus et al., 2016). The evaluation was performed on four
semantic relation datasets: BLESS (Baroni and Lenci, 2011), Weeds (Weeds et al.,
2004), EVALution (Santus et al., 2015), and Lenci&Benotto (Benotto, 2015).
Table 5.1 describes the detail of these datasets in terms of the semantic relations and

the number of instances. The AP ranking measure is used to evaluate the performance
of the measures.

58

5.4 Experiment

Dataset Relation #Instance Total

BLESS

hypernymy 1,337

26,554

meronymy 2,943
coordination 3,565
event 3,824
attribute 2,731
random-n 6,702
random-j 2,187
random-v 3,265

EVALution

hypernymy 3,637

13,465
meronymy 1,819
attribute 2,965
synonymy 1,888
antonymy 3,156

Lenci&Benotto
hypernymy 1,933

5,010synonymy 1,311
antonymy 1,766

Weeds hypernymy 1,469 2,928coordination 1,459

Table 5.1: Details of the semantic relations and the number of instances in each dataset.

In comparison to the state-of-the-art unsupervised measures compared by Shwartz
et al. (2017) (henceforth, baseline models), we apply our unsupervised measureHyperScore
(Equation 5.7) to rank hypernymy against other relations. Table 5.2 presents the results
of using HyperScore vs. the best baseline models, across datasets. When detecting
hypernymy among all other relations (which is the most challenging task), HyperScore
significantly outperforms all baseline variants on all datasets. The strongest difference
is reached on the BLESS dataset, where HyperScore achieves an improvement of 40%

AP score over the best baseline model. When ranking hypernymy in comparison to a
single other relation, HyperScore also improves over the baseline models, except for the
event relation in the BLESS dataset. We assume that this is due to the different parts-
of-speech (adjective and noun) involved in the relation, where HyperVec fails to establish
a hierarchy.

Classification

In this setup, we rely on three datasets of semantic relations, which were all used in
various state-of-the-art approaches before, and brought together for hypernymy evalua-
tion by Kiela et al. (2015). (i) A subset of BLESS contains 1,337 hyponym-hypernym
pairs. The task is to predict the directionality of hypernymy within a binary classifica-
tion. Given a word pair such as freezer–device, we aim to identify the hyponym (freezer)
and the hypernym (device). Our approach requires no threshold; we only need to com-
pare the magnitudes of the two words and to assign the hypernym label to the word with

59

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

Dataset Hypernymy vs. Baseline HyperScore

EVALution

other relations 0.353 0.538
meronymy 0.675 0.811
attribute 0.651 0.800
antonymy 0.55 0.743
synonymy 0.657 0.793

BLESS

other relations 0.051 0.454
meronymy 0.76 0.913
coordination 0.537 0.888
attribute 0.74 0.918
event 0.779 0.620

Lenci&Benotto
other relations 0.382 0.574
antonymy 0.624 0.696
synonymy 0.725 0.751

Weeds coordination 0.441 0.850

Table 5.2: AP results of HyperScore in comparison to state-of-the-art measures.

the larger magnitude.

dir(w1, w2) =

w1 = hyper if ‖ ~w1‖
‖ ~w2‖ ≥ 1

w1 = hypo otherwise
(5.8)

Figure 5.2a indicates that the magnitude values of the SGNS model cannot distinguish
between a hyponym and a hypernym, while the hierarchical embeddings provide a larger
magnitude for the hypernym. (ii) Following Weeds et al. (2014), we conduct a binary
classification with a subset of 1,168 BLESS word pairs. In this dataset (WBLESS),
one class is represented by hyponym–hypernym pairs, and the other class is a combi-
nation of reversed hypernym–hyponym pairs, plus additional holonym-meronym pairs,
co-hyponyms and randomly matched nouns. For this classification we make use of our
HyperScore measure that ranks hypernymy pairs higher than other relation pairs. A
threshold decides about the splitting point between the two classes: hyper vs. other. In-
stead of using a manually defined threshold as done by Kiela et al. (2015), we decided to
run 1 000 iterations which randomly sampled only 2% of the available pairs for learning
a threshold, using the remaining 98% for test purposes. We present average accuracy
results across all iterations. Figure 5.2b compares the default cosine similarities between
the relation pairs (as applied by SGNS) and HyperScore (as applied by HyperVec) on
this task. Using HyperScore, the class “hyper” can clearly be distinguished from the class
“other”. (iii) BIBLESS represents the most challenging dataset; the relation pairs from
WBLESS are split into three classes instead of two: hypernymy pairs, reversed hyper-
nymy pairs, and other relation pairs. In this case, we perform a three-way classification.
We apply the same technique as used for the WBLESS classification, but in cases where
we classify hyper we additionally classify the hypernymy direction, to decide between

60

5.4 Experiment

BLESS WBLESS BIBLESS

Kiela et al. (2015) 0.88 0.75 0.57
Santus et al. (2014a) 0.87 —– —–
Weeds et al. (2014) —– 0.75 —–

SGNS 0.44 0.48 0.34
HyperVec 0.92 0.87 0.81

Table 5.3: Accuracy for hypernymy directionality.

hyponym–hypernym pairs and reversed hypernym–hyponym pairs.

SGNS HyperVec

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

hyper hypo hyper hypo

(a) Directionality task

SGNS HyperVec

0.00

0.25

0.50

0.75

0.0

2.5

5.0

7.5

hyper other hyper other

(b) Hypernymy detection

Figure 5.2: Comparing SGNS and HyperVec on binary classification tasks. The y-axis
shows the magnitude values of the vectors.

Table 5.3 compares our results against related work. HyperVec outperforms all other
methods on all three tasks. In addition we see again that an unmodified SGNS model
cannot solve any of the three tasks.

5.4.3 Supervised Hypernymy Detection

For supervised hypernymy detection, we make use of the two datasets: the full BLESS
dataset, and ENTAILMENT (Baroni et al., 2012), containing 2,770 relation pairs in
total, including 1,385 hypernym pairs and 1,385 other relations pairs. We follow the
same procedure as Yu et al. (2015) and Tuan et al. (2016) to assess HyperVec on the two
datasets. Regarding BLESS, we extract pairs for four types of relations: hypernymy,
meronymy, co-hyponymy (or coordination), and add the random relation for nouns. For
the evaluation, we randomly select one concept and its relatum for testing, and train
the supervised model on the 199 remaining concepts and its relatum. We then report
the average accuracy across all concepts. For the ENTAILMENT dataset, we randomly
select one hypernym pair for testing and train on all remaining hypernym pairs. Again,
we report the average accuracy across all hypernyms.
We apply an SVM classifier to detect hypernymy based onHyperVec. Given a hyponym–

hypernym pair (u, v), we concatenate four components to construct the vector for a pair
(u, v) as follows: the vector difference between hypernym and hyponym (~v − ~u); the

61

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

Models BLESS ENTAILMENT

Yu et al. (2015) 0.90 0.87
Tuan et al. (2016) 0.93 0.91

HyperVec 0.94 0.91

Table 5.4: Classification results for BLESS and ENTAILMENT in terms of accuracy.

cosine similarity between the hypernym and hyponym vectors (cos(~u,~v)); the magnitude
of the hyponym (‖~u‖); and the magnitude of the hypernym (‖~v‖). The resulting vector
is fed into the SVM classifier to detect hypernymy. Similar to the two previous works,
we train the SVM classifier with the RBF kernel, λ = 0.03125, and the penalty C = 8.0.
Table 5.4 shows the performance of HyperVec and the two baseline models reported

by Tuan et al. (2016). HyperVec slightly outperforms the method of Tuan et al. (2016)
on the BLESS dataset, and is equivalent to the performance of their method on the
ENTAILMENT dataset. In comparison to the method of Yu et al. (2015), HyperVec
achieves significant improvements.

5.4.4 Graded Lexical Entailment

In this experiment, we apply HyperVec to the dataset of graded lexical entailment,
HyperLex, as introduced by Vulić et al. (2017). The HyperLex dataset provides soft
lexical entailment on a continuous scale, rather than simplifying into a binary decision.
For instance, when humans are asked to give an example instance of the concept sport,
it turns out that football and basketball are more frequently picked then chess, softball
or racquetball. HyperLex contains 2,616 word pairs across seven semantic relations and
two word classes (nouns and verbs). Each word pair is rated by a score that indicates
the strength of the semantic relation between the two words. For example, the score of
the hypernym pair duck–animal is 5.9 out of 6.0, while the score of the reversed pair
animal–duck is only 1.0.
We compared HyperScore against the most prominent state-of-the-art hypernymy and

lexical entailment models from previous work:

• Directional entailment measures (DEM) (Weeds and Weir, 2003; Weeds et al., 2004;
Clarke, 2009; Kotlerman et al., 2010; Lenci and Benotto, 2012)

• Generality measures (SQLS) (Santus et al., 2014a)

• Visual generality measures (VIS) (Kiela et al., 2015)

• Consideration of concept frequency ratio (FR) (Vulić et al., 2017)

• WordNet-based similarity measures (WN) (Wu and Palmer, 1994; Pedersen et al.,
2004)

62

5.5 Generalizing Hypernymy

• Order embeddings (OrderEmb) (Vendrov et al., 2016)

• Skip-gram embeddings (SGNS) (Mikolov et al., 2013a; Levy and Goldberg, 2014)

• Embeddings fine-tuned to a paraphrase database with linguistic constraints (PARA-
GRAM) (Mrkšić et al., 2016)

• Gaussian embeddings (Word2Gauss) (Vilnis and McCallum, 2015)

The performance of the models is assessed through Spearman’s rank-order correlation
coefficient ρ (Siegel and Castellan, 1988), comparing the ranks of the models’ scores and
the human judgments for the given word pairs.

Measures Embeddings

Model ρ Model ρ

FR 0.279 SGNS 0.205
DEM 0.180 PARAGRAM 0.320
SLQS 0.228 OrderEmb 0.191
WN 0.234 Word2Gauss 0.206
VIS 0.209 HyperScore 0.540

Table 5.5: Results (ρ) of HyperScore and state-of-the-art measures and word embedding
models on graded lexical entailment.

Table 5.5 shows that HyperScore significantly outperforms both state-of-the-art mea-
sures and word embedding models. HyperScore outperforms even the previously best
word embedding model PARAGRAM by .22, and the previously best measures FR by
.27. The reason that HyperVec outperforms all other models is that the hierarchy be-
tween hypernym and hypornym within HyperVec differentiates hyponym–hypernym pairs
from hypernym–hyponym pairs. For example, the HyperScore for the pairs duck–animal
and animal–duck are 3.02 and 0.30, respectively. Thus, the magnitude proportion of the
hypernym–hyponym pair duck–animal is larger than that for the pair animal–duck.

5.5 Generalizing Hypernymy

Having demonstrated the general abilities of HyperVec, this final section explores its
potential for generalization in two different ways, (i) by relying on a small seed set only,
rather than using a large set of training data; and (ii) by projecting HyperVec to other
languages.

