
8

A Termination Analyzer for Java Bytecode
Based on Path-Length

FAUSTO SPOTO

Università di Verona

and

FRED MESNARD and ÉTIENNE PAYET

IREMIA, LIM, Université de la Réunion

It is important to prove that supposedly terminating programs actually terminate, particularly if
those programs must be run on critical systems or downloaded into a client such as a mobile phone.
Although termination of computer programs is generally undecidable, it is possible and useful to
prove termination of a large, nontrivial subset of the terminating programs. In this article, we
present our termination analyzer for sequential Java bytecode, based on a program property called
path-length. We describe the analyses which are needed before the path-length can be computed
such as sharing, cyclicity, and aliasing. Then we formally define the path-length analysis and prove
it correct with respect to a reference denotational semantics of the bytecode. We show that a
constraint logic program PCLP can be built from the result of the path-length analysis of a Java
bytecode program P and formally prove that if PCLP terminates, then P also terminates. Hence
a termination prover for constraint logic programs can be applied to prove the termination of P .
We conclude with some discussion of the possibilities and limitations of our approach. Ours is
the first existing termination analyzer for Java bytecode dealing with any kind of data structures
dynamically allocated on the heap and which does not require any help or annotation on the part
of the user.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Denotational semantics; program analysis

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, Java, Java bytecode, termination
analysis

ACM Reference Format:
Spoto, F., Mesnard, F., and Payet, É. 2010. A termination analyzer for Java bytecode based on
path-length. ACM Trans. Program. Lang. Syst. 32, 3, Article 8 (March 2010), 70 pages.
DOI = 10.1145/1709093.1709095 http://doi.acm.org/10.1145/1709093.1709095

Authors’ addresses: F. Spoto, Dipartimento di Informatica, Università di Verona, Strada le Grazie
15, 37134 Verona, Italy; email: fausto.spoto@univr.it; F. Mesnard, É. Payet, IREMIA, LIM, Univer-
sité de la Réunion, 15 avenue René Cassin, BP7151, 97715 Saint-Denis Messag, Cedex 9, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0164-0925/2010/03-ART8 $10.00
DOI 10.1145/1709093.1709095 http://doi.acm.org/10.1145/1709093.1709095

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217494528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

8:2 • F. Spoto et al.

1. INTRODUCTION

It is well-known that a general procedure for determining which computer
programs terminate does not exist for Turing-complete programming lan-
guages [Turing 1936]. Nevertheless, it is becoming ever more important to
prove that programs terminate. This is because software is used in critical
systems where nontermination might lead to disaster. Moreover, software is
increasingly deployed in embedded tools such as mobile phones. If a program
downloaded into a mobile phone does not terminate, the phone might require
a tedious shutdown; worse, users might complain to the originator of the soft-
ware or to the phone company itself, which accounts for extra costs on their
part, or might decide not to download software anymore. The software industry
is paying more and more attention to software quality and would like to issue a
certificate attesting to that quality. A proof of termination about the programs in
the software should definitely be part of the certificate. Moreover, the compiler
industry is interested in termination proofs. For instance, the latest version
of Sun’s Java compiler rejects nonterminating class initializers; however, the
test for nontermination is so rudimentary that virtually all nonterminating
initializers escape that test. For these reasons, termination is considered as a
challenge for current software verification [Leavens et al. 2007].

Programmers can often argue for the termination of the programs they write.
This means that termination of computer programs can be proved by humans,
at least for a large class of programs. However, programmers are often very
erroneously convinced of the termination of programs which are later found to
diverge in some special or unexpected cases: almost everyone has had the expe-
rience of having to stop a program which apparently was not terminating. This
means the human proofs of termination are error-prone and generally unreli-
able. This problem becomes more acute for modern programming languages,
such as the object-oriented ones, especially if they are low-level languages with
very complex semantics.

Java bytecode [Lindholm and Yellin 1999] is a low-level, object-oriented pro-
gramming language, usually resulting from the compilation of a source Java
program. It can be seen as a machine-independent, type-safe, object-oriented,
imperative assembly language. Although it was born both with and for Java, it
is now also used as a compilation target for other programming languages. The
Java bytecode available on the Internet or downloaded into mobile phones is of-
ten provided as a set of Java bytecode classes without the corresponding source
code. The source code is not made available for one or more reasons: because
of commercial choice, to shorten the download time, or because source code
does not even exist since the bytecode is the result of software transformations
or specializations. These considerations entail that termination proofs for Java
bytecode software have real industrial interest. Moreover, one can prove the ter-
mination of a Java source program by proving the termination of the derived
Java bytecode (assuming the compiler to be correct), while the converse is false:
many Java bytecode programs do not directly correspond to a Java program.

