42,324 research outputs found

    Moving Walkways, Escalators, and Elevators

    Full text link
    We study a simple geometric model of transportation facility that consists of two points between which the travel speed is high. This elementary definition can model shuttle services, tunnels, bridges, teleportation devices, escalators or moving walkways. The travel time between a pair of points is defined as a time distance, in such a way that a customer uses the transportation facility only if it is helpful. We give algorithms for finding the optimal location of such a transportation facility, where optimality is defined with respect to the maximum travel time between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional, Valladolid, Spai

    Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

    Full text link
    We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS) relaxation and solve the underlying problems with semidefinite programming. On the larger-scale or real-time applications, we use our recently introduced "SDSOS Optimization" techniques which result in second order cone programs. To the best of our knowledge, this is the first study of real-time applications of sum of squares techniques in optimization and control. No knowledge in dynamics and control is assumed from the reader

    Inter-plane satellite matching in dense LEO constellations

    Full text link
    Dense constellations of Low Earth Orbit (LEO) small satellites are envisioned to make extensive use of the inter-satellite link (ISL). Within the same orbital plane, the inter-satellite distances are preserved and the links are rather stable. In contrast, the relative motion between planes makes the inter-plane ISL challenging. In a dense set-up, each spacecraft has several satellites in its coverage volume, but the time duration of each of these links is small and the maximum number of active connections is limited by the hardware. We analyze the matching problem of connecting satellites using the inter-plane ISL for unicast transmissions. We present and evaluate the performance of two solutions to the matching problem with any number of orbital planes and up to two transceivers: a heuristic solution with the aim of minimizing the total cost; and a Markovian solution to maintain the on-going connections as long as possible. The Markovian algorithm reduces the time needed to solve the matching up to 1000x and 10x with respect to the optimal solution and to the heuristic solution, respectively, without compromising the total cost. Our model includes power adaptation and optimizes the network energy consumption as the exemplary cost in the evaluations, but any other QoS-oriented KPI can be used instead
    • …
    corecore