Hypernymy Seed Generalization: We utilize only a small hypernym set from the
hypernymy resource to train HyperVec, relying on 200 concepts from the BLESS dataset.
The motivation behind using these concepts is threefold: i) these concepts are distinct

63

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

and unambiguous noun concepts; ii) the concepts were equally divided between living
and non-living entities; iii) concepts have been grouped into 17 broader classes. Based
on the seed set, we collected the hyponyms of each concept from WordNet, and then
re-trained HyperVec.

On the hypernymy ranking retrieval task (Section 5.4.2), HyperScore outperforms the
baselines across all datasets (cf. Table 1) with AP values of 0.39, 0.448, and 0.585 for
EVALution, LenciBenotto, and Weeds, respectively. For the graded lexical entailment
task (Section 5.4.4), HyperScore obtains a correlation of ρ = 0.30, outperforming all
models except for PARAGRAM with ρ = 0.32. Overall, the results show that HyperVec
is indeed able to generalize hypernymy from small seeds of training data.

Generalizing Hypernymy across Languages: We assume that hypernymy detection
can be improved across languages by projecting representations from any arbitrary lan-
guage into our modified English HyperVec space. We conduct experiments for German
and Italian, where the language-specific representations are obtained using the same
hyper-parameter settings as for our English SGNS model (cf. Section 5.4.1). As corpus
resource we relied on Wikipedia dumps2. Note that we do not use any additional re-
source, such as the German or Italian WordNet, to tune the embeddings for hypernymy
detection. Based on the representations, a mapping function between a source language
(German, Italian) and our English HyperVec space is learned, by relying on the least-
squares error method from previous work using cross-lingual data (Mikolov et al., 2013b)
and different modalities (Lazaridou et al., 2015).

To learn a mapping function between two languages, a one-to-one correspondence
(word translations) between two sets of vectors is required. We obtained these transla-
tions by using the parallel Europarl3 V7 corpus for German–English and Italian–English.
Word alignment counts were extracted using fast_align (Dyer et al., 2013). We then
assigned each source word to the English word with the maximum number of alignments
in the parallel corpus. We could match 25,547 pairs for DE→EN and 47,475 pairs for
IT→EN.

Taking the aligned subset of both spaces, we assume that X is the matrix obtained by
concatenating all source vectors, and likewise Y is the matrix obtained by concatenat-
ing all corresponding English elements. Applying the `2-regularized least-squares error
objective can be described using the following equation:

Ŵ = argmin
W∈Rd1×d2

‖XW−Y‖+ λ‖W‖ (5.9)

Although we learn the mapping only on a subset of aligned words, it allows us to project

2The Wikipedia dump for German and Italian were both downloaded in January 2017.
3http://www.statmt.org/europarl/

64

http://www.statmt.org/europarl/

5.6 Summary

every word in a source vocabulary to its English HyperVec position by using W.
Finally we compare the original representations and the mapped representation on the

hypernymy ranking retrieval task (similar to Section 5.4.2). As gold resources we relied
on German and Italian nouns pairs. For German we used the 282 German pairs collected
via Amazon Mechanical Turk by Scheible and Schulte im Walde (2014). The 1,350
Italian pairs were collected via Crowdflower by Sucameli (2015) in the same way. Both
collections contain hypernymy, antonymy and synonymy pairs. As before, we evaluate
the ranking by AP, and we compare the cosine of the unmodified default representations
against the HyperScore of the projected representations.

German Hyp/All Hyp/Syn Hyp/Ant
DE-SGNS 0.28 0.48 0.40
DE→ENHyperVec 0.37 0.65 0.47

Italian
IT-SGNS 0.38 0.50 0.60
IT→ENHyperVec 0.44 0.57 0.65

Table 5.6: AP results across languages, comparing SGNS and the projected representa-
tions.

The results are shown in Table 5.6. We clearly see that for both languages the de-
fault SGNS embeddings do not provide higher similarity scores for hypernymy pairs
(except for Italian Hyp/Ant), but both languages provide higher scores when we map
the embeddings into the English HyperVec space.

5.6 Summary

In addition to the success of approaches describled in chapters 3 and 4, which aim to
solve the tasks of distinguishing antonymy and synonymy by improving word vector
representations and constructing pattern-based neural models, this chapter presented a
novel neural model HyperVec to learn hierarchical embeddings for hypernymy.
Specifically, the proposed model is learned to solve the tasks of hypernymy detec-

tion and directionality. For the hypernymy detection task, HyperVec has been shown
to strengthen hypernymy similarity, which is higher than similarity of other relations,
helping to distinguish hypernymy from other relations. Regarding the hypernymy direc-
tionality task, HyperVec is able to capture the distributional hierarchy of hypernymy,
providing an indicator to determine which of the two words is the hypernym and which
is the hyponym. Moreover, an unsupervised measure HyperScore, used to detect hy-
pernymy and to determine the directionality of hypernymy, is also presented. Firstly,
HyperScore makes use of cosine similarity of hypernymy and compares it to that of

65

5 Hierarchical Embeddings for Hypernymy Detection and Directionality

other relations. Secondly, HyperScore considers the comparison between embeddings of
a hypernym and a hyponym in terms of the Euclidean norm.
To verify the HyperVec, we conducted a series of experiments in which HyperVec was

evaluated on unsupervised hypernymy detection and directionality tasks, supervised hy-
pernymy detection task, and graded lexical entailment task. Moreover, we also evaluated
HyperVec on generalizing hypernymy. Together with the newly proposed unsupervised
measure HyperScore, the experiments demonstrated (i) significant improvements over
state-of-the-art measures, and (ii) the capability to generalize hypernymy and learn the
relation instead of memorizing prototypical hypernyms.

66

6 Neural-based Noise Filtering from
Word Embeddings

6.1 Introduction

Word embeddings aim to represent words as low-dimensional dense vectors. In compari-
son to distributional count vectors, word embeddings address the problematic sparsity of
word vectors and have achieved impressive results in many NLP tasks such as sentiment
analysis (e.g., Kim (2014)), word similarity (e.g., Pennington et al. (2014)), and parsing
(e.g., Lazaridou et al. (2013)). Moreover, word embeddings are attractive because they
can be learned in an unsupervised fashion from unlabeled raw corpora. There are two
main approaches to create word embeddings. The first approach makes use of neural-
based techniques to learn word embeddings, such as the Skip-gram model (Mikolov et al.,
2013a). The second approach is based on matrix factorization (Pennington et al., 2014),
building word embeddings by factorizing word-context co-occurrence matrices.
In recent years, a number of approaches has focused on improving word embeddings,

often by integrating lexical resources. For example, Adel and Schütze (2014) applied
coreference chains to Skip-gram models in order to create word embeddings for antonym
identification. Pham et al. (2015) proposed an extension of the Skip-gram model by
integrating synonyms and antonyms from WordNet. Their extended Skip-gram model
outperformed the standard Skip-gram model on both general semantic tasks and tasks
of distinguishing antonyms from synonyms.
In chapter 3, we presented an approach where distributional lexical contrast was inte-

grated into every single context of a target word in a Skip-gram model for training word
embeddings. The resulting word embeddings were used in similarity tasks, and to dis-
tinguish between antonyms and synonyms. In a similar spirit, chapter 5 introduced the
hierarchical embeddings of hypernymy which are learned to distinguish hypernymy from
other relations, and to discriminate between a hypernym and a hyponym in hypernym
pairs. In contrast, Faruqui et al. (2015) improved word embeddings without relying on
lexical resources by applying ideas from sparse coding to transform dense word embed-
dings into sparse word embeddings. The dense vectors in their models can be transformed
into sparse overcomplete vectors or sparse binary overcomplete vectors. They showed
that the resulting vector representations were more similar to interpretable features in

67

6 Neural-based Noise Filtering from Word Embeddings

NLP and outperformed the original vector representations on several benchmark tasks.
Yet, the disadvantage of these kinds of approaches is that they are supervised learn-
ing. In other words, these approaches make use of external resources beside unlabeled
raw corpora to improve word embeddings. Moreover, word embeddings play an impor-
tant role in NLP applications, because they are often utilized as inputs and trained to
capture crucial information such as syntax and semantica. Therefore, improving word
embeddings also helps NLP applications improve their performance.
In this chapter, we present two neural models that aim to improve word embeddings

without using any external resources. The hypothesis behind our approaches is that
word embeddings contain unnecessary information, i.e. noise. We start out with the
idea of learning word embeddings as suggested by Mikolov et al. (2013a), relying on
the distributional hypothesis (Harris, 1954) that words with similar distributions have
related meanings. We address those distributions in embedded vectors of words that
decrease the value of such vector representations. For instance, consider the sentence
“the quick brown fox gazing at the cloud jumped over the lazy dog.” The context “jumped”
can be used to predict the words “fox”, “cloud” and “dog” in a window size of 5 words;
however, a “cloud” cannot “jump”. The context jumped is therefore considered as noise
in the embedded vector of cloud. We propose two novel models to smooth word embed-
dings by filtering out noise. In other words, we strengthen salient contexts and weaken
unnecessary contexts.
The first proposed model is referred to as the complete word denoising embeddings

model (CompEmb). Given a set of original word embeddings, we use a filter to learn a
denoising matrix, and then project the set of original word embeddings into this denoising
matrix to produce a set of complete word denoising embeddings. The second proposed
model is referred to as the overcomplete word denoising embeddings model (OverCom-
pEmb). We make use of a sparse coding method to transform an input set of original
word embeddings into a set of overcomplete word embeddings, which is considered the
“overcomplete process.” We then apply a filter to train a denoising matrix, and thereafter
project the set of original word embeddings into the denoising matrix to generate a set
of overcomplete word denoising embeddings. The key idea in our models is to use a filter
for learning the denoising matrix. The architecture of the filter is a feed-forward, non-
linear and parameterized neural network with a fixed depth that can be used to learn the
denoising matrices and reduce noise in word embeddings. Using state-of-the-art word
embeddings as input vectors, we show that the resulting word denoising embeddings
outperform the original word embeddings on several benchmark tasks, such as word sim-
ilarity and word relatedness tasks, synonymy detection and noun phrase classification.
Furthermore, the implementation of our models is publicly available1. The approaches
and experiments described in this chapter are published in Nguyen et al. (2016b).

1https://github.com/nguyenkh/NeuralDenoising

68

https://github.com/nguyenkh/NeuralDenoising

6.2 Approach

The remainder of this chapter is organized as follows: Section 6.2 presents the two
proposed models, the sparse coding technique for overcomplete vectors, and the loss
function. In Section 6.3, we demonstrate the experiments on evaluating the effects of
our word denoising embeddings, tuning hyperparameters, and we analyze the effects of
filter depth. Finally, Section 6.4 concludes the chapter.

6.2 Approach

In this section, we present the two contributions. Figure 6.1 illustrates our two models
to learn denoising for word embeddings. The first model on the top, the complete
word denoising embeddings model “CompEmb” (Section 6.2.1), filters noise from word
embeddings X to produce complete word denoising embeddings X∗, in which the vector
length of X∗ in comparison to X is unchanged after denoising (called complete). The
second model at the bottom of the figure, the overcomplete word denoising embeddings
model “OverCompEmb” (Section 6.2.2), filters noise from word embeddings X to yield
overcomplete word denoising embeddings Z∗, in which the vector length of Z∗ tends to
be greater than the vector length of X (called overcomplete).