Previous research has developed automatic termination analyses, that is,
formal techniques for proving, automatically, the termination of large classes

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:3

of computer programs. When these analyses prove termination, then the an-
alyzed program actually terminates, while the converse is generally false. Al-
though there is a variety of proposed techniques, the underlying common idea
is that of finding some well-founded measure, called in turn norm, ranking
function, or level mapping, that strictly decreases along loops or in recursive
calls.

Most of the work on termination analysis has been applied to term rewrit-
ing systems, functional and logic programming languages, whose semantics
is typically simple and well understood. Proofs of termination for imperative
programs that use dynamic data structures are much more complex than the
corresponding proofs for functional or logical languages which do not have de-
structive updates. In order to foresee the possible effects of destructive up-
dates, it is important to compute information about the shape of the heap of
the system at runtime. Namely, sharing and cyclicity of data structures play
an important role in imperative programs, while they are forbidden or practi-
cally never used in functional and logical languages. Since cyclicity can lead to
nontermination of some iterations over the data structures, it must be taken
into account for a correct termination analysis. It has been proved that shar-
ing adds to the power of LISP programs since it allows one to write compu-
tationally cheaper algorithms [Pippenger 1997]. No similar result is known
for cyclicity. Nevertheless, the extensive use of sharing and cyclicity in cur-
rent Java programs entails that a realistic static analysis must take them into
account.

Things become still more complex with object-oriented languages where dy-
namic dispatch, inheritance, instance and class initializations must be taken
into account. Cyclicity becomes omnipresent there, for instance, all exceptions
are cyclical in Java. If we consider the Java bytecode language, its low-level
nature presents further challenges, such as the unstructuredness of the code
and the presence of an operand stack of variable height. For instance, this re-
quires the tracking of precise definite aliasing between local variables and stack
elements, which is not the case for high-level languages. Without such informa-
tion (or similar), abstract domains and static analyses, which are sufficiently
precise for high-level languages, might not be precise enough for a low-level
language [Logozzo and Fähndrich 2008].

It therefore follows that an automatic technique for proving the termina-
tion of Java bytecode programs is a long way from being a simple extension
of similar techniques already existing for functional and logical languages. To
the contrary, it requires a set of preliminary static analyses, such as sharing,
cyclicity, and aliasing analyses, and strict adherence to all the details of the
semantics of the language.

For this reason, we have recently defined an abstract analysis, called path-
length, which uses preliminary sharing, cyclicity, and aliasing analyses to build
an overapproximation (hence, safe approximation) of the maximal length of
a path of pointers that can be followed from each program variable [Spoto
et al. 2006]. This may be seen as an extension to data structures of the linear
restraints of Cousot and Halbwachs [1978].

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:4 • F. Spoto et al.

In this article, we make the following contributions.

(1) We define the path-length analysis for sequential Java bytecode, dealing
with any kind of data structures, and prove that it is formally correct using
the abstract interpretation framework [Cousot and Cousot 1977].

(2) We define how a Constraint Logic Program (CLP) program is derived from
the path-length analysis of a Java bytecode program and prove that if the
derived CLP program terminates then also the original Java bytecode pro-
gram terminates.

(3) We describe our implementation of a termination analysis for sequen-
tial Java bytecode, based on path-length, inside the JULIA analyzer [Spoto
2008a], coupled with the BINTERM termination prover. It is a fully auto-
matic system able to scale up to programs of 1200 methods, including all
the analyses necessary to build the path-length constraints. This shows the
potential of both JULIA and BINTERM.

In this article we only consider a nontrivial subset of Java bytecode so that, for
instance, point 2 is limited to that subset. However, note that this is standard in
the analysis of Java bytecode since the chosen bytecodes are representative of
a large family of bytecodes (namely, they include those manipulating the heap)
and the missing bytecodes perform tedious stack manipulations or deal with
concurrency (that we do not handle). By considering all bytecodes, we would
just make the article clumsy.

