3,066 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    S.R. Ranganathan's Ontology of the Book: On a Bibliographical Conceptual Model avant la lettre

    Get PDF
    This paper examines a conceptual model of the book advanced in the mid-20th century by the eminent Indian librarian and classification theorist S.R. Ranganathan (1892-1972), who formulated it with the aid of an ontological model drawn from Hindu philosophical thought. The analysis of this model, which has hitherto received only sporadic discussion in KO literature, unfolds in three parts. First, the paper outlines Ranganathanā€™s model, explains its Hindu philosophical background, and traces its development, showing that, in fact, it comprised two distinct versions ā€“ a triadic (i.e., three-entity) and a dyadic (i.e., two-entity) one ā€“ which were fully compatible to one another and which Ranganathan used in different contexts. Next, the structure of Ranganathanā€™s model, in both its triadic and dyadic forms, is compared with those of the contemporary bibliographic conceptual models most widely used today, IFLA-LRM (and its predecessor, FRBR) and BIBFRAME. It is shown that Ranganathanā€™s model bears some striking resemblances to these current models: in particular, the triadic version of Ranganathanā€™s model shares affinities with FRBR and IFLA-LRM, while the dyadic version is closer to BIBFRAME. Then follows a discussion of significant structural divergences between Ranganathanā€™s model and its latter-day counterparts, and an explanation for these differences is adduced. The paper concludes with a brief consideration of the surprising lack of historical connection between Ranganathanā€™s conceptual model of the book avant la lettre and current bibliographic conceptual models, as well as a reflection on the enduring relevance of Ranganathanā€™s model for today

    Data-Driven Evaluation of In-Vehicle Information Systems

    Get PDF
    Todayā€™s In-Vehicle Information Systems (IVISs) are featurerich systems that provide the driver with numerous options for entertainment, information, comfort, and communication. Drivers can stream their favorite songs, read reviews of nearby restaurants, or change the ambient lighting to their liking. To do so, they interact with large center stack touchscreens that have become the main interface between the driver and IVISs. To interact with these systems, drivers must take their eyes off the road which can impair their driving performance. This makes IVIS evaluation critical not only to meet customer needs but also to ensure road safety. The growing number of features, the distraction caused by large touchscreens, and the impact of driving automation on driver behavior pose significant challenges for the design and evaluation of IVISs. Traditionally, IVISs are evaluated qualitatively or through small-scale user studies using driving simulators. However, these methods are not scalable to the growing number of features and the variety of driving scenarios that influence driver interaction behavior. We argue that data-driven methods can be a viable solution to these challenges and can assist automotive User Experience (UX) experts in evaluating IVISs. Therefore, we need to understand how data-driven methods can facilitate the design and evaluation of IVISs, how large amounts of usage data need to be visualized, and how drivers allocate their visual attention when interacting with center stack touchscreens. In Part I, we present the results of two empirical studies and create a comprehensive understanding of the role that data-driven methods currently play in the automotive UX design process. We found that automotive UX experts face two main conflicts: First, results from qualitative or small-scale empirical studies are often not valued in the decision-making process. Second, UX experts often do not have access to customer data and lack the means and tools to analyze it appropriately. As a result, design decisions are often not user-centered and are based on subjective judgments rather than evidence-based customer insights. Our results show that automotive UX experts need data-driven methods that leverage large amounts of telematics data collected from customer vehicles. They need tools to help them visualize and analyze customer usage data and computational methods to automatically evaluate IVIS designs. In Part II, we present ICEBOAT, an interactive user behavior analysis tool for automotive user interfaces. ICEBOAT processes interaction data, driving data, and glance data, collected over-the-air from customer vehicles and visualizes it on different levels of granularity. Leveraging our multi-level user behavior analysis framework, it enables UX experts to effectively and efficiently evaluate driver interactions with touchscreen-based IVISs concerning performance and safety-related metrics. In Part III, we investigate driversā€™ multitasking behavior and visual attention allocation when interacting with center stack touchscreens while driving. We present the first naturalistic driving study to assess driversā€™ tactical and operational self-regulation with center stack touchscreens. Our results show significant differences in driversā€™ interaction and glance behavior in response to different levels of driving automation, vehicle speed, and road curvature. During automated driving, drivers perform more interactions per touchscreen sequence and increase the time spent looking at the center stack touchscreen. These results emphasize the importance of context-dependent driver distraction assessment of driver interactions with IVISs. Motivated by this we present a machine learning-based approach to predict and explain the visual demand of in-vehicle touchscreen interactions based on customer data. By predicting the visual demand of yet unseen touchscreen interactions, our method lays the foundation for automated data-driven evaluation of early-stage IVIS prototypes. The local and global explanations provide additional insights into how design artifacts and driving context affect driversā€™ glance behavior. Overall, this thesis identifies current shortcomings in the evaluation of IVISs and proposes novel solutions based on visual analytics and statistical and computational modeling that generate insights into driver interaction behavior and assist UX experts in making user-centered design decisions

