638 research outputs found

    New software for comparing the color gamuts generated by printing technologies

    Get PDF
    In the color industry, it is vital to know the color gamut of a given device. Several tools for visualizing and comparing color gamuts are available but they each have some drawbacks. Therefore, the aim of this work was to develop and validate new software for comparing the color gamuts generated by printing devices; we also developed an automated color measurement system. The software simultaneously represents the gamuts in the 3D CIELAB space. It also calculates the Gamut Comparison Index and the volume using two algorithms (Convex Hull and Alpha Shapes). To evaluate the performance of our software, we first compared the results it obtained for the color gamuts with those from other comparison methods such as representation in the CIE 1931 chromaticity diagram or other color spaces. Next, we used Interactive Color Correction in 3 Dimensions (ICC3D) software to compare the gamut representations and volumes. Our software allowed us to identify differences between color gamuts that were not discriminated by other methods. This new software will enable the study and comparison of gamuts generated by different printing technologies and using different printing substrates, International Color Consortium profiles, inks, and light sources, thereby helping to achieve high quality color images.Optics Group (FQM151, University of Granada)University of Granada (pre-doctoral contract, Training Programme for Research Staff, FPU)Funding for open access charge: University of Granada/CBU

    Print engine color management using customer image content

    Get PDF
    The production of quality color prints requires that color accuracy and reproducibility be maintained to within very tight tolerances when transferred to different media. Variations in the printing process commonly produce color shifts that result in poor color reproduction. The primary function of a color management system is maintaining color quality and consistency. Currently these systems are tuned in the factory by printing a large set of test color patches, measuring them, and making necessary adjustments. This time-consuming procedure should be repeated as needed once the printer leaves the factory. In this work, a color management system that compensates for print color shifts in real-time using feedback from an in-line full-width sensor is proposed. Instead of printing test patches, this novel attempt at color management utilizes the output pixels already rendered in production pages, for a continuous printer characterization. The printed pages are scanned in-line and the results are utilized to update the process by which colorimetric image content is translated into engine specific color separations (e.g. CIELAB-\u3eCMYK). The proposed system provides a means to perform automatic printer characterization, by simply printing a set of images that cover the gamut of the printer. Moreover, all of the color conversion features currently utilized in production systems (such as Gray Component Replacement, Gamut Mapping, and Color Smoothing) can be achieved with the proposed system

    Clustered-dot periodic halftone screen design and ICC profile color table compression

    Get PDF
    This dissertation studies image quality problems associated with rendering images in devices like printing or displaying. It mainly includes two parts: clustered-dot periodic halftone screen design, and color table compression. Screening is a widely used halftoning method. As a consequence of the lower resolution of digital presses and printers, the number of printer-addressable dots or holes in each microcell may be too few to provide the requisite number of tone lev- els between paper white and full colorant coverage. To address this limitation, the microcells can be grouped into supercells. The challenge is then to determine the desired supercell shape and the order in which dots are added to the microcell. Using DBS to determine this order results in a very homogeneous halftone pattern. To simplify the design and implementation of supercell halftone screens, it is common to repeat the supercell to yield a periodically repeating rectangular block called the basic screen block (BSB). While applying DBS to design a dot-cluster growth order- ing for the entire BSB is simpler to implement than is the application of DBS to the single non-rectangular supercell, it is computationally very inefficient. To achieve a more efficient way to apply DBS to determine the microcell sequence, we describe a procedure for design of high-quality regular screens using the non-rectangular super- cell. A novel concept the Elementary Periodicity Set is proposed to characterize how a supercell is developed. After a supercell is set, we use DBS to determine the micro-cell sequence within the supercell. We derive the DBS equations for this situation, and show that it is more efficient to implement. Then, we mainly focus on the regular and irregular screen design. With digital printing systems, the achievable screen angles and frequencies are limited by the finite addressability of the marking engine. In order for such screens to generate dot clusters in which each cluster is identical, the elements of the periodicity matrix must be integer-valued, when expressed in units of printer-addressable pixels. Good approximation of the screen sets result in better printing quality. So to achieve a better approximation to the screen sets used for commercial offset printing, irregular screens can be used. With an irregular screen, the elements of the periodicity matrix are rational numbers. In this section, first we propose a procedure to generate regular screens starting from midtone level. And then we describe a procedure for design of high-quality irregular screens based on the regular screen design method. We then propose an algorithm to determine how to add dots from midtone to shadow and how to remove dots from midtone to highlight. We present experimental results illustrating the quality of the halftones resulting from our design procedure by comparing images halftoned with irregular screens using our approach and a template-based approach. We also present the evaluation of the smoothness and improvement of the proposed methods. In the next part, we study another quality problem: ICC profile color table compression. ICC profiles are widely used to provide transformations between different color spaces in different devices. The color look-up tables (CLUTs) in the profiles will increase the file sizes when embedded in color documents. In this chapter, we discuss compression methods that decrease the storage cost of the CLUTs. For DCT compression method, a compressed color table includes quantized DCT coefficients for the color table, the additional nodes with large color difference, and the coefficients bit assignment table. For wavelet-based compression method, a compressed color table includes output of the wavelet encoding method, and the additional nodes with large color difference. These methods support lossy table compression to minimize the network traffic and delay, and also achieves relatively small maximum color difference