We stress the fact that the implementation is not a prototype but a robust and
reliable system, resulting from many years of programming work. It includes
class, null pointer, initialization, sharing, cyclicity, aliasing and path-length
analyses, and it with all constructs of Java bytecode, including the jsr and ret in-
structions, as well as with exceptions. It has been tested on very large programs
(up to 10,000 methods) and extensively debugged; it is also used by a big indus-
trial company in the USA for information-flow analysis of very large programs.
To the best of our knowledge, it is the first fully automated implementation of a
termination analyzer for full sequential Java bytecode with no invention of ad-
hoc algorithms for dealing with specific complex programs. Moreover, it is the
first termination analysis for imperative programs able to deal, automatically
and with satisfying precision, with any kind of data structures dynamically
allocated in memory.

Two lines of works are strictly related to ours and deserve some discussion.

—In Albert et al. [2007a, 2008], it has been shown how the results of the path-
length analysis can be used to translate the analyzed imperative program
into a CLP which can then be fed to a termination prover for logic pro-
grams. In the same spirit, path-length has also been used in Albert et al.
[2007b] to infer upward approximations of the computational cost of Java
bytecode methods. They use it to translate imperative programs into con-
straint logic programs over which cost analysis is performed. Our trans-
lation into CLP programs is not identical to that used in these papers,
but Albert et al. [2007a, 2008] remain the closest to our work. Note, in
particular, that Albert et al. [2007a] has been published before the first

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:5

submission of our paper. We have received the benchmarks analyzed in
Albert et al. [2007a, 2008] from the authors of those papers; their analysis
with our tool is shown in Figure 16.

—The TERMINATOR system [Cook et al. 2006b] proves termination of C programs.
A crucial innovation with respect to termination consists in its use of tran-
sition invariants [Podelski and Rybalchenko 2004b], which are computed
using techniques for least-fixpoint calculation and abstraction. Transition
invariants enable the use of a ranking function generator for simple-while
programs, which can be implemented by constraint solving [Podelski and
Rybalchenko 2004a]. Termination is proved over primitive types without dy-
namic data structures. This is the main difference from our work, which
is in principle able to deal with any data structure dynamically allocated
in the heap. TERMINATOR uses model-checking to explore the set of reach-
able states of the program. The use of model-checking allows one to also
test concurrent programs. The distinguishing feature of TERMINATOR is its
ability to improve the analysis by exploiting counterexamples found dur-
ing the model-checking [Cook et al. 2005]. This feature, which is missing
in our work, can lead to very precise analyses, sometimes at the expense
of efficiency. TERMINATOR can deal with pointers in the sense that it models
dereferencing. However, it does not deal with iterations over dynamic data
structures [Cook et al. 2006a, p. 425]. It has been successfully used for the
verification of operating systems drivers of nontrivial size [Cook et al. 2006a].
The weak modeling of the heap in TERMINATOR has been overcome in Berdine
et al. [2006] where termination of C programs with lists is proved by using
the shape analysis in Distefano et al. [2006], which is based on separation
logic [Reynolds 2000; Ishtiaq and O’Hearn 2001]. Their work has some sim-
ilarities to ours since they build a linear constraint from the program by
using the shape analysis to gather information about the size of the lists.
However, they do not support functions, as the underlying shape analysis.
They claim that their work can be applied to many data structures, but they
only consider linked lists; the derivation of linear constraints from the shape
analysis is not proved correct. Note that they are based on a separation logic
for lists only and also that a more advanced version of that logic [Berdine
et al. 2007a] still considers flavors of lists only as well as the interprocedural
shape analysis in Gotsman et al. [2006]. Their work has been generalized
in Berdine et al. [2007b], so that termination with lists is an instance of a
generic framework which proves a well-founded variance of some variables
at a specific program point. The generalization does not affect the results
about the data structures which can be modeled in the heap during the
shape analysis. Compared to our work, we remark that we consider every
kind of data structure in the heap. Although it is true that more advanced
shape analyses can determine the shape of any data structure in memory,
not just lists, there is no mention in the preceding works of the translation
of the results of such shape analyses into numerical constraints that can
later be used to prove the termination of the program. That is, those pa-
pers miss a formal definition of how the linear constraints are built when

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:6 • F. Spoto et al.