X

L

V

Embeddings

Com
ple

te

X * L

L

Qc
Denoising

V

L

X∗

CompEmb

Overcomplete

X * Qo L

K

Denoising

K

VZ∗

OverCompEmb

Figure 6.1: Illustration of word denoising embeddings methods, with complete word de-
noising embeddings at the top, and overcomplete word denoising embeddings
at the bottom.

For the notations, let X ∈ RV×L is an input set of word embeddings in which V is
the vocabulary size, and L is the vector length of X. Furthermore, Z ∈ RV×K is the

69

6 Neural-based Noise Filtering from Word Embeddings

overcomplete word embeddings in which K is the vector length of Z (K > L); finally,
D ∈ RL×L is the pre-trained dictionary (Section 6.2.3).

6.2.1 Complete Word Denoising Embeddings

In this subsection, we aim to reduce noise in the given input word embeddings X by
learning a denoising matrix Qc. The complete word denoising embeddings X∗ are then
generated by projecting X into Qc. More specifically, given an input X ∈ RV×L, we seek
to optimize the following objective function:

argmin
X,Qc,S

V∑
i=1

‖xi − f(xi,Qc,S)‖+ α‖S‖1 (6.1)

where f is a filter; S is a lateral inhibition matrix; and α is a regularization hyperparam-
eter. Inspired by studies on sparse modeling, the matrix S is chosen to be symmetric
and has zero on the diagonal.

The goal of this matrix is to implement excitatory interaction between neurons, and to
increase the convergence speed of the neural network (Szlam et al., 2011). More con-
cretely, the matrices Qc and S are initialized with I and E, which are identity matrices,
and the Lipschitz constant:

Qc = 1
E
D; S = I− 1

E
DTD

E > the largest eigenvalue of DTD

D ∈ RL×L be pre-trained dictionary

The underlying idea for reducing noise is to make use of a filter f to learn a denoising
matrix Qc; hence, we design the filter f as a non-linear, parameterized, feed-forward
architecture with a fixed depth that can be trained to approximate f(X,Qc,S) to X as
in Figure 6.2a. As a result, noise from word embeddings will be filtered by layers of the
filter f . The filter f is encoded as a recursive function by iterating over the number of
fixed depth T , as the following recursive Equation 6.2 shows:

Y = f(X,Qc,S)

Y(0) = G(XQc)

Y(k + 1) = G(XQc + Y(k)S)

0 ≤ k < T

(6.2)

G is a non-linear activation function. The matrices Qc and S are learned to produce
the lowest possible error in a given number of iterations. Matrix S, in the architecture
of filter f , acts as a controllable matrix to filter unnecessary information on embedded
vectors, and to impose restrictions on further reducing the computational burden (e.g.,

70

6.2 Approach

Y0
S

Qc

X

Y1
S

Qc

X

Y2
S

Qc

X

Y3

Qc

X

(a) CompEmb

Y0
S

Qo

X

Y1
S

Qo

X

Y2
S

Qo

X

Y3

Qo

X

(b) OverCompEmb

Figure 6.2: Architecture of the filters with the fixed depth T = 3.

solving low-rank approximation problem or keeping the number of terms at zero (Gregor
and LeCun, 2010)). Moreover, the initialization of the matrices Qc, S and E enhances
a highly efficient minimization of the objective function in Equation 6.1, due to the
pre-trained dictionary D that carries the information of reconstructing X.

The architecture of the filter f is a recursive feed-forward neural network with the fixed
depth T , so the number of T plays a significant role in controlling the approximation of
X∗. The effects of T will be discussed later in Section 6.3.4. When Qc is trained, the
complete word denoising embeddings X∗ are yielded by projecting X into Qc, as shown
by the following Equation 6.3:

X∗ = G(XQc) (6.3)

6.2.2 Overcomplete Word Denoising Embeddings

Now we introduce our method to reduce noise and overcomplete vectors in the given
input word embeddings. To obtain overcomplete word embeddings, we first use a sparse
coding method to transform the given input word embeddings X into overcomplete word
embeddings Z. Secondly, we use overcomplete word embeddings Z as the intermediate
word embeddings to optimize the objective function: A set of input word embeddings
X ∈ RV×L is transformed to overcomplete word embeddings Z ∈ RV×K by applying
sparse coding method in Section 6.2.3. We then make use of the pre-trained dictionary
D ∈ RL×K and Z ∈ RV×K to learn the denoising matrix Qo by minimizing the following
Equation 6.4:

argmin
X,Qo,S

V∑
i=1

‖zi − f(xi,Qo,S)‖+ α‖S‖1 (6.4)

The initialization of the parameters Qo, S, E and α follows the same procedure as
described in Section 6.2.1, and with the same interpretation of the filter architecture in
Figure 6.2b. The overcomplete word denoising embeddings Z∗ are then generated by

71

6 Neural-based Noise Filtering from Word Embeddings

projecting X into the denoising matrix Qo and using the non-linear activation function
G in the following Equation 6.5:

Z∗ = G(XQo) (6.5)

6.2.3 Sparse Coding

Sparse coding is a method to represent vector representations as a sparse linear combi-
nation of elementary atoms of a given dictionary. The underlying assumption of sparse
coding is that the input vectors can be reconstructed accurately as a linear combination
of some basis vectors and a few number of non-zero coefficients (Olshausen and Field,
1996).

The goal is to approximate a dense vector in RL by a sparse linear combination of
a few columns of a matrix D ∈ RL×K in which K is a new vector length and the
matrix D be called a dictionary. Concretely, given V input vectors of L dimensions
X = [x1, x2, ..., xV], the dictionary and sparse vectors can be formulated as the following
minimization problem:

min
D∈C,Z∈RK×V

V∑
i=1

‖xi −Dzi‖22 + λ‖zi‖1 (6.6)

Z = [z1, ..., zV] carries the decomposition coefficients of X = [x1, x2, ..., xV]; and λ repre-
sents a scalar to control the sparsity level of Z. The dictionary D is typically learned by
minimizing Equation 6.6 over input vectors X. In the case of overcomplete representa-
tions Z, the vector length K is typically implied as K = γL (γ > 0).

In the method of overcomplete word denoising embeddings (Section 6.2.2), our ap-
proach makes use of overcomplete word embeddings Z as the intermediate word embed-
dings reconstructed by applying a sparse coding method to word embeddings X. The
overcomplete word embeddings Z are then utilized to optimize Equation 6.4. To ob-
tain overcomplete word embeddings Z and dictionaries, we use the SPAMS package2 to
implement sparse coding for word embeddings X and to train the dictionaries D.

6.2.4 Loss Function

For each pair of term vectors xi ∈ X and yi ∈ Y = f(X,Qc,S), we make use of the
cosine similarity to measure the similarity between xi and yi as follows:

sim(xi,yi) =
xi · yi

‖xi‖‖yi‖
(6.7)

2http://spams-devel.gforge.inria.fr

72

6.3 Experiment

Let ∆ be the difference between sim(xi,xi) and sim(xi,yi), equivalently ∆ = 1 −
sim(xi,yi). We then optimize the objective function in Equation 6.1 by minimizing
∆; and the same loss function is also applied to optimize the objective function in
Equation 6.4. Training is done through Stochastic Gradient Descent with the Adadelta
update rule (Zeiler, 2012).

6.3 Experiment

6.3.1 Experimental Settings

As input word embeddings, we rely on two state-of-the-art word embeddings methods:
word2vec (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014). We use the
word2vec tool3 and the web corpus ENCOW14A (Schäfer and Bildhauer, 2012; Schäfer,
2015) which contains approximately 14.5 billion tokens, in order to train Skip-gram mod-
els with 100 and 300 dimensions. For the GloVe method, we use pre-trained vectors of
100 and 300 dimensions4 that were trained on 6 billion words from Wikipedia and En-
glish Gigaword. The tanh function is used as the non-linear activation function in both
approaches. The fixed depth of filter T is set to 3; further hyperparameters are chosen as
discussed in Section 6.3.2. To train the networks, we use the Theano framework (Theano
Development Team, 2016) to implement our models with a mini-batch size of 100. Reg-
ularization is applied by dropouts of 0.5 and 0.2 for input and output layers (without
tuning), respectively.

6.3.2 Hyperparameter Tuning

In both methods of denoising word embeddings, the `1 regularization penalty α is set
to 0.5 without tuning in Equation 6.1 and 6.4. The method of learning overcomplete
word denoising embeddings relies on the mediate word embeddings Z to minimize the
objective function in Equation 6.4. The sparsity of Z depends on the `1 regularization λ
in Equation 6.6; and the length vector K of Z is implied as K = γL. Therefore, we aim
to tune λ and γ such that Z represents the nearest approximation of the original vector
representation X. We perform a grid search on λ ∈ {1.0, 0.5, 0.1, 10−3, 10−6} and γ ∈
{2, 3, 5, 7, 10, 13, 15}, developing on the word similarity task WordSim353 (to be discussed
on Section 6.3.3). The hyperparameter tunings are illustrated in Figures 6.3a and 6.3b
for sparsity and overcomplete vector length tuning, respectively. In both approaches, we
set λ to 10−6 and γ to 10 for the sparsity and length of overcomplete word embeddings.

3https://code.google.com/p/word2vec/
4http://www-nlp.stanford.edu/projects/glove/

73

6 Neural-based Noise Filtering from Word Embeddings

10−6 10−5 10−4 10−3 10−2 10−1 100

20

40

60

80

λ

S
p

ea
rm

an
co

effi
ci

en
t
ρ

(%
)

(a) Sparsity of sparse coding.

0 1 3 5 7 9 11 13 15

70

72

74

76

γ–factor

S
p

ea
rm

a
n

co
effi

ci
en

t
ρ

(%
)

(b) Length of overcomplete vectors.

Figure 6.3: Illustration of hyperparameter tuning.

6.3.3 Effects of Word Denoising Embeddings

In this section, we quantify the effects of word denoising embeddings on three kinds of
tasks: similarity and relatedness tasks, detecting synonymy, and bracketed noun phrase
classification task. In comparison to the performance of word denoising embeddings, we
take into account state-of-the-art word embeddings (Skip-gram and GloVe word embed-
dings) as baselines. Besides, we also use the public source code5 to re-implement the two
methods suggested by Faruqui et al. (2015) which are vectors A (sparse overcomplete
vectors) and B (sparse binary overcomplete vectors).
The effects of the word denoising embeddings on the tasks are shown in Table 6.1.

The results show that the vectors X∗ and Z∗ outperform the original vectors X,A and
B, except for the NP task, in which the vectors B based on the 300-dimensional GloVe
vectors are best. The effect of the vectors Z∗ is slightly less impressive, when compared
to the overcomplete vectors X∗. The overcomplete word embeddings Z strongly differ
from the word embeddingsX; hence, the denoising is affected. However, the performance
of the vectors Z∗ still outperforms the original vectors X,A and B after the denoising
process.