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    Explainable temporal data mining techniques to support the prediction task in Medicine

    Get PDF
    In the last decades, the increasing amount of data available in all fields raises the necessity to discover new knowledge and explain the hidden information found. On one hand, the rapid increase of interest in, and use of, artificial intelligence (AI) in computer applications has raised a parallel concern about its ability (or lack thereof) to provide understandable, or explainable, results to users. In the biomedical informatics and computer science communities, there is considerable discussion about the `` un-explainable" nature of artificial intelligence, where often algorithms and systems leave users, and even developers, in the dark with respect to how results were obtained. Especially in the biomedical context, the necessity to explain an artificial intelligence system result is legitimate of the importance of patient safety. On the other hand, current database systems enable us to store huge quantities of data. Their analysis through data mining techniques provides the possibility to extract relevant knowledge and useful hidden information. Relationships and patterns within these data could provide new medical knowledge. The analysis of such healthcare/medical data collections could greatly help to observe the health conditions of the population and extract useful information that can be exploited in the assessment of healthcare/medical processes. Particularly, the prediction of medical events is essential for preventing disease, understanding disease mechanisms, and increasing patient quality of care. In this context, an important aspect is to verify whether the database content supports the capability of predicting future events. In this thesis, we start addressing the problem of explainability, discussing some of the most significant challenges need to be addressed with scientific and engineering rigor in a variety of biomedical domains. We analyze the ``temporal component" of explainability, focusing on detailing different perspectives such as: the use of temporal data, the temporal task, the temporal reasoning, and the dynamics of explainability in respect to the user perspective and to knowledge. Starting from this panorama, we focus our attention on two different temporal data mining techniques. The first one, based on trend abstractions, starting from the concept of Trend-Event Pattern and moving through the concept of prediction, we propose a new kind of predictive temporal patterns, namely Predictive Trend-Event Patterns (PTE-Ps). The framework aims to combine complex temporal features to extract a compact and non-redundant predictive set of patterns composed by such temporal features. The second one, based on functional dependencies, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework. We then discuss the concept of approximation, the data complexity of deriving an APFD, the introduction of two new error measures, and finally the quality of APFDs in terms of coverage and reliability. Exploiting these methodologies, we analyze intensive care unit data from the MIMIC dataset

    Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data

    Get PDF
    We present an approach that shows all relevant subspaces of categorical data condensed in a single picture. We model the categorical values of the attributes as co-occurrences with data partitions generated from structured data using pattern mining. We show that these co-occurrences are a-priori, allowing us to greatly reduce the search space, effectively generating the condensed picture where conventional approaches filter out several subspaces as these are deemed insignificant. The task of identifying interesting subspaces is common but difficult due to exponential search spaces and the curse of dimensionality. One application of such a task might be identifying a cohort of patients defined by attributes such as gender, age, and diabetes type that share a common patient history, which is modeled as event sequences. Filtering the data by these attributes is common but cumbersome and often does not allow a comparison of subspaces. We contribute a powerful multi-dimensional pattern exploration approach (MDPE-approach) agnostic to the structured data type that models multiple attributes and their characteristics as co-occurrences, allowing the user to identify and compare thousands of subspaces of interest in a single picture. In our MDPE-approach, we introduce two methods to dramatically reduce the search space, outputting only the boundaries of the search space in the form of two tables. We implement the MDPE-approach in an interactive visual interface (MDPE-vis) that provides a scalable, pixel-based visualization design allowing the identification, comparison, and sense-making of subspaces in structured data. Our case studies using a gold-standard dataset and external domain experts confirm our approachā€™s and implementationā€™s applicability. A third use case sheds light on the scalability of our approach and a user study with 15 participants underlines its usefulness and power
    • ā€¦
    corecore