167 research outputs found

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Learning-Based Arabic Word Spotting Using a Hierarchical Classifier

    Get PDF
    The effective retrieval of information from scanned and written documents is becoming essential with the increasing amounts of digitized documents, and therefore developing efficient means of analyzing and recognizing these documents is of significant interest. Among these methods is word spotting, which has recently become an active research area. Such systems have been implemented for Latin-based and Chinese languages, while few of them have been implemented for Arabic handwriting. The fact that Arabic writing is cursive by nature and unconstrained, with no clear white space between words, makes the processing of Arabic handwritten documents a more challenging problem. In this thesis, the design and implementation of a learning-based Arabic handwritten word spotting system is presented. This incorporates the aspects of text line extraction, handwritten word recognition, partial segmentation of words, word spotting and finally validation of the spotted words. The Arabic text line is more unconstrained than that of other scripts, essentially since it also includes small connected components such as dots and diacritics that are usually located between lines. Thus, a robust method to extract text lines that takes into consideration the challenges in the Arabic handwriting is proposed. The method is evaluated on two Arabic handwritten documents databases, and the results are compared with those of two other methods for text line extraction. The results show that the proposed method is effective, and compares favorably with the other methods. Word spotting is an automatic process to search for words within a document. Applying this process to handwritten Arabic documents is challenging due to the absence of a clear space between handwritten words. To address this problem, an effective learning-based method for Arabic handwritten word spotting is proposed and presented in this thesis. For this process, sub-words or pieces of Arabic words form the basic components of the search process, and a hierarchical classifier is implemented to integrate statistical language models with the segmentation of an Arabic text line into sub-words. The holistic and analytical paradigms (for word recognition and spotting) are studied, and verification models based on combining these two paradigms have been proposed and implemented to refine the outcomes of the analytical classifier that spots words. Finally, a series of evaluation and testing experiments have been conducted to evaluate the effectiveness of the proposed systems, and these show that promising results have been obtained

    Word Searching in Scene Image and Video Frame in Multi-Script Scenario using Dynamic Shape Coding

    Full text link
    Retrieval of text information from natural scene images and video frames is a challenging task due to its inherent problems like complex character shapes, low resolution, background noise, etc. Available OCR systems often fail to retrieve such information in scene/video frames. Keyword spotting, an alternative way to retrieve information, performs efficient text searching in such scenarios. However, current word spotting techniques in scene/video images are script-specific and they are mainly developed for Latin script. This paper presents a novel word spotting framework using dynamic shape coding for text retrieval in natural scene image and video frames. The framework is designed to search query keyword from multiple scripts with the help of on-the-fly script-wise keyword generation for the corresponding script. We have used a two-stage word spotting approach using Hidden Markov Model (HMM) to detect the translated keyword in a given text line by identifying the script of the line. A novel unsupervised dynamic shape coding based scheme has been used to group similar shape characters to avoid confusion and to improve text alignment. Next, the hypotheses locations are verified to improve retrieval performance. To evaluate the proposed system for searching keyword from natural scene image and video frames, we have considered two popular Indic scripts such as Bangla (Bengali) and Devanagari along with English. Inspired by the zone-wise recognition approach in Indic scripts[1], zone-wise text information has been used to improve the traditional word spotting performance in Indic scripts. For our experiment, a dataset consisting of images of different scenes and video frames of English, Bangla and Devanagari scripts were considered. The results obtained showed the effectiveness of our proposed word spotting approach.Comment: Multimedia Tools and Applications, Springe

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages

    Arbitrary Keyword Spotting in Handwritten Documents

    Get PDF
    Despite the existence of electronic media in today’s world, a considerable amount of written communications is in paper form such as books, bank cheques, contracts, etc. There is an increasing demand for the automation of information extraction, classification, search, and retrieval of documents. The goal of this research is to develop a complete methodology for the spotting of arbitrary keywords in handwritten document images. We propose a top-down approach to the spotting of keywords in document images. Our approach is composed of two major steps: segmentation and decision. In the former, we generate the word hypotheses. In the latter, we decide whether a generated word hypothesis is a specific keyword or not. We carry out the decision step through a two-level classification where first, we assign an input image to a keyword or non-keyword class; and then transcribe the image if it is passed as a keyword. By reducing the problem from the image domain to the text domain, we do not only address the search problem in handwritten documents, but also the classification and retrieval, without the need for the transcription of the whole document image. The main contribution of this thesis is the development of a generalized minimum edit distance for handwritten words, and to prove that this distance is equivalent to an Ergodic Hidden Markov Model (EHMM). To the best of our knowledge, this work is the first to present an exact 2D model for the temporal information in handwriting while satisfying practical constraints. Some other contributions of this research include: 1) removal of page margins based on corner detection in projection profiles; 2) removal of noise patterns in handwritten images using expectation maximization and fuzzy inference systems; 3) extraction of text lines based on fast Fourier-based steerable filtering; 4) segmentation of characters based on skeletal graphs; and 5) merging of broken characters based on graph partitioning. Our experiments with a benchmark database of handwritten English documents and a real-world collection of handwritten French documents indicate that, even without any word/document-level training, our results are comparable with two state-of-the-art word spotting systems for English and French documents
    corecore