    Spectrally stable ink variability in a multi-primary printer

    Get PDF
    It was shown previously that a multi-ink printer can reproduce spectral reflectances within a specified tolerance range using many distinct ink combinations. An algorithm was developed to systematically analyze a printer to determine the amount of multi-ink variability throughout its spectral gamut. The advantage of this algorithm is that any spectral difference metric can be used as the objective function. Based on the results of the analysis for one spectral difference metric, six-dimensional density map displays were constructed to illustrate the amount of spectral redundancy throughout the ink space. One CMYKGO ink-jet printer was analyzed using spectral reflectance factor RMS as the spectral difference metric and selecting 0.02 RMS as the tolerance limit. For these parameters, the degree of spectral matching freedom for the printer reduced to five inks because the chromatic inks were able to reproduce spectra within the 0.02 tolerance limit throughout the printer\u27s gamut. Experiments were designed to exploit spectrally stable multi-ink variability within the analyzed printer. The first experiment used spectral redundancy to visually evaluate spectral difference metrics. Using the developed database of spectrally similar samples allows any spectral difference metric to be compared to a visual response. The second experiment demonstrated the impact of spectral redundancy on spectral color management. Typical color image processing techniques use profiles consisting of sparse multi-dimensional lookup tables that interpolate between adjacent nodes to prepare an image for rendering. It was shown that colorimetric error resulted when interpolating between lookup table nodes that were inconsistent in digital count space although spectrally similar. Finally, the analysis was used to enable spectral watermarking of images. To illustrate the significance of this watermarking technique, information was embedded into three images with varying levels of complexity. Prints were made verifying that information could be hidden while preserving the visual and spectral integrity of the original image

    Navigating the roadblocks to spectral color reproduction: data-efficient multi-channel imaging and spectral color management

    Get PDF
    Commercialization of spectral imaging for color reproduction will require the identification and traversal of roadblocks to its success. Among the drawbacks associated with spectral reproduction is a tremendous increase in data capture bandwidth and processing throughput. Methods are proposed for attenuating these increases with data-efficient methods based on adaptive multi-channel visible-spectrum capture and with low-dimensional approaches to spectral color management. First, concepts of adaptive spectral capture are explored. Current spectral imaging approaches require tens of camera channels although previous research has shown that five to nine channels can be sufficient for scenes limited to pre-characterized spectra. New camera systems are proposed and evaluated that incorporate adaptive features reducing capture demands to a similar few channels with the advantage that a priori information about expected scenes is not needed at the time of system design. Second, proposals are made to address problems arising from the significant increase in dimensionality within the image processing stage of a spectral image workflow. An Interim Connection Space (ICS) is proposed as a reduced dimensionality bottleneck in the processing workflow allowing support of spectral color management. In combination these investigations into data-efficient approaches improve two critical points in the spectral reproduction workflow: capture and processing. The progress reported here should help the color reproduction community appreciate that the route to data-efficient multi-channel visible spectrum imaging is passable and can be considered for many imaging modalities

