3 research outputs found

    Using Conceptors to Transfer Between Long-Term and Short-Term Memory

    Get PDF
    International audienceWe introduce a model of working memory combining short-term and long-term components. For the long-term component, we used Concep-tors in order to store constant temporal patterns. For the short-term component , we used the Gated-Reservoir model: a reservoir trained to hold a triggered information from an input stream and maintain it in a readout unit. We combined both components in order to obtain a model in which information can go from long-term memory to short-term memory and vice-versa

    Reservoir SMILES: Towards SensoriMotor Interaction of Language and Embodiment of Symbols with Reservoir Architectures

    Get PDF
    Language involves several hierarchical levels of abstraction. Most models focus on a particular level of abstraction making them unable to model bottom-up and top-down processes. Moreover, we do not know how the brain grounds symbols to perceptions and how these symbols emerge throughout development. Experimental evidence suggests that perception and action shape one-another (e.g. motor areas activated during speech perception) but the precise mechanisms involved in this action-perception shaping at various levels of abstraction are still largely unknown. My previous and current work include the modelling of language comprehension, language acquisition with a robotic perspective, sensorimotor models and extended models of Reservoir Computing to model working memory and hierarchical processing. I propose to create a new generation of neural-based computational models of language processing and production; to use biologically plausible learning mechanisms relying on recurrent neural networks; create novel sensorimotor mechanisms to account for action-perception shaping; build hierarchical models from sensorimotor to sentence level; embody such models in robots

    Passphrase and keystroke dynamics authentication: security and usability

    Get PDF
    It was found that employees spend a total 2.25 days within a 60 day period on password related activities. Another study found that over 85 days an average user will create 25 accounts with an average of 6.5 unique passwords. These numbers are expected to increase over time as more systems become available. In addition, the use of 6.5 unique passwords highlight that passwords are being reused which creates security concerns as multiple systems will be accessible by an unauthorised party if one of these passwords is leaked. Current user authentication solutions either increase security or usability. When security increases, usability decreases, or vice versa. To add to this, stringent security protocols encourage unsecure behaviours by the user such as writing the password down on a piece of paper to remember it. It was found that passphrases require less cognitive effort than passwords and because passphrases are stronger than passwords, they don’t need to be changed as frequently as passwords. This study aimed to assess a two-tier user authentication solution that increases security and usability. The proposed solution uses passphrases in conjunction with keystroke dynamics to address this research problem. The design science research approach was used to guide this study. The study’s theoretical foundation includes three theories. The Shannon entropy formula was used to calculate the strength of passwords, passphrases and keystroke dynamics. The chunking theory assisted in assessing password and passphrase memorisation issues and the keystroke-level model was used to assess password and passphrase typing issues. Two primary data collection methods were used to evaluate the findings and to ensure that gaps in the research were filled. A login assessment experiment collected data on user authentication and user-system interaction for passwords and passphrases. Plus, an expert review was conducted to verify findings and assess the research artefact in the form of a model. The model can be used to assist with the implementation of a two-tier user authentication solution which involves passphrases and keystroke dynamics. There are a number of components that need to be considered to realise the benefits of this solution and ensure successful implementation
    corecore