a destructive update modifies some data structure, not just lists (see putfield
in Definition 37), as well as a formal definition of how the linear constraints
are built for method calls that might modify data structures in the heap
(see extend in Definition 44). Moreover, we provide formal proofs of the cor-
rectness of the construction of those numerical constraints, while this is not
the case in the papers just discussed. This is far from being a detail. As the
reader can check, those two definitions are the most complex in this article
and their correctness proof requires careful and nontrivial arguments. For a
pratical comparison with our tool, we have analyzed three of the programs
in Cook et al. [2006a]. Namely, program Numerical1 in Figure 16 is the pro-
gram in Figure 3 of Cook et al. [2006a], program Numerical2 is the program
in Figure 11 of Cook et al. [2006a], and program Numerical3 is the diverging
program in Figure 7 of Cook et al. [2006a]. The same paper contains a utility
function of a Windows device driver (Figure 1 of Cook et al. [2006a]) and an-
alyzes a set of Windows device drivers (in its Figure 12). We cannot analyze
such drivers because there is no way of writing Windows device drivers in
Java. The same paper analyzes the Ackermann function (also analyzed in
Figure 16), coupled with a program that uses pointers to integers, which do
not exist in Java (Figure 4 of Cook et al. [2006a]). The benchmarks analyzed
in Berdine et al. [2006] are all loops of Windows device drivers which, again,
we cannot analyze. The simple iteration over a list in Figure 5 of Berdine
et al. [2006] is included in the analysis of List in Figure 16.

The rest of this article is organized as follows. Section 2 gives an overview
of our analyzer through its application to some programs, hence showing how
it deals correctly with some of the subtlest aspects of the semantics of the
language. Section 3 defines the syntax of a small but nontrivial subset of the
Java bytecode that we use in our definitions and proofs. Section 4 describes
all the preliminary analyses that we perform before the path-length analysis.
Section 5 defines an operational and an equivalent denotational semantics of
our subset of the Java bytecode. Section 6 defines the path-length analysis
and proves it correct with respect to the denotational semantics of Section 5.
Section 7 defines the translation from Java bytecode into CLP over path-length
and proves that, if the CLP program terminates, then the original Java bytecode
also terminates. Section 8 reports some experiments with our analysis. Section 9
discusses related works. Section 10 discusses limitations, future directions of
research, and then concludes. Most of the proofs are available in an electronic
appendix, available in the ACM Digital Library.

2. EXAMPLES OF OUR TERMINATION ANALYSIS

This section presents examples of termination analysis with our tool. All exam-
ples can be tested online through a Web interface [Spoto et al. 2008]. The input
of the analysis is a Java bytecode program P , its output is an enumeration
of its methods, divided into those whose calls in P definitely terminate, those
whose calls in P might diverge because of a loop inside their code (methods that

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:7

Fig. 1. An example where sharing is needed to model the effects of a destructive update.

introduce nontermination), and those whose calls in P might diverge but only
because they call one of the previous diverging methods (methods that inherit
nontermination).

Let us start from an example which shows the problems induced by the
destructive updates. The program on the left of Figure 1 implements a simple
linked list with an expand method that scans the list corresponding to the this
object and expands the first node of the parameter other by as many nodes as
the length of the list. Figure 1 shows, on the right, the Java bytecode of the
expand method, where local variables 0, 1, and 2 stand, respectively, for this,
other, and cursor. The while loop has been compiled into a nonnull check for
cursor (lines 2 and 3), which directs to the end of the loop, and into a goto (line
28) which iterates the loop. This Java bytecode (contained in a .class file) is
what we really analyze but we report the source Java code for the convenience
of the reader, since it is easier to understand. In the rest of this section, we will
only report source code. It must be clear, however, that our analysis does not
use the source code at all.

Assume that expand is called as follows.

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
sh1.expand(sh2);

}

The preceding call to expand terminates. This is because sh1 is finite, so that
the iteration inside the while loop of expand must eventually reach its end. Our
analyzer correctly spots this behavior (<init> is the name of a constructor in
Java bytecode).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:8 • F. Spoto et al.

All calls to these methods terminate:
public static Sharing.main(java.lang.String[]):void
public Sharing.expand(Sharing):void
public Sharing.<init>(Sharing)

Let us now modify the main method a bit.

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
sh1.expand(sh1.next);

}

The list sh1 is still finite, but we get a different answer this time.

All calls to these methods terminate:
public Sharing.<init>(Sharing)

Some calls to these methods might not terminate:
public static Sharing.main(java.lang.String[]):void [inherits]
public Sharing.expand(Sharing):void [introduces]

This means that JULIA identifies a possible divergence for the calls to expand,
which induces divergence also for main, which calls expand. The result is per-
fectly correct: while expand expands the list sh1.next, it also expands the list
sh1 initially bound to cursor, so that the loop does not terminate. This is made
possible by the destructive update at line 15 of the bytecode in Figure 1: the
putfield next bytecode adds new nodes after the first two nodes of sh1, un-
linking everything which was previously there.