    N-colour separation methods for accurate reproduction of spot colours

    Full text link
    In packaging, spot colours are used to print key information like brand logos and elements for which the colour accuracy is critical. The present study investigates methods to aid the accurate reproduction of these spot colours with the n-colour printing process. Typical n-colour printing systems consist of supplementary inks in addition to the usual CMYK inks. Adding these inks to the traditional CMYK set increases the attainable colour gamut, but the added complexity creates several challenges in generating suitable colour separations for rendering colour images. In this project, the n-colour separation is achieved by the use of additional sectors for intermediate inks. Each sector contains four inks with the achromatic ink (black) common to all sectors. This allows the extension of the principles of the CMYK printing process to these additional sectors. The methods developed in this study can be generalised to any number of inks. The project explores various aspects of the n-colour printing process including the forward characterisation methods, gamut prediction of the n-colour process and the inverse characterisation to calculate the n-colour separation for target spot colours. The scope of the study covers different printing technologies including lithographic offset, flexographic, thermal sublimation and inkjet printing. A new method is proposed to characterise the printing devices. This method, the spot colour overprint (SCOP) model, was evaluated for the n-colour printing process with different printing technologies. In addition, a set of real-world spot colours were converted to n-colour separations and printed with the 7-colour printing process to evaluate against the original spot colours. The results show that the proposed methods can be effectively used to replace the spot coloured inks with the n-colour printing process. This can save significant material, time and costs in the packaging industry

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics

    The development of multi-channel inkjet printing methodologies for fine art applications

    Get PDF
    This thesis contributes to the defence of the practitioner perspective as a means of undertaking problems addressed predominantly in the field of colour science. Whilst artists have been exploring the use of colour for centuries through their personal practice and education, the rise of industrialised printing processes has generated a shift in focus away from these creative pursuits and into the computational field of colour research. It is argued here that the disposition and knowledge generated by creative practice has significant value to offer developing technologies. While creative practice has limited influence in the development of colour printing, practitioners and users of technology actively engage with the process in ways that extend beyond its intended uses in order to overcome recognised shortcomings. Here consideration is given to this creative engagement as motivation to develop bespoke printing parameters that demonstrate the effects of colour mixing through methods alternative to standard workflows. The research is undertaken incorporating both qualitative and quantitative analysis, collecting data from visual assessments and by examining spectral measurements taken from printed output. Action research is employed to directly access and act upon the constant developments in the art and science disciplines related to inkjet printing, observing and engaging with current methods and techniques employed by practitioners and developers. This method of research has strongly informed the empirical testing that has formed this thesis’s contribution to fine art inkjet printing practice. The research follows a practitioner led approach to designing and testing alternative printing methods and is aimed at expanding the number of discernible colours an inkjet printer can reproduce. The application of this methodology is evidenced through demonstrative prints and a reproduction study undertaken at the National Gallery, London. The experimentation undertaken in partnership with the National Gallery has proven the ability to increase accuracy between colour measured from the original target and reproduction, beyond the capabilities of current inkjet printing workflows

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    Test Targets 8.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Publishing is both a journey and a destination. In the case of Test Targets, the act of creating and editing content, paginating and managing digital assets, represents the journey. The hard copy is the result or destination that readers can see and touch. Like the space exploration program, everyone saw the spacecraft that landed on the moon. It was the rocket booster that made the journey from the earth to the moon possible. This article portrays the process of capturing ideas in the form of digital data. It also describes the process of managing digital assets that produces the Test Targets publication
    corecore