5,351 research outputs found

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Modelling epistasis in genetic disease using Petri nets, evolutionary computation and frequent itemset mining

    Get PDF
    Petri nets are useful for mathematically modelling disease-causing genetic epistasis. A Petri net model of an interaction has the potential to lead to biological insight into the cause of a genetic disease. However, defining a Petri net by hand for a particular interaction is extremely difficult because of the sheer complexity of the problem and degrees of freedom inherent in a Petri net’s architecture. We propose therefore a novel method, based on evolutionary computation and data mining, for automatically constructing Petri net models of non-linear gene interactions. The method comprises two main steps. Firstly, an initial partial Petri net is set up with several repeated sub-nets that model individual genes and a set of constraints, comprising relevant common sense and biological knowledge, is also defined. These constraints characterise the class of Petri nets that are desired. Secondly, this initial Petri net structure and the constraints are used as the input to a genetic algorithm. The genetic algorithm searches for a Petri net architecture that is both a superset of the initial net, and also conforms to all of the given constraints. The genetic algorithm evaluation function that we employ gives equal weighting to both the accuracy of the net and also its parsimony. We demonstrate our method using an epistatic model related to the presence of digital ulcers in systemic sclerosis patients that was recently reported in the literature. Our results show that although individual “perfect” Petri nets can frequently be discovered for this interaction, the true value of this approach lies in generating many different perfect nets, and applying data mining techniques to them in order to elucidate common and statistically significant patterns of interaction

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE
    corecore