Relatedness and Similarity Tasks

For the relatedness task, we use two kinds of datasets: MEN (Bruni et al., 2014) consists
of 3000 word pairs comprising 656 nouns, 57 adjectives and 38 verbs. The WordSim-
353 relatedness dataset (Finkelstein et al., 2001) contains 252 word pairs. Concerning
the similarity tasks, we evaluate the denoising vectors again on two kinds of datasets:
SimLex-999 (Hill et al., 2015) contains 999 word pairs including 666 noun, 222 verb and
111 adjective pairs. The WordSim-353 similarity dataset consists of 203 word pairs. In
addition, we evaluate our denoising vectors on the WordSim-353 dataset which contains

5https://github.com/mfaruqui/sparse-coding

74

6.3 Experiment

Vectors Simlex-999
Corr.

MEN
Corr.

WS353
Corr.

WS353-SIM
Corr.

WS353-REL
Corr.

ESL
Acc.

TOEFL
Acc.

NP
Acc.

X 33.7 72.9 69.7 74.5 65.5 48.9 62.0 72.8
X∗ 33.2 72.8 70.6 74.8 66.0 53.0 64.5 78.5

SG-100 Z∗ 35.9 74.4 71.2 75.2 68.1 53.0 62.0 79.1
A 32.5 69.8 65.5 69.5 60.2 55.1 51.8 78.8
B 31.9 70.4 65.8 72.6 62.2 53.0 58.2 74.1
X 36.1 74.7 71.0 75.9 66.1 59.1 72.1 77.9
X∗ 37.1 75.8 71.8 76.4 66.9 59.1 74.6 79.3

SG-300 Z∗ 36.5 75.0 70.6 76.4 64.4 57.1 77.2 78.6
A 32.9 72.4 67.5 71.9 63.4 53.0 65.8 78.3
B 32.7 71.2 63.3 68.7 56.2 51.0 70.8 78.6
X 29.7 69.3 52.9 60.3 49.5 46.9 82.2 76.4
X∗ 31.7 70.9 58.0 63.8 57.3 53.0 88.6 77.4

GloVe-100 Z∗ 30.0 70.9 56.0 62.8 53.8 57.0 81.0 77.3
A 30.7 70.7 54.9 62.2 51.2 55.1 78.4 77.1
B 31.0 69.2 57.3 62.3 53.7 46.9 73.4 76.4
X 37.0 74.8 60.5 66.3 57.2 61.2 89.8 74.3
X∗ 40.2 76.8 64.9 69.8 62.0 61.2 92.4 76.3

GloVe-300 Z∗ 39.0 75.2 63.0 67.9 59.7 57.1 86.0 75.7
A 36.7 74.1 61.5 67.7 57.8 55.1 87.3 79.9
B 33.1 70.2 57.0 62.2 53.0 51.0 91.4 80.0

Table 6.1: Effects of word denoising embeddings. Vectors X represent the baselines;
vectors A and B were suggested by Faruqui et al. (2015); the vector length
Z∗ is equal to 10 times of vector length X.

353 pairs for both similarity and relatedness relations. We calculate cosine similarity
between the vectors of two words forming a test pair, and report the Spearman rank-
order correlation coefficient ρ (Siegel and Castellan, 1988) against the respective gold
standards of human ratings.

Synonymy

We evaluate on 80 TOEFL (Test of English as a Foreign Language) synonym ques-
tions (Landauer and Dumais, 1997) and 50 ESL (English as a Second Language) ques-
tions (Turney, 2001). The first dataset represents a subset of 80 multiple-choice synonym
questions from the TOEFL test: a word is paired with four options, one of which is a
valid synonym. The second dataset contains 50 multiple-choice synonym questions, and
the goal is to choose a valid synonym from four options. For each question, we compute
the cosine similarity between the target word and the four candidates. The suggested
answer is the candidate with the highest cosine score. We use accuracy to evaluate the
performance.

Phrase parsing as Classification

Lazaridou et al. (2013) introduced a dataset of noun phrases (NP) in which each NP
consists of three elements: the first element is either an adjective or a noun, and the
other elements are all nouns. For a given NP (such as blood pressure medicine), the

75

6 Neural-based Noise Filtering from Word Embeddings

task is to predict whether it is a left-bracketed NP, e.g., (blood pressure) medicine, or a
right-bracketed NP, e.g., blood (pressure medicine).
The dataset contains 2227 noun phrases split into 10 folds. For each NP, we use

the average of word vectors as features to feed into the classifier by tuning the hyper-
parameters (w1, w2 and w3) for each element (e1, e2 and e3) within the NP: ~eNP =
1
3
(w1~e1 + w2~e2 + w3~e3). We then employ the classification of the NPs by using a SVM

with Radial Basis Function kernel. The classifier is tuned on the first fold, and cross-
validation accuracy is reported on the nine remaining folds.

6.3.4 Effects of Filter Depth

As mentioned above, the architecture of the filter f is a feed-forward network with a
fixed depth T . For each stage T , the filter f attempts to reduce the noise within input
vectors by approximating these vectors based on vectors of a previous stage T − 1. In
order to investigate the effects of each stage T , we use pre-trained GloVe vectors with 100
dimensions to evaluate the denoising performance of the vectors on detecting synonymy
in the TOEFL dataset across several stages of T .

0 1 2 3 4 5

65

70

75

80

85

90

Number of depth T

A
cc
u
ra
cy

(%
)

Figure 6.4: Effects of the filter with depth T on filtering noise.

The results are presented in Figure 6.4. The accuracy of synonymy detection increases
sharply from 63.2% to 88.6% according to the number of stages T from 0 to 3. However,
the denoising performance of vectors falls with the number of stages T > 3. This
evaluation shows that the filter f with a consistently fixed depth T can be trained to
efficiently filter noise for word embeddings. In other words, the number of stages T
exceeds a consistent number T (with T > 3 in our case), leading to the loss of salient
information in the vectors.

76

6.4 Summary

6.4 Summary

In this chapter, we have presented two novel models to improve word embeddings by
reducing noise in state-of-the-art word embeddings models. To the best of our knowledge,
we are the first to work on filtering out noise from word embeddings. The proposed
models successfully filtered out noise from word embeddings to generate denoising word
embeddings that are able to replace state-of-the-art word embeddings as inputs of NLP
applications.
The underlying idea in our models was to make use of a filter to reduce noise. The

filter is designed as a recursive feed-forward neural network with a particular depth.
The first model generated complete word denoising embeddings whose length is equal to
that of original word embeddings; the second model yielded overcomplete word denoising
embeddings whose length tends to exceed that of original word embeddings.
In order to verify the effectiveness of word denoising embeddings, we made use of two

state-of-the-art word embeddings, word2vec and GloVe, to learn word denoising embed-
dings. We evaluated word denoising embeddings on several benchmark tasks including
similarity and relatedness tasks, synonymy detection task, and phrase parsing task. The
experiments showed that the word denoising embeddings outperform the original state-
of-the-art word embeddings on the benchmark tasks.

77

7 Evaluating Semantic Models of
(Dis-)Similarity and Relatedness
in Vietnamese

7.1 Introduction

Computational models that distinguish between semantic similarity and semantic relat-
edness (Budanitsky and Hirst, 2006) are important for many NLP applications, such
as the automatic generation of dictionaries, thesauri, and ontologies (Biemann, 2005;
Cimiano et al., 2005; Li et al., 2006), and machine translation (He et al., 2008; Marton
et al., 2009). In order to evaluate these models, gold standard resources with word pairs
have to be collected (typically across semantic relations such as synonymy, hypernymy,
antonymy, co-hyponymy, and meronomy) and annotated for their degree of similarity
via human judgements. These computational models are often proposed to solve NLP
tasks in morphologically rich languages such as English, German, French, or Italian.
Therefore, there is still room for transferring such computational models to low-resource
languages.
The most prominent examples of gold standard similarity resources for English are

the Rubenstein & Goodenough (RG) dataset (Rubenstein and Goodenough, 1965), the
TOEFL test questions (Landauer and Dumais, 1997), WordSim-353 (Finkelstein et al.,
2001), MEN (Bruni et al., 2012), SimLex-999 (Hill et al., 2015), and the lexical contrast
datasets (Nguyen et al., 2016a, 2017b). For other languages, resource examples are
the translation of the RG dataset to German (Gurevych, 2005), the German dataset of
paradigmatic relations (Scheible and Schulte im Walde, 2014), and the translation of
WordSim-353 and SimLex-999 to German, Italian and Russian (Leviant and Reichart,
2015). However, for low-resource languages there is still a lack of such datasets, which
we aim to fill for Vietnamese, a language without morphological marking such as case,
gender, number, and tense, thus differing strongly from Western European languages.
In contrast to previous chapters, the focus of this chapter is shifted to Vietnamese. In

this chapter, we introduce two novel datasets for Vietnamese: a dataset of lexical contrast
pairs ViCon to distinguish between similarity (synonymy) and dissimilarity (antonymy),
and a dataset of semantic relation pairs ViSim-400 to reflect the continuum between

79

7 Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Vietnamese

similarity and relatedness. The two datasets are publicly available.1 Furthermore, we
transfer standard and neural co-occurrence models for English to Vietnamese to verify
our novel datasets. As a result, we obtain behaviour similar to that of the corresponding
English datasets SimLex-999 (Hill et al., 2015) and the lexical contrast dataset (hence-
forth LexCon), cf. Nguyen et al. (2016a). The approaches and experiments described in
this chapter are published in Nguyen et al. (2018).

7.2 Related Work

Over the years a number of datasets have been collected for studying and evaluating
semantic similarity and semantic relatedness. For English, Rubenstein and Goode-
nough (Rubenstein and Goodenough, 1965) presented a small dataset (RG) of 65 noun
pairs. For each pair, the degree of similarity in meaning was provided by 15 raters. The
RG dataset is assumed to reflect similarity rather than relatedness. Finkelstein et al.
(2001) created a set of 353 English noun-noun pairs (WordSim-353)2, where each pair
was rated by 16 subjects according to the degree of semantic relatedness on a scale from
0 to 10. Bruni et al. (2012) introduced a large test collection called MEN3. Similar to
WordSim-353, the authors refer to both similarity and relatedness when describing the
MEN dataset, although the annotators were asked to rate the pairs according to relat-
edness. Unlikely the construction of the RG and WordSim-353 datasets, each pair in
the MEN dataset was only evaluated by one rater who ranked it for relatedness relative
to 50 other pairs in the dataset. Recently, Hill et al. (2015) presented SimLex-999, a
gold standard resource for the evaluation of semantic representations containing simi-
larity ratings of word pairs across different part-of-speech categories and concreteness
levels. The construction of SimLex-999 was motivated by two factors, (i) to consistently
quantify similarity, as distinct from association, and apply it to various concept types,
based on minimal intuitive instructions, and (ii) to have room for the improvement of
state-of-the-art models which had reached or surpassed the human agreement ceiling
on WordSim-353 and MEN, the most popular existing gold standards, as well as on
RG. Scheible and Schulte im Walde (2014) presented a collection of semantically related
word pairs for German and English,4 which was compiled via Amazon Mechanical Turk
(AMT)5 human judgement experiments and comprises (i) a selection of targets across
word classes balanced for semantic category, polysemy, and corpus frequency, (ii) a set
of human-generated semantically related word pairs (synonyms, antonyms, hypernyms)
based on the target units, and (iii) a subset of the generated word pairs rated for their

1www.ims.uni-stuttgart.de/data/vnese_sem_datasets
2www.cs.technion.ac.il/~gabr/resources/data/wordsim353
3 clic.cimec.unitn.it/~elia.bruni/MEN
4 www.ims.uni-stuttgart.de/data/sem-rel-database/
5www.mturk.com

80

www.ims.uni-stuttgart.de/data/vnese_sem_datasets
www.cs.technion.ac.il/~gabr/resources/data/wordsim353
clic.cimec.unitn.it/~elia.bruni/MEN
www.ims.uni-stuttgart.de/data/sem-rel-database/
www.mturk.com

7.3 Dataset Design

relation strength, including positive and negative relation evidence.

