3,130 research outputs found

    Explain3D: Explaining Disagreements in Disjoint Datasets

    Get PDF
    Data plays an important role in applications, analytic processes, and many aspects of human activity. As data grows in size and complexity, we are met with an imperative need for tools that promote understanding and explanations over data-related operations. Data management research on explanations has focused on the assumption that data resides in a single dataset, under one common schema. But the reality of today's data is that it is frequently un-integrated, coming from different sources with different schemas. When different datasets provide different answers to semantically similar questions, understanding the reasons for the discrepancies is challenging and cannot be handled by the existing single-dataset solutions. In this paper, we propose Explain3D, a framework for explaining the disagreements across disjoint datasets (3D). Explain3D focuses on identifying the reasons for the differences in the results of two semantically similar queries operating on two datasets with potentially different schemas. Our framework leverages the queries to perform a semantic mapping across the relevant parts of their provenance; discrepancies in this mapping point to causes of the queries' differences. Exploiting the queries gives Explain3D an edge over traditional schema matching and record linkage techniques, which are query-agnostic. Our work makes the following contributions: (1) We formalize the problem of deriving optimal explanations for the differences of the results of semantically similar queries over disjoint datasets. (2) We design a 3-stage framework for solving the optimal explanation problem. (3) We develop a smart-partitioning optimizer that improves the efficiency of the framework by orders of magnitude. (4)~We experiment with real-world and synthetic data to demonstrate that Explain3D can derive precise explanations efficiently

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201

    From Sparse Signals to Sparse Residuals for Robust Sensing

    Full text link
    One of the key challenges in sensor networks is the extraction of information by fusing data from a multitude of distinct, but possibly unreliable sensors. Recovering information from the maximum number of dependable sensors while specifying the unreliable ones is critical for robust sensing. This sensing task is formulated here as that of finding the maximum number of feasible subsystems of linear equations, and proved to be NP-hard. Useful links are established with compressive sampling, which aims at recovering vectors that are sparse. In contrast, the signals here are not sparse, but give rise to sparse residuals. Capitalizing on this form of sparsity, four sensing schemes with complementary strengths are developed. The first scheme is a convex relaxation of the original problem expressed as a second-order cone program (SOCP). It is shown that when the involved sensing matrices are Gaussian and the reliable measurements are sufficiently many, the SOCP can recover the optimal solution with overwhelming probability. The second scheme is obtained by replacing the initial objective function with a concave one. The third and fourth schemes are tailored for noisy sensor data. The noisy case is cast as a combinatorial problem that is subsequently surrogated by a (weighted) SOCP. Interestingly, the derived cost functions fall into the framework of robust multivariate linear regression, while an efficient block-coordinate descent algorithm is developed for their minimization. The robust sensing capabilities of all schemes are verified by simulated tests.Comment: Under review for publication in the IEEE Transactions on Signal Processing (revised version

    Fast and Reliable Missing Data Contingency Analysis with Predicate-Constraints

    Full text link
    Today, data analysts largely rely on intuition to determine whether missing or withheld rows of a dataset significantly affect their analyses. We propose a framework that can produce automatic contingency analysis, i.e., the range of values an aggregate SQL query could take, under formal constraints describing the variation and frequency of missing data tuples. We describe how to process SUM, COUNT, AVG, MIN, and MAX queries in these conditions resulting in hard error bounds with testable constraints. We propose an optimization algorithm based on an integer program that reconciles a set of such constraints, even if they are overlapping, conflicting, or unsatisfiable, into such bounds. Our experiments on real-world datasets against several statistical imputation and inference baselines show that statistical techniques can have a deceptively high error rate that is often unpredictable. In contrast, our framework offers hard bounds that are guaranteed to hold if the constraints are not violated. In spite of these hard bounds, we show competitive accuracy to statistical baselines

    CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics Trees

    Get PDF
    We report on a new, efficient encoding for the data cube, which results in a drastic speed-up of OLAP queries that aggregate along any combination of dimensions over numerical and categorical attributes. We are focusing on a class of queries called cube queries, which return aggregated values rather than sets of tuples. Our approach, termed CubiST++ (Cubing with Statistics Trees Plus Families), represents a drastic departure from existing relational (ROLAP) and multi-dimensional (MOLAP) approaches in that it does not use the view lattice to compute and materialize new views from existing views in some heuristic fashion. Instead, CubiST++ encodes all possible aggregate views in the leaves of a new data structure called statistics tree (ST) during a one-time scan of the detailed data. In order to optimize the queries involving constraints on hierarchy levels of the underlying dimensions, we select and materialize a family of candidate trees, which represent superviews over the different hierarchical levels of the dimensions. Given a query, our query evaluation algorithm selects the smallest tree in the family, which can provide the answer. Extensive evaluations of our prototype implementation have demonstrated its superior run-time performance and scalability when compared with existing MOLAP and ROLAP systems

    Kaskade: Graph Views for Efficient Graph Analytics

    Full text link
    Graphs are an increasingly popular way to model real-world entities and relationships between them, ranging from social networks to data lineage graphs and biological datasets. Queries over these large graphs often involve expensive subgraph traversals and complex analytical computations. These real-world graphs are often substantially more structured than a generic vertex-and-edge model would suggest, but this insight has remained mostly unexplored by existing graph engines for graph query optimization purposes. Therefore, in this work, we focus on leveraging structural properties of graphs and queries to automatically derive materialized graph views that can dramatically speed up query evaluation. We present KASKADE, the first graph query optimization framework to exploit materialized graph views for query optimization purposes. KASKADE employs a novel constraint-based view enumeration technique that mines constraints from query workloads and graph schemas, and injects them during view enumeration to significantly reduce the search space of views to be considered. Moreover, it introduces a graph view size estimator to pick the most beneficial views to materialize given a query set and to select the best query evaluation plan given a set of materialized views. We evaluate its performance over real-world graphs, including the provenance graph that we maintain at Microsoft to enable auditing, service analytics, and advanced system optimizations. Our results show that KASKADE substantially reduces the effective graph size and yields significant performance speedups (up to 50X), in some cases making otherwise intractable queries possible
    corecore