31,792 research outputs found

    Using Collective Intelligence to Route Internet Traffic

    Full text link
    A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms.Comment: 7 page

    Avoiding Braess' Paradox through Collective Intelligence

    Full text link
    In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many cases, due to the side-effects of one router's actions on another routers performance, having routers use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only used to route infinitesimally small amounts of traffic. As a particular example of this we present an instance of Braess' paradox for ISPA's, in which adding new links to a network decreases overall throughput. We also demonstrate that load-balancing, in which the routing decisions are made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to "side-effects", in this case of current routing decision on future traffic. The theory of COllective INtelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects. We present key concepts from that theory and use them to derive an idealized algorithm whose performance is better than that of the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm avoids Braess' paradox.Comment: 28 page

    CBPRS: A City Based Parking and Routing System

    Get PDF
    Navigational systems assist drivers in finding a route between two locations that is time optimal in theory but seldom in practice due to delaying circumstances the system is unaware of, such as traffic jams. Upon arrival at the destination the service of the system ends and the driver is forced to locate a parking place without further assistance. We propose a City Based Parking Routing System (CBPRS) that monitors and reserves parking places for CBPRS participants within a city. The CBPRS guides vehicles using an ant based distributed hierarchical routing algorithm to their reserved parking place. Through means of experiments in a simulation environment we found that reductions of travel times for participants were significant in comparison to a situation where vehicles relied on static routing information generated by the well known Dijkstra’s algorithm. Furthermore, we found that the CBPRS was able to increase city wide traffic flows and decrease the number and duration of traffic jams throughout the city once the number of participants increased.information systems;computer simulation;dynamic routing

    An Approach to Agent-Based Service Composition and Its Application to Mobile

    Get PDF
    This paper describes an architecture model for multiagent systems that was developed in the European project LEAP (Lightweight Extensible Agent Platform). Its main feature is a set of generic services that are implemented independently of the agents and can be installed into the agents by the application developer in a flexible way. Moreover, two applications using this architecture model are described that were also developed within the LEAP project. The application domain is the support of mobile, virtual teams for the German automobile club ADAC and for British Telecommunications

    Emergent behaviors in the Internet of things: The ultimate ultra-large-scale system

    Get PDF
    To reach its potential, the Internet of Things (IoT) must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of ultra-large-scale systems (ULSS) in several areas, including autonomous vehicles, smart cities, and smart grids. The scope of ULSS is both large and complex. Thus, the authors propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. The authors discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. They also illustrate the HEB concepts in reference to autonomous vehicles. This use case paves the way to the discussion of new lines of research.Damian Roca work was supported by a Doctoral Scholarship provided by Fundación La Caixa. This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493) and by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P).Peer ReviewedPostprint (author's final draft

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction
    corecore