For other languages, only a few gold standard sets with scored word pairs exist. Among
others, Gurevych (2005) replicated Rubenstein and Goodenough’s experiments after
translating the original 65 word pairs into German. In later work, Gurevych (2006)
used the same experimental setup to increase the number of word pairs to 350. Leviant
and Reichart (2015) translated two prominent evaluation sets, WordSim-353 (associ-
ation) and SimLex-999 (similarity) from English to Italian, German and Russian, and
collected the scores for each dataset from the respective native speakers via crowdflower6.

7.3 Dataset Design

7.3.1 Criteria

Semantic similarity is a narrower concept than semantic relatedness and holds between
lexical terms with similar meanings. Strong similarity is typically observed for the lexical
relations of synonymy and co-hyponymy. For example, in Vietnamese “đội” (team) and
“nhóm” (group) represents a synonym pair; “ô_tô” (car) and “xe_đạp” (bike) is a co-
hyponymy pair. More specifically, words in the pair “ô_tô” (car) and “xe_đạp” (bike)
share several features such as physical (e.g. bánh_xe / wheels) and functional (e.g.
vận_tải / transport), so that the two Vietnamese words are interchangeable regarding
the kinds of transportation. The concept of semantic relatedness is broader and holds for
relations such as holonymy, antonymy, functional association, and other “non-classical
relations” (Morris and Hirst, 2004). For example, “xăng_dầu” (petrol) and “ô_tô” (car)
represent a holonym pair. In contrast to similarity, this holonym pair expresses a clearly
functional relationship; the words are strongly associated with each other but not similar.

Empirical studies have shown that the predictions of distributional models as well as
humans are strongly related to the part-of-speech (POS) category of the learned concepts.
Among others, Gentner (2006) showed that verb concepts are harder to learn by children
than noun concepts.

Distinguishing antonymy from synonymy is one of the most difficult challenges. While
antonymy represents words which are strongly associated but highly dissimilar to each
other, synonymy refers to words that are highly similar in meaning. However, antonyms
and synonyms often occur in similar context, as they are interchangeable in their sub-
stitution.

6 www.crowdflower.com/

81

www.crowdflower.com/

7 Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Vietnamese

7.3.2 Resource for Concept Choice: Vietnamese Computational

Lexicon

The Vietnamese Computational Lexicon (VCL)7 (Nguyen et al., 2006) is a common lin-
guistic database which is freely and easily exploitable for automatic processing of the
Vietnamese language. VCL contains 35,000 words corresponding to 41,700 concepts, ac-
companied by morphological, syntactic and semantic information. The morphological in-
formation consists of 8 morphemes including simple word, compound word, reduplicative
word, multi-word expression, loan word, abbreviation, bound morpheme, and symbol.
For example, “bàn” (table) is a simple word with definition “đồ thường làm bằng gỗ, có

mặt phẳng và chân đỡ . . . ” (pieces of wood, flat and supported by one or more legs . . .).
The syntactic information describes part-of-speech, collocations, and subcategorisation
frames. The semantic information includes two types of constraints: logical and seman-
tic. The logical constraint provides category meaning, synonyms and antonyms. The
semantic constraint provides argument information and semantic roles. For example,
“yêu” (love) is a verb with category meaning “emotion” and antonym “ghét” (hate).
VCL is the largest linguistic database of its kind for Vietnamese, and it encodes various

types of morphological, syntactic and semantic information, so it presents a suitable
starting point for the choice of lexical units for our purpose.

7.3.3 Choice of Concepts

Concepts in ViCon

The choice of related pairs in this dataset was drawn from VCL in the following way.
We extracted all antonym and synonym pairs according to the three part-of-speech cat-
egories: noun, verb and adjective. We then randomly selected 600 adjective pairs (300
antonymous pairs and 300 synonymous pairs), 400 noun pairs (200 antonymous pairs and
200 synonymous pairs), and 400 verb pairs (200 antonymous pairs and 200 synonymous
pairs). In each part-of-speech category, we balanced for the size of morphological classes
in VCL, for both antonymous and synonymous pairs.

Concepts in ViSim-400

The choice of related pairs in this dataset was drawn from both the VLC and the Viet-
namese WordNet8 (VWN), cf. Nguyen et al. (2016c). We extracted all pairs of the three
part-of-speech categories: noun, verb and adjective, according to five semantic relations:
synonymy, antonymy, hypernymy, co-hoponymy and holonymy. We then sampled 400
pairs for the ViSim-400 dataset, accounting for 200 noun pairs, 150 verb pairs and 50

7 https://vlsp.hpda.vn/demo/?page=vcl
8 http://viet.wordnet.vn/wnms/

82

https://vlsp.hpda.vn/demo/?page=vcl
http://viet.wordnet.vn/wnms/

7.3 Dataset Design

adjective pairs. Regarding noun pairs, we balanced the size of pairs in terms of six re-
lations: the five extracted relations from VCL and VWN, and an “unrelated” relation.
For verb pairs, we balanced the number of pairs according to five relations: synonymy,
antonymy, hypernymy, co-hyponymy, and unrelated. For adjective pairs, we balanced the
size of pairs for three relations: synonymy, antonymy, and unrelated. In order to select
the unrelated pairs for each part-of-speech category, we paired the unrelated words from
the selected related pairs at random. From these random pairs, we excluded those pairs
that appeared in VCL and VWN. Furthermore, we also balanced the number of selected
pairs according to the sizes of the morphological classes and the lexical categories.

7.3.4 Annotation of ViSim-400

For rating ViSim-400, 200 raters who were native Vietnamese speakers were paid to rate
the degrees of similarity for all 400 pairs. Each rater was asked to rate 30 pairs on a
0–6 scale; and each pair was rated by 15 raters. Unlike other datasets which performed
the annotation via Amazon Mechanical Turk, each rater for ViSim-400 conducted the
annotation via a survey which detailed the exact annotation guidelines.
The structure of the questionnaire was motivated by the SimLex-999 dataset: we out-

lined the notion of similarity via the well-understood idea of the six relations included in
the ViSim-400 dataset. Immediately after the guidelines of the questionnaire, a check-
point question was posed to the participants to test whether the person understood the
guidelines: the participant was asked to pick the most similar word pair from three given
word pairs, such as kiêu_căng/kiêu_ngạo (arrogant/cocky) vs. trầm/bổng (high/low)
vs. cổ_điển/biếng (classical/lazy). The annotators then labeled the kind of relation and
scored the degree of similarity for each word pair in the survey.

7.3.5 Agreement in ViSim-400

We analysed the ratings of the ViSim-400 annotators with two different inter-annotator
agreement (IAA) measures, Krippendorff’s alpha coefficient (Krippendorff, 2004), and
the average standard deviation (STD) of all pairs across word classes. The first IAA
measure, IAA-pairwise, computes the average pairwise Spearman’s ρ correlation between
any two raters. This IAA measure has been a common choice in previous data collections
in distributional semantics (Padó et al., 2007; Reisinger and Mooney, 2010; Hill et al.,
2015). The second IAA measure, IAA-mean, compares the average correlation of the
human raters with the average of all other raters. This measure would smooth individual
annotator effects, and serve as a more appropriate “upper bound” for the performance
of automatic systems than IAA-pairwise (Vulić et al., 2017). Finally, Krippendorff’s
α coefficient reflects the disagreement of annotators rather than their agreement, in
addition to correcting for agreement by chance.

83

7 Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Vietnamese

All Noun Verb Adjective

IAA-Mean ρ 0.86 0.86 0.86 0.78
IAA-Pairwise ρ 0.79 0.76 0.78 0.75
Krippendorff’s α 0.78 0.76 0.78 0.86
STD 0.87 0.87 0.90 0.82

Table 7.1: Inter-annotator agreements measured by Spearman’s ρ, Krippendorff’s α, and
the average standard deviation (STD) of all pairs across word classes.

Table 7.1 shows the inter-annotator agreement values, Krippendorff’s α coefficient,
and the response consistency measured by STD over all pairs and different word classes
in ViSim-400. The overall IAA-pairwise of ViSim-400 is ρ = 0.79, comparing favourably
with the agreement on the SimLex-999 dataset (ρ = 0.67 using the same IAA-pairwise
measure). Regarding IAA-mean, ViSim-400 also achieves an overall agreement of ρ =

0.86, which is similar to the agreement in Vulić et al. (2017), ρ = 0.86. For Krippendorff’s
α coefficient, the value achieves α = 0.78, also reflecting the reliability of the annotated
dataset.

Adj Noun Verb
0

2

4

6

0

2

4

6

0

2

4

6

ANT COHYPO HOLO HYPE SYN UNREL

Figure 7.1: Distribution of scored pairs in ViSim-400 across parts-of-speech and semantic
relations.

Furthermore, the box plots in Figure 7.1 present the distributions of all rated pairs in
terms of the fine-grained semantic relations across word classes. They reveal that –across
word classes– synonym pairs are clearly rated as the most similar words, and antonym
as well as unrelated pairs are clearly rated as the most dissimilar words. Hypernymy,
co-hyponymy and holonymy are in between, but rather similar than dissimilar.

7.4 Verification of Datasets

In this section, we verify our novel datasets ViCon and ViSim-400 through standard and
neural co-occurrence models, in order to show that we obtain a similar behaviour as for
the corresponding English datasets.

84

7.4 Verification of Datasets

7.4.1 Verification of ViSim-400

We adopt a comparison of neural models on SimLex-999 as suggested by Nguyen et al.
(2016a). They applied three models, a Skip-gram model with negative sampling SGNS
(Mikolov et al., 2013a), the dLCE model (Nguyen et al., 2016a), and the mLCM model
(Pham et al., 2015). Both the dLCE and the mLCM models integrated lexical contrast
information into the basic Skip-gram model to train word embeddings for distinguishing
antonyms from synonyms, and for reflecting degrees of similarity.
The three models were trained with 300 dimensions, a window size of 5 words, and

10 negative samples. Regarding the corpora, we relied on Vietnamese corpora with
a total of ≈145 million tokens, including the Vietnamese Wikipedia,9 VNESEcorpus
and VNTQcorpus,10 and the Leipzig Corpora Collection for Vietnamese11 (Goldhahn
et al., 2012). For word segmentation and POS tagging, we used the open-source toolkit
UETnlp12 (Nguyen and Le, 2016). The antonym and synonym pairs to train the dLCE
and mLCM models were extracted from VWN consisting of 49,458 antonymous pairs
and 338,714 synonymous pairs. All pairs which appeared in ViSim-400 were excluded
from this set.
Table 7.2 shows Spearman’s correlations ρ, comparing the scores of the three models

with the human judgements for ViSim-400. As also reported for English, the dLCE
model produces the best performance, SGNS the worst.

