11,360 research outputs found

    CHORUS Deliverable 3.3: Vision Document - Intermediate version

    Get PDF
    The goal of the CHORUS vision document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area (in line with the mandate of CHORUS as a Coordination Action). This current intermediate draft of the CHORUS vision document (D3.3) is based on the previous CHORUS vision documents D3.1 to D3.2 and on the results of the six CHORUS Think-Tank meetings held in March, September and November 2007 as well as in April, July and October 2008, and on the feedback from other CHORUS events. The outcome of the six Think-Thank meetings will not just be to the benefit of the participants which are stakeholders and experts from academia and industry – CHORUS, as a coordination action of the EC, will feed back the findings (see Summary) to the projects under its purview and, via its website, to the whole community working in the domain of AV content search. A few subjections of this deliverable are to be completed after the eights (and presumably last) Think-Tank meeting in spring 2009

    Multimodal Visual Concept Learning with Weakly Supervised Techniques

    Full text link
    Despite the availability of a huge amount of video data accompanied by descriptive texts, it is not always easy to exploit the information contained in natural language in order to automatically recognize video concepts. Towards this goal, in this paper we use textual cues as means of supervision, introducing two weakly supervised techniques that extend the Multiple Instance Learning (MIL) framework: the Fuzzy Sets Multiple Instance Learning (FSMIL) and the Probabilistic Labels Multiple Instance Learning (PLMIL). The former encodes the spatio-temporal imprecision of the linguistic descriptions with Fuzzy Sets, while the latter models different interpretations of each description's semantics with Probabilistic Labels, both formulated through a convex optimization algorithm. In addition, we provide a novel technique to extract weak labels in the presence of complex semantics, that consists of semantic similarity computations. We evaluate our methods on two distinct problems, namely face and action recognition, in the challenging and realistic setting of movies accompanied by their screenplays, contained in the COGNIMUSE database. We show that, on both tasks, our method considerably outperforms a state-of-the-art weakly supervised approach, as well as other baselines.Comment: CVPR 201

    Evaluation of Automatic Video Captioning Using Direct Assessment

    Full text link
    We present Direct Assessment, a method for manually assessing the quality of automatically-generated captions for video. Evaluating the accuracy of video captions is particularly difficult because for any given video clip there is no definitive ground truth or correct answer against which to measure. Automatic metrics for comparing automatic video captions against a manual caption such as BLEU and METEOR, drawn from techniques used in evaluating machine translation, were used in the TRECVid video captioning task in 2016 but these are shown to have weaknesses. The work presented here brings human assessment into the evaluation by crowdsourcing how well a caption describes a video. We automatically degrade the quality of some sample captions which are assessed manually and from this we are able to rate the quality of the human assessors, a factor we take into account in the evaluation. Using data from the TRECVid video-to-text task in 2016, we show how our direct assessment method is replicable and robust and should scale to where there many caption-generation techniques to be evaluated.Comment: 26 pages, 8 figure

    A Data-Driven Approach for Tag Refinement and Localization in Web Videos

    Get PDF
    Tagging of visual content is becoming more and more widespread as web-based services and social networks have popularized tagging functionalities among their users. These user-generated tags are used to ease browsing and exploration of media collections, e.g. using tag clouds, or to retrieve multimedia content. However, not all media are equally tagged by users. Using the current systems is easy to tag a single photo, and even tagging a part of a photo, like a face, has become common in sites like Flickr and Facebook. On the other hand, tagging a video sequence is more complicated and time consuming, so that users just tag the overall content of a video. In this paper we present a method for automatic video annotation that increases the number of tags originally provided by users, and localizes them temporally, associating tags to keyframes. Our approach exploits collective knowledge embedded in user-generated tags and web sources, and visual similarity of keyframes and images uploaded to social sites like YouTube and Flickr, as well as web sources like Google and Bing. Given a keyframe, our method is able to select on the fly from these visual sources the training exemplars that should be the most relevant for this test sample, and proceeds to transfer labels across similar images. Compared to existing video tagging approaches that require training classifiers for each tag, our system has few parameters, is easy to implement and can deal with an open vocabulary scenario. We demonstrate the approach on tag refinement and localization on DUT-WEBV, a large dataset of web videos, and show state-of-the-art results.Comment: Preprint submitted to Computer Vision and Image Understanding (CVIU

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed
    corecore