The aforesaid behavior is not featured by logic programs where data struc-
tures are not mutable, so that the path-length constraints of the data structure
bound to a variable cannot be updated. For instance, the logical unification
of

Sh1 = sharing(sharing(sharing(Sh2)))

constrains the length of Sh1 to be 3 plus the length of Sh2 and this constraint
cannot be changed anymore: data structures are only created in pure logic or
functional languages, never destroyed. In imperative programs, instead, the
binding

sh1 = new Sharing(new Sharing(new Sharing(sh2)))

constrains the length of sh1 to be 3 plus the length of sh2, but this con-
straint can be updated at any time, as soon as one updates sh1 or sh1.next
or sh1.next.next or sh1.next.next.next, that is, as soon as one updates some-
thing that shares with sh1. In the expand method in Figure 1, the list sh1 (i.e.,
this) gets expanded whenever other shares some data structure with sh1, as in
the last example of main. This justifies the fact that we need a preliminary shar-
ing analysis [Secci and Spoto 2005] in order to perform a precise termination
analysis of Java bytecode programs.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:9

Let us show now how cyclicity of data structures can affect the termination
of Java bytecode methods. Consider the following main method.

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
sh1.next.next.next = sh1;
sh1.expand(sh2);

}

The analyzer cannot prove the termination of expand.

All calls to these methods terminate:
public Sharing.<init>(Sharing)

Some calls to these methods might not terminate:
public static Sharing.main(java.lang.String[]):void [inherits]
public Sharing.expand(Sharing):void [introduces]

This is correct since the statement sh1.next.next.next = sh1 makes sh1 a
cyclical list. Therefeore, the while loop inside expand does not terminate. This
justifies why we need a preliminary cyclicity analysis [Rossignoli and Spoto
2006] as an ingredient of our termination analysis of Java programs.

One might be tempted to postulate that the analyzed programs do not use
cyclical data structures. This hypothesis is sensible for functional or logical
programming languages, where cyclicity is forbidden by the so-called occur-
check of pattern-matching and unification, or it is allowed but typically never
used by programmers. This hypothesis is instead nonsense for imperative pro-
grams, where cyclicity is extensively used: graphs are often used in imperative
programs and graphs are typically cyclical. All exceptions are cyclical in Java
because of their cause field which points to the exception itself; data structures
used by compilers are typically cyclical. Our experiments with cyclicity analysis
suggest that, on the average, around one-third of the data structures created
by a Java bytecode program are cyclical.

It must be clear, however, that taking cyclicity into account does not mean
that as soon as a method works over cyclical data structures, its termination
cannot be proved. Consider, for instance, the class in Figure 2, which imple-
ments a linked list of Objects and a set of recursive methods over such a
list. Our analyzer finds out that all calls inside this class terminate. Never-
theless, cyclicity is created by the statement l2.tail.tail = l2 inside main
and l2 is subsequently passed as an argument to append. However, the call
l1.append(l2) is not affected by the cyclicity of its l2 argument but only by
the cyclicity of its implicit l1 argument. Since l1 is not cyclical, termination is
proved.

The latter example shows that our analysis works correctly also in the pres-
ence of recursion, as well as for methods, such as alternate, whose termination
depends on alternate progression along their arguments.

Let us show some examples now where a termination analysis must take
into account the complex semantics of Java bytecode. The class in Figure 3

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:10 • F. Spoto et al.

Fig. 2. A linked list of Objects with a set of recursive methods that work over it.

has a main method which contains a loop over an integer variable i. This loop
terminates since the statement i += 2 inside its body increases i, which is
bound from above by 20. Our analyzer proves the termination of main but only
if we perform a preliminary null pointer analysis of the code. This is because
without such analysis, it is impossible to know if the exc.f = 5 assignment
will raise a NullPointerException or not. If the exception is raised, the catcher
would catch it and reenter the loop without executing the statement i += 2.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:11

Fig. 3. An example of termination in the presence of exceptions.

Fig. 4. An example dealing with instance and class initialization.

Hence the program would diverge. This example shows that our analyzer deals
faithfully with the semantics of this exception.

Figure 4 shows a very simple class Init. Class A is not shown yet on purpose.
Many programmers would conclude that