SGNS mLCM dLCE

ViSim-400 0.37 0.60 0.62
SimLex-999 0.38 0.51 0.59

Table 7.2: Spearman’s correlation ρ on ViSim-400 in comparison to SimLex-999, cf.
Nguyen et al. (2016a).

In a second experiment, we computed the cosine similarities between all word pairs,
and used the area under curve (AUC) to distinguish between antonyms and synonyms.
Table 7.3 presents the AUC results of the three models. Again, the models show a similar
behaviour in comparison to SimLex-999, where also the dLCE model outperforms the
two other models, and the SGNS model is by far the worst.

7.4.2 Verification of ViCon

In order to verify ViCon, we applied three co-occurrence models to rank antonymous
and synonymous word pairs according to their cosine similarities: two standard co-

9 https://dumps.wikimedia.org/viwiki/latest/
10 http://viet.jnlp.org/download-du-lieu-tu-vung-corpus
11 http://wortschatz.uni-leipzig.de/en/download
12 https://github.com/phongnt570/UETnlp

85

https://dumps.wikimedia.org/viwiki/latest/
http://viet.jnlp.org/download-du-lieu-tu-vung-corpus
http://wortschatz.uni-leipzig.de/en/download
https://github.com/phongnt570/UETnlp

7 Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Vietnamese

Model Noun Verb Adj

ViSim-400
SGNS 0.66 0.63 0.70
mLCM 0.81 0.92 0.96
dLCE 0.92 0.95 0.98

SimLex-999
SGNS 0.66 0.65 0.64
mLCM 0.69 0.71 0.85
dLCE 0.72 0.81 0.90

Table 7.3: AUC scores for distinguishing antonyms from synonyms in ViSim-400.

occurrence models based on positive point-wise mutual information (PPMI) and positive
local mutual information (PLMI) (Evert, 2005) as well as an improved feature value
representation weightSA as suggested by Nguyen et al. (2016a). For building the vector
space co-occurrence models, we relied on the same Vietnamese corpora as in the previous
section. For inducing the word vector representations via weightSA, we made use of the
antonymous and synonymous pairs in VWN, as in the previous section, and then removed
all pairs which appeared in ViCon. Optionally, we applied singular value decomposition
(SVD) to reduce the dimensionalities of the word vector representations.

As in Nguyen et al. (2016a), we computed the cosine similarities between all word
pairs, and then sorted the pairs according to their cosine scores. Average Precision
(AP) evaluated the three vector space models. Table 7.4 presents the results of the
three vector space models with and without SVD. As for English, the results on the
Vietnamese dataset demonstrate significant improvements (χ2,∗ p < .001) of weightSA

over PPMI and PLMI, both with and without SVD, and across word classes.

ADJ NOUN VERBMetric SYN ANT SYN ANT SYN ANT
PPMI 0.70 0.38 0.68 0.39 0.69 0.38
PLMI 0.59 0.44 0.61 0.42 0.63 0.41
weightSA 0.93* 0.31* 0.94* 0.31 0.96 0.31
PPMI + SVD 0.76 0.36 0.66 0.40 0.81 0.34
PLMI + SVD 0.49 0.51 0.55 0.46 0.51 0.49

ViCon

weightSA + SVD 0.91* 0.32* 0.81* 0.34* 0.92* 0.32*
PLMI 0.56 0.46 0.60 0.42 0.62 0.42
weightSA 0.75 0.36 0.66 0.40 0.71 0.38
PLMI + SVD 0.55 0.46 0.55 0.46 0.58 0.44LexCon

weightSA + SVD 0.76* 0.36* 0.66 0.40 0.70* 0.38*

Table 7.4: AP evaluation of co-occurrence models on ViCon in comparison to LexCon
(Nguyen et al., 2016a).

86

7.5 Summary

7.5 Summary

This chapter introduced two novel datasets for the low-resource language of Vietnamese
to assess models of semantic similarity and relatedness. The first dataset, namely ViCon,
comprises synonym and antonym pairs across the word classes of nouns, verbs, and
adjectives. The word pairs of this dataset were extracted from VCL by balancing for the
size of morphological classes in each part-of-speech category. Hence ViCon offers data to
distinguish between similarity and dissimilarity. The second dataset, namely ViSim-400,
contains 400 word pairs across the three word classes and five semantic relations. The
choice of related pairs in this dataset was drawn from both VCL and VWN. Similar to the
ViCon dataset, the number of selected pairs in ViSim-400 is also balanced according
to the size of the morphological classes and the lexical categories. Furthermore, each
pair of ViSim-400 was rated by human judges for its degree of similarity to reflect the
continuum between similarity and relatedness.
In addition, we successfully adopted standard co-occurrence and neural network mod-

els in English for Vietnamese in order to verify the two proposed datasets. A series of
experiments showed that results of these models in our two datasets are comparable to
the respective English datasets.

87

8 Conclusion and Future Work

This chapter first summarizes the findings and contributions of this thesis. We then
outline some ideas for future work to address the limitations of this thesis and to go in
other directions.

8.1 Conclusion

This thesis investigated strategies to improve computational models that distinguish
antonymy, synonymy, and hypernymy; and that measure semantic similarity and relat-
edness. Moreover, this thesis also focused on evaluating computational models on the
low-resource language of Vietnamese.
The new weighted feature weightSA(w, f), which is used to construct distributional

word vector representations, allowed computational models to significantly distinguish
antonymy and synonymy by relying on distributional lexical contrast, making synony-
mous word pairs closer to each other, and forcing antonymous word pairs further away
from each other (chapter 3). Similarly, the distributional lexical contrast was also suc-
cessfully integrated into the Skip-gram model to learn dLCE embeddings that are better
able to capture degrees of similarity and identify antonymy from synonymy, compared
to other state-of-the-art word embeddings (chapter 3). Moreover, in chapter 4, the two
pattern-based architectures of AntSynNET neural network showed an improvement in
distinguishing antonymy from synonymy over prior pattern-based models. The lexico-
syntactic patterns of antonymous and synonymous word pairs induced from syntactic
parse trees mitigated the sparsity issue relative to standard lexico-syntactic patterns of
antonymy and synonymy. Moreover, the use of the distance feature in lexico-syntactic
patterns also helped AntSynNET models to better differentiate antonymy from syn-
onymy.
In chapter 5, the hierarchical embeddings HyperVec significantly outperformed state-

of-the-art measures and word embeddings on the tasks of hypernymy detection and
directionality. By relying on hypernymy information from lexical resources, HyperVec
was able to (i) strengthen cosine similarity of hypernymy, which is higher than cosine
similarity of other semantic relations; and (ii) generate the distributional hierarchy be-
tween hyponyms and hypernyms. These two aspects of HyperVec were formulated as an
unsupervised hypernymy measure named HyperScore which showed significant improve-

89

8 Conclusion and Future Work

ments over state-of-the-art measures. Additionally, HyperVec also showed the ability to
generalize hypernymy over other languages including German and Italian.
Regarding computational models for measuring similarity and relatedness, in compar-

ison with state-of-the-art word embeddings, word denoising embeddings strengthened
by filtering out noise from state-of-the-art word embeddings achieved improvements in
several benchmark tasks including word similarity and relatedness tasks, synonymy de-
tection, and noun phrase classification (chapter 6). The word denoising embeddings were
learned via filters without using any external resources, with the architectures of filters
being feed-forward, non-linear and parameterized neural networks with a fixed depth.
Furthermore, in chapter 7, two datasets were introduced for the low-resource language
of Vietnamese. The first dataset ViCon offered data for computational models to dis-
tinguish similarity and dissimilarity. The second dataset ViSim-400, which consisted of
human-rated word pairs, reflected the continuum between semantic similarity and se-
mantic relatedness. The standard co-occurrence and neural models were evaluated on
these two Vietnamese datasets, showing behaviour similar to that of the correspond-
ing English datasets in terms of distinguishing and measuring semantic similarity and
semantic relatedness.

8.2 Future Work

Fine-grained antonymy classification: in chapter 3 and chapter 4, we proposed ap-
proaches to distinguish antonymy and synonymy by using both vector representations
and neural networks. In those approaches, we assigned all types of antonymy to be only
a single antonymy class. However, antonymy could be categorised into several types such
as gradable antonymy, non-gradable antonymy. Hence, possible future work could focus
on the task of fine-grained antonymy classification. The pattern-based neural models
presented in chapter 4 can be adopted to address the task of fine-grained antonymy
classification. Instead of classifying antonymy and synonymy, the models only focus on
classifying types of antonymy. Moreover, the lexico-syntactic patterns that indicate the
simple paths of antonymous word pairs are expected to be able to distinguish between
types of antonymy. An example could be that the non-gradable antonymy pair (dead
/ alive) cannot appear in the pattern of “neither X nor Y.” Nevertheless, rather than
using English, this possible future work could be applied for other languages such as
German, Spanish, Italian, or low-resource languages.

Fine-grained semantic relations classification: we have presented approaches to dis-
tinguish antonymy, synonymy, and hypernymy in chapters 3, 4, and 5. In future work in
this direction, we could extend the proposed approaches to work with the task of fine-
grained semantic relations classification, in which semantic relations could be classified

90

8.2 Future Work

as antonymy, synonymy, hypernymy, meronymy, or co-hyponymy. Specifically, we will
make use of word pairs of semantic relations to induce their lexico-syntactic patterns from
the corpora. We will then use pattern-based neural models to encode lexico-syntactic
patterns as vector representations for fine-grained semantic relations classification.

Hierarchical embeddings for named entities: in chapter 5, we introduced an ap-
proach to learn hierarchical embeddings HyperVec for hypernymy. One of the most
important characteristics of HyperVec is that it generates the distributional hierarchy
between hyponyms and hypernyms. Thus an idea for future work in this direction is
to extend the HyperVec model to learn hierarchical embeddings for named entities. For
example, this kind of hierarchical embeddings can be learned to encode the distributional
hierarchy between a country and its cities such as the United States and Los Angeles.
Furthermore, in knowledge-based encyclopediae such as Wikipedia, each named entity in
a given encyclopedic article is described by referring to many other named entities. This
kind of information is similar to the organisation of hypernymy in WordNet, in which
a hierarchy exists between entities. The hierarchical embeddings for named entities can
be utilized for NLP tasks, such as entity linking that links surface forms of named en-
tities in a document to named entities in a reference knowledge base, and entity search
that retrieves knowledge directly by generating a list of relevant entities in response to
a search request.

91

Bibliography

Adel, H. and Schütze, H. (2014). Using mined coreference chains as a resource for a
semantic task. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pages 1447–1452, Doha, Qatar.

Baroni, M., Bernardi, R., Do, N.-Q., and chieh Shan, C. (2012). Entailment above the
word level in distributional semantics. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
23–32, Avignon, France.

Baroni, M. and Lenci, A. (2011). How we blessed distributional semantic evaluation. In
Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language
Semantics (GEMS), pages 1–10, Edinburgh, Scotland.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. The Journal of Machine Learning Research, 3:1137–1155.

Benotto, G. (2015). Distributional models for semantic relations: A study on hyponymy
and antonymy. PhD thesis, University of Pisa.

