3 research outputs found

    Parallelization of Littlewood-Richardson Coefficients Computation and its Integration into the BonjourGrid Meta-Desktop Grid Middleware

    No full text
    International audienceThe aim of this paper is to show how to parallelize a compute intensive application in mathematics (Group Theory) for an institutional Desktop Grid platform coordinated by a meta-grid middleware named BonjourGrid. The paper is twofold: first of all, it shows how to parallelize a sequential program for a multicore CPU which participates in the computation and second it demonstrates the effort for launching multiple instances of the solutions for the mathematical problem with the BonjourGrid middleware. BonjourGrid is a fully decentralized Desktop Grid middleware. The main results of the paper are: a) an efficient multi-threaded version of a sequential program to compute Littlewood- Richardson coefficients, namely the Multi-LR program and b) a proof of concept, centered around the user needs, for the BonjourGrid middleware dedicated to coordinate multiple instances of programsfor Desktop Grids and with the help of Multi-LR. In this paper, the scientific work consists in starting from a model for the solution of a compute intensive problem in mathematics, to incorporate the concrete model into a middleware and running it on commodity PCs platform managed by an innovative meta Desktop Grid middleware

    Using Checkpointing to Enhance Turnaround Time on Institutional Desktop Grids

    No full text
    In this paper, we present a checkpoint-based scheme to improve the turnaround time of bag-of-tasks applications executed on institutional desktop grids. We propose to share checkpoints among desktop machines in order to reduce the negative impact of resource volatility. Several scheduling policies are evaluated in our study: FCFS, adaptive timeouts, simple replication, replication with checkpoint on demand, and prediction-based checkpointing combined with replication. We used a set of real traces collected from an academic desktop grid environment to perform trace-driven simulations of the proposed scheduling algorithms. The results show that using a shared checkpoint approach may considerably reduce the turnaround time of the applications when compared to the private checkpoints methodology. 1

    Enhancing reliability with Latin Square redundancy on desktop grids.

    Get PDF
    Computational grids are some of the largest computer systems in existence today. Unfortunately they are also, in many cases, the least reliable. This research examines the use of redundancy with permutation as a method of improving reliability in computational grid applications. Three primary avenues are explored - development of a new redundancy model, the Replication and Permutation Paradigm (RPP) for computational grids, development of grid simulation software for testing RPP against other redundancy methods and, finally, running a program on a live grid using RPP. An important part of RPP involves distributing data and tasks across the grid in Latin Square fashion. Two theorems and subsequent proofs regarding Latin Squares are developed. The theorems describe the changing position of symbols between the rows of a standard Latin Square. When a symbol is missing because a column is removed the theorems provide a basis for determining the next row and column where the missing symbol can be found. Interesting in their own right, the theorems have implications for redundancy. In terms of the redundancy model, the theorems allow one to state the maximum makespan in the face of missing computational hosts when using Latin Square redundancy. The simulator software was developed and used to compare different data and task distribution schemes on a simulated grid. The software clearly showed the advantage of running RPP, which resulted in faster completion times in the face of computational host failures. The Latin Square method also fails gracefully in that jobs complete with massive node failure while increasing makespan. Finally an Inductive Logic Program (ILP) for pharmacophore search was executed, using a Latin Square redundancy methodology, on a Condor grid in the Dahlem Lab at the University of Louisville Speed School of Engineering. All jobs completed, even in the face of large numbers of randomly generated computational host failures
    corecore