4 research outputs found

    Using CLP Simplifications to Improve Java Bytecode Termination Analysis

    No full text
    In an earlier work, a termination analyzer for Java bytecode was developed that translates a Java bytecode program into a constraint logic program and then proves the termination of the latter. An efficiency bottleneck of the termination analyzer is the construction of a proof of termination for the generated constraint logic program, which is often very large in size. In this paper, a set of programsimplifications are presented that reduce the size of the constraint logic program without changing its termination behavior. These simplifications remove program clauses and/or predicate arguments that do not affect the termination behavior of the constraint logic program. Their effect is to reduce significantly the time needed to build the termination proof for the constraint logic program, as our experiments show

    Verifying procedural programs via constrained rewriting induction

    Get PDF
    This paper aims to develop a verification method for procedural programs via a transformation into Logically Constrained Term Rewriting Systems (LCTRSs). To this end, we extend transformation methods based on integer TRSs to handle arbitrary data types, global variables, function calls and arrays, as well as encode safety checks. Then we adapt existing rewriting induction methods to LCTRSs and propose a simple yet effective method to generalize equations. We show that we can automatically verify memory safety and prove correctness of realistic functions. Our approach proves equivalence between two implementations, so in contrast to other works, we do not require an explicit specification in a separate specification language

    A Termination Analyzer for Java Bytecode based on Path-Length

    Get PDF
    It is important to prove that supposedly terminating programs actuallyterminate, particularly if those programs must berun on critical systems or downloaded into a client such as a mobile phone.Although termination of computer programs is generally undecidable,it is possible and useful to provetermination of a large, non-trivial subset of the terminating programs.In this paper we present our termination analyser for sequential Java bytecode,based on a program property called path-length. We describe theanalyses which are needed before the path-length can be computed, such assharing, cyclicity and aliasing. Then weformally define the path-length analysis and prove it correct wrt areference denotational semantics of the bytecode. We show that a constraintlogic program P_CLPcan be built from the result of the path-length analysisof a Java bytecode program P andformally prove that if P_CLP terminates then also P terminates.Hence a termination prover for constraint logic programs can be appliedto prove the termination of P. We conclude with some discussion of thepossibilities and limitations of our approach.Ours is the first existing termination analyser for Java bytecodedealing with any kind of data structures dynamically allocated on the heapand which does not require any help or annotation on the part of the user
    corecore