Biemann, C. (2005). Ontology learning from text: A survey of methods. LDV Forum,
20(2):75–93.

Biran, O. and McKeown, K. (2013). Classifying taxonomic relations between pairs of
wikipedia articles. In Proceddings of Sixth International Joint Conference on Natural
Language Processing (IJCNLP), pages 788–794, Nagoya, Japan.

Botha, J. A. and Blunsom, P. (2014). Compositional morphology for word representa-
tions and language modelling. In Proceedings of the 31st International Conference on
International Conference on Machine Learning, pages 1899–1907, Beijing, China.

Bruni, E., Boleda, G., Baroni, M., and Tran, N.-K. (2012). Distributional semantics in
technicolor. In Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics, pages 136–145, Jeju Island, Korea.

Bruni, E., Tran, N., and Baroni, M. (2014). Multimodal distributional semantics. Journal
of Artifical Intelligence Research (JAIR), 49:1–47.

Budanitsky, A. and Hirst, G. (2006). Evaluating WordNet-based Measures of Lexical
Semantic Relatedness. Computational Linguistics, 32(1):13–47.

Charles, W. G. and Miller, G. A. (1989). Contexts of antonymous adjectives. Applied
Psychology, 10:357–375.

Chen, W., Grangier, D., and Auli, M. (2016). Strategies for training large vocabulary

93

Bibliography

neural language models. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, pages 1975–1985, Berlin, Germany.

Church, K. W. and Hanks, P. (1990). Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29.

Cimiano, P., Hotho, A., and Staab, S. (2005). Learning concept hierarchies from text
corpora using formal concept analysis. J. Artif. Int. Res., 24(1):305–339.

Clark, E. V. (1992). Conventionality and contrast: Pragmatic principles with lexical
consequences. Adrienne Lehrer and Eva Fedder Kittay, pages 171–188.

Clarke, D. (2009). Context-theoretic semantics for natural language: An overview. In
Proceedings of the Workshop on Geometrical Models of Natural Language Semantics
(GEMS), pages 112–119, Athens, Greece.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, pages 160–167, Helsinki, Finland.

Dagan, I., Roth, D., Sammons, M., and Zanzotto, F. M. (2013). Recognizing Textual
Entailment: Models and Applications. Synthesis Lectures on Human Language Tech-
nologies.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

Deese, J. (1965). The Structure of Associations in Language and Thought. The John
Hopkins Press, Baltimore, MD.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A Simple, Fast, and Effective Repa-
rameterization of IBM Model 2. In Proceedings of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL),
pages 644–648, Atlanta, USA.

Elman, J. L. (1990). Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211.
Evert, S. (2005). The Statistics of Word Cooccurrences. PhD thesis, Stuttgart University.
Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., and Smith, N. A. (2015). Sparse
overcomplete word vector representations. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics (ACL), pages 1491—-1500, Beijing,
China.

Fellbaum, C. (1995). Co-occurrence and antonymy. International Journal of Lexicogra-
phy, 8:281–303.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and
Ruppin, E. (2001). Placing search in context: The concept revisited. In Proceedings

94

Bibliography

of the 10th International Conference on the World Wide Web, pages 406–414.
Firth, J. R. (1957). Papers in Linguistics 1934-51. Longmans, London, UK.
Geffet, M. and Dagan, I. (2005). The distributional inclusion hypotheses and lexical
entailment. In Proceedings of the 43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 107–114, Michigan, US.

Gentner, D. (2006). Why verbs are hard to learn. In Hirsh-Pasek, K. A. and Golinkoff,
R. M., editors, Action meets word: How Children Learn Verbs, pages 544–564. Oxford
University Press.

Goldhahn, D., Eckart, T., and Quasthoff, U. (2012). Building large monolingual dictio-
naries at the leipzig corpora collection: From 100 to 200 languages. In In Proceedings of
the Eight International Conference on Language Resources and Evaluation (LREC’12),
pages 759–765.

Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding. In
Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa,
Israel, pages 399–406.

Gurevych, I. (2005). Using the structure of a conceptual network in computing semantic
relatedness. In Proceedings of the 2nd International Joint Conference on Natural
Language Processing, pages 767–778, Jeju Island, Republic of Korea.

Gurevych, I. (2006). Thinking beyond the nouns - computing semantic relatedness across
parts of speech. In Sprachdokumentation & Sprachbeschreibung, 28. Jahrestagung der
Deutschen Gesellschaft für Sprachwissenschaft, page 226, Bielefeld, Germany.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, pages 297–304, Sardinia,
Italy.

Harris, Z. S. (1954). Distributional structure. Word, 10(23):146–162.
He, X., Yang, M., Gao, J., Nguyen, P., and Moore, R. (2008). Indirect-hmm-based
hypothesis alignment for combining outputs from machine translation systems. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 98–107, Honolulu, Hawaii.

Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In In
Proceedings of the 14th International Conference on Computational Linguistics (COL-
ING), pages 539–545, Nantes, France.

Hill, F., Kiela, D., and Korhonen, A. (2013). Concreteness and corpora: A theoretical
and practical study. In Proceedings of the Fourth Annual Workshop on Cognitive
Modeling and Computational Linguistics (CMCL), pages 75–83, Sofia, Bulgaria.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: Evaluating semantic models
with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa-

95

Bibliography

tion, 9(8):1735–1780.
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist,
11(2):37–50.

Justeson, J. S. and Katz, S. M. (1991). Co-occurrences of antonymous adjectives and
their contexts. Computational Linguistics, 17:1–19.

Kiela, D. and Clark, S. (2014). A systematic study of semantic vector space model
parameters. In Proceedings of the 2nd Workshop on Continuous Vector Space Models
and their Compositionality (CVSC), pages 21–30, Gothenburg, Sweden.

Kiela, D., Rimell, L., Vulić, I., and Clark, S. (2015). Exploiting image generality for
lexical entailment detection. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (ACL), pages 119–124, Beijing, China.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, Doha, Qatar.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural
language models. In Proceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, pages 2741–2749. AAAI Press.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R., and
Fidler, S. (2015). Skip-thought vectors. In Proceedings of the 28th International
Conference on Neural Information Processing Systems, pages 3294–3302, Montreal,
Canada.

Kotlerman, L., Dagan, I., Szpektor, I., and Zhitomirsky-Geffet, M. (2010). Directional
distributional similarity for lexical inference. Natural Language Processing, 16(4):359–
389.

Krippendorff, K. (2004). Content Analysis: An Introduction to its Methodology. Sage
Publications.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86.

Landauer, T. K. and Dumais, S. T. (1997). A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211–240.

Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and Pollution: Delving into
Cross-Space Mapping for Zero-Shot Learning. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics (ACL), pages 270–280, Beijing,
China.

Lazaridou, A., Vecchi, E. M., and Baroni, M. (2013). Fish transporters and miracle

96

Bibliography

homes: How compositional distributional semantics can help NP parsing. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1908—-1913, Doha, Qatar.

Lenci, A. and Benotto, G. (2012). Identifying hypernyms in distributional semantic
spaces. In *SEM 2012: The First Joint Conference on Lexical and Computational
Semantics – Volume 1: Proceedings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation
(SemEval), pages 75–79, Montréal, Canada.

Leviant, I. and Reichart, R. (2015). Judgment language matters: Multilingual vector
space models for judgment language aware lexical semantics. CoRR, abs/1508.00106.

Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factoriza-
tion. In Advances in Neural Information Processing Systems 27, pages 2177–2185.

Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional
methods really learn lexical inference relations? In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), pages 970–976, Denver, Colorado.

Li, M., Zhang, Y., Zhu, M., and Zhou, M. (2006). Exploring distributional similarity
based models for query spelling correction. In Proceedings of the 44th Annual Meeting
of the Association for Computational Linguistics, pages 1025–1032, Sydney, Australia.

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings
of the 17th International Conference on Computational Linguistics, pages 768–774,
Montréal, Canada.

Lin, D. and Pantel, P. (2001). Dirt @sbt@discovery of inference rules from text. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 323–328, San Francisco, California.

Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying synonyms among distribu-
tionally similar words. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence, pages 1492–1493, Acapulco, Mexico.

Lund, K. and Burgess, C. (1996). Producing high-dimensional semantic spaces from lexi-
cal co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2):203–
208.

Lyons, J. (1977). Semantics. Cambridge University Press.
Marton, Y., Callison-Burch, C., and Resnik, P. (2009). Improved statistical machine
translation using monolingually-derived paraphrases. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing, pages 381–390, Singa-
pore.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. Computing Research Repository, abs/1301.3781.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting Similarities among Lan-

97

Bibliography

guages for Machine Translation. CoRR, abs/1309.4168.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c). Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems 26, pages 3111–3119.

Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41.

Miller, G. A. and Fellbaum, C. (1991). Semantic networks of English. Cognition, 41:197–
229.

Mohammad, S. M., Dorr, B. J., Hirst, G., and Turney, P. D. (2013). Computing lexical
contrast. Computational Linguistics, 39(3):555–590.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics, pages 246–252.

Morris, J. and Hirst, G. (2004). Non-classical lexical semantic relations. In Proceed-
ings of the HLT-NAACL Workshop on Computational Lexical Semantics, pages 46–51,
Boston, Massachusetts.

Mrkšić, N., Ó Séaghdha, D., Thomson, B., Gašić, M., Rojas-Barahona, M. L., Su, P.-
H., Vandyke, D., Wen, T.-H., and Young, S. (2016). Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 142–148, San Diego, California.

Murphy, G. (2002). The Big Book of Concepts. MIT Press, Cambridge, MA, USA.
Murphy, M. L. (2003). Semantic Relations and the Lexicon. Cambridge University Press.
Navigli, R. (2009). Word sense disambiguation: A survey. ACM Comput. Surv.,
41(2):10:1–10:69.

Navigli, R., Velardi, P., and Faralli, S. (2011). A graph-based algorithm for inducing lex-
ical taxonomies from scratch. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI), pages 1872–1877, Barcelona, Catalonia,
Spain.

Nguyen, K. A., Köper, M., Schulte im Walde, S., and Vu, N. T. (2017a). Hierarchical
embeddings for hypernymy detection and directionality. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
233–243, Copenhagen, Denmark.

Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2016a). Integrating distributional
lexical contrast into word embeddings for antonym-synonym distinction. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 454–459, Berlin, Germany.

Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2016b). Neural-based noise filter-
ing from word embeddings. In Proceedings of the 26th International Conference on

98

Bibliography

Computational Linguistics (COLING), pages 2699–2707, Osaka, Japan.
Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2017b). Distinguishing Antonyms
and Synonyms in a Pattern-based Neural Network. In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguistics
(EACL), pages 76–85, Valencia, Spain.

Nguyen, K. A., Schulte im Walde, S., and Vu, N. T. (2018). Introducing two vietnamese
datasets for evaluating semantic models of (dis-)similarity and relatedness. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HTL), pages
199–205, New Orleans, Louisiana.

Nguyen, P.-T., Pham, V.-L., Nguyen, H.-A., Vu, H.-H., Tran, N.-A., and Truong, T.-T.-
H. (2016c). A two-phase approach for building vietnamese wordnet. In Proceedings of
the Eighth Global WordNet Conference, pages 259–264, Bucharest, Romania.

Nguyen, T. M. H., Romary, L., Rossignol, M., and Vu, X. L. (2006). A lexicon for
Vietnamese language processing. Language Resources and Evaluation, 40(3-4):291–
309.

Nguyen, T.-P. and Le, A.-C. (2016). A hybrid approach to vietnamese word segmen-
tation. In 2016 IEEE RIVF International Conference on Computing Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF), pages 114–119,
Hanoi, Vietnam.

Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607–609.

Ono, M., Miwa, M., and Sasaki, Y. (2015). Word embedding-based antonym detection
using thesauri and distributional information. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 984–989, Denver, Colorado.

Padó, S. and Lapata, M. (2007). Dependency-based construction of semantic space
models. Computational Linguistics, 33(2):161–199.

Padó, S., Padó, U., and Erk, K. (2007). Flexible, corpus-based modelling of human plau-
sibility judgements. In Proceedings of EMNLP/CoNLL 2007, Prague, Czech Republic.

Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet: : Similarity - mea-
suring the relatedness of concepts. In Proceedings of the 19th National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence (AAAI), pages 1024–1025, California, USA.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar.

Pham, N. T., Lazaridou, A., and Baroni, M. (2015). A multitask objective to inject lexical
contrast into distributional semantics. In Proceedings of the 53rd Annual Meeting of the

99

Bibliography

Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing, pages 21–26, Beijing, China.

Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. (2008). Learning to classify short and
sparse text & web with hidden topics from large-scale data collections. In Proceedings
of the 17th International Conference on World Wide Web, pages 91–100, Beijing,
China.

Reisinger, J. and Mooney, R. (2010). A mixture model with sharing for lexical semantics.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1173–1182, Cambridge, Massachusetts.

Rimell, L. (2014). Distributional lexical entailment by topic coherence. In Proceedings
of the 14th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 511–519, Gothenburg, Sweden.

Roller, S., Erk, K., and Boleda, G. (2014). Inclusive yet selective: Supervised distribu-
tional hypernymy detection. In Proceedings of the 25th International Conference on
Computational Linguistics (COLING), pages 1025–1036, Dublin, Ireland.

Roth, M. and Schulte im Walde, S. (2014). Combining word patterns and discourse
markers for paradigmatic relation classification. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, pages 524–530, Baltimore,
MD.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620.

Santus, E., Lenci, A., Chiu, T., Lu, Q., and Huang, C. (2016). Unsupervised measure
of word similarity: How to outperform co-occurrence and vector cosine in vsms. In
Proceedings of the Thirtieth Conference on Artificial Intelligence AAAI), pages 4260–
4261, Arizona, USA.

Santus, E., Lenci, A., Lu, Q., and Schulte im Walde, S. (2014a). Chasing hypernyms
in vector spaces with entropy. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 38–42, Gothenburg,
Sweden.

Santus, E., Lu, Q., Lenci, A., and Huang, C. (2014b). Taking antonymy mask off in vector
space. In Proceedings of the 28th Pacific Asia Conference on Language, Information
and Computation, pages 135–144.

Santus, E., Yung, F., Lenci, A., and Huang, C.-R. (2015). Evalution 1.0: an evolv-
ing semantic dataset for training and evaluation of distributional semantic models.
In Proceedings of the 4th Workshop on Linked Data in Linguistics: Resources and
Applications, Beijing, China.

Schäfer, R. (2015). Processing and querying large web corpora with the COW14 ar-

100

Bibliography

chitecture. In Proceedings of the 3rd Workshop on Challenges in the Management of
Large Corpora, pages 28–34.

Schäfer, R. and Bildhauer, F. (2012). Building large corpora from the web using a new
efficient tool chain. In Proceedings of the 8th International Conference on Language
Resources and Evaluation, pages 486–493, Istanbul, Turkey.

Scheible, S., im Walde, S. S., and Springorum, S. (2013). Uncovering distributional
differences between synonyms and antonyms in a word space model. In Proceedings
of the 6th International Joint Conference on Natural Language Processing, pages 489–
497, Nagoya, Japan.

Scheible, S. and Schulte im Walde, S. (2014). A Database of Paradigmatic Semantic Re-
lation Pairs for German Nouns, Verbs, and Adjectives. In Proceedings of Workshop on
Lexical and Grammatical Resources for Language Processing, pages 111–119, Dublin,
Ireland.

Schulte im Walde, S. and Köper, M. (2013). Pattern-based distinction of paradigmatic
relations for german nouns, verbs, adjectives. In Proceedings of the 25th Interna-
tional Conference of the German Society for Computational Linguistics and Language
Technology (GSCL), pages 189–198, Darmstadt, Germany.

Schulte im Walde, S., Müller, S., and Roller, S. (2013). Exploring vector space models
to predict the compositionality of german noun-noun compounds. In Second Joint
Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings
of the Main Conference and the Shared Task: Semantic Textual Similarity, pages 255–
265, Atlanta, Georgia, USA.

Schwartz, R., Reichart, R., and Rappoport, A. (2015). Symmetric pattern based word
embeddings for improved word similarity prediction. In Proceedings of the 19th Confer-
ence on Computational Language Learning (CoNLL), pages 258—-267, Beijing, China.

Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an
integrated path-based and distributional method. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 2389–2398,
Berlin, Germany.

Shwartz, V., Santus, E., and Schlechtweg, D. (2017). Hypernyms under siege:
Linguistically-motivated artillery for hypernymy detection. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics
(EACL), Valencia, Spain.

Siegel, S. and Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sci-
ences. McGraw-Hill, Boston, MA.

Snow, R., Jurafsky, D., and Ng, A. Y. (2006). Semantic taxonomy induction from
heterogenous evidence. In Proceedings of the 21st Annual Meeting of the Association
for Computational Linguistics (ACL), pages 801–808, Sydney, Australia.

Sucameli, I. (2015). Analisi computazionale delle relazioni semantiche: Uno studio della

101

Bibliography

lingua italiana. B.s. thesis, University of Pisa.
Szlam, A. D., Gregor, K., and Cun, Y. L. (2011). Structured sparse coding via lateral
inhibition. Advances in Neural Information Processing Systems (NIPS), 24:1116–1124.

Theano Development Team (2016). Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688.

Tuan, L. A., Tay, Y., Hui, S. C., and Ng, S. K. (2016). Learning term embeddings for
taxonomic relation identification using dynamic weighting neural network. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 403–413, Austin, Texas.

Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL.
In Proceedings of the 12th European Conference on Machine Learning (ECML), pages
491–502.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research, 37:141–188.

Vendrov, I., Kiros, R., Fidler, S., and Urtasun, R. (2016). Order-embeddings of im-
ages and language. In Proceedings of the 4th International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico.

Vilnis, L. and McCallum, A. (2015). Word representations via gaussian embedding. In
Proceedings of the 3rd International Conference on Learning Representations (ICLR),
California, USA.

Voorhees, E. M. and Harman, D. K. (1999). The 7th Text REtrieval Conference (trec-7).
National Institute of Standards and Technology, NIST.

Vu, N. T., Adel, H., Gupta, P., and Schütze, H. (2016). Combining recurrent and
convolutional neural networks for relation classification. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL), pages 534–539.

Vulić, I., Gerz, D., Kiela, D., Hill, F., and Korhonen, A. (2017). Hyperlex: A large-scale
evaluation of graded lexical entailment. Computational Linguistics, 43(4):781–835.

Weeds, J., Clarke, D., Reffin, J., Weir, D. J., and Keller, B. (2014). Learning to distin-
guish hypernyms and co-hyponyms. In Proceedings of the 25th International Confer-
ence on Computational Linguistics (COLING), pages 2249–2259, Dublin, Ireland.

Weeds, J. and Weir, D. (2003). A general framework for distributional similarity. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 81–88, Stroudsburg, PA, USA.

Weeds, J., Weir, D., and McCarthy, D. (2004). Characterising measures of lexical dis-
tributional similarity. In Proceedings of the 20th International Conference on Compu-
tational Linguistics (COLING), pages 1015—-1021, Geneva, Switzerland.

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of
the 32nd Annual Meeting on Association for Computational Linguistics (ACL), pages

102

Bibliography

133–138, Las Cruces, New Mexico.
Yih, W., Zweig, G., and Platt, J. C. (2012). Polarity inducing latent semantic analysis. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP), pages 1212–
1222, Jeju Island, Korea.

Yu, Z., Wang, H., Lin, X., and Wang, M. (2015). Learning term embeddings for hyper-
nymy identification. In Proceedings of the 24th International Conference on Artificial
Intelligence (IJCAI), pages 1390–1397, Buenos Aires, Argentina.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

Zhitomirsky-Geffet, M. and Dagan, I. (2009). Bootstrapping distributional feature vector
quality. Computational Linguistics, 35(3):435–461.

103

	Abstract
	Zusammenfassung
	List of Publications
	Acknowledgments
	List of Abbreviations
	Introduction
	Motivation
	Strategies
	Contributions
	Outline

	Background
	Semantic Relations
	Synonymy
	Antonymy
	Hypernymy

	Distributional Word Vector Representations
	Context
	Window-size
	Weighting
	Measuring Similarity

	Distributed Word Vector Representations
	Classic Language Model
	Word2vec Embedding Models

	Neural Networks
	Input Layer
	Hidden Layer
	Output Layer
	Training

	Distinguishing Antonymy and Synonymy with Vector Representations
	Introduction
	Related Work
	Approach
	Improving the weights of feature vectors
	Integrating the distributional lexical contrast into word embeddings

	Experiments
	Experimental Settings
	Distinguishing antonyms from synonyms
	Effects of distributional lexical contrast on word embeddings

	Summary

	Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network
	Introduction
	Related Work
	Approach
	Induction of Patterns
	Recurrent Neural Network with Long Short-Term Memory Units
	The Proposed AntSynNET Model

	Baseline Models
	Distributional Baseline
	Distributed Baseline

	Experiment
	Dataset
	Experimental Settings
	Overall Results
	Effect of the Distance Feature
	Effect of Word Embeddings

	Summary

	Hierarchical Embeddings for Hypernymy Detection and Directionality
	Introduction
	Related Work
	Approach
	Extracting Hypernymy
	Learning Hierarchical Embeddings
	Unsupervised Hypernymy Measure

	Experiment
	Experimental Settings
	Unsupervised Hypernymy Detection and Directionality
	Supervised Hypernymy Detection
	Graded Lexical Entailment

	Generalizing Hypernymy
	Summary

	Neural-based Noise Filtering from Word Embeddings
	Introduction
	Approach
	Complete Word Denoising Embeddings
	Overcomplete Word Denoising Embeddings
	Sparse Coding
	Loss Function

	Experiment
	Experimental Settings
	Hyperparameter Tuning
	Effects of Word Denoising Embeddings
	Effects of Filter Depth

	Summary

	Evaluating Semantic Models of (Dis-)Similarity and Relatedness in Vietnamese
	Introduction
	Related Work
	Dataset Design
	Criteria
	Resource for Concept Choice: Vietnamese Computational Lexicon
	Choice of Concepts
	Annotation of ViSim-400
	Agreement in ViSim-400

	Verification of Datasets
	Verification of ViSim-400
	Verification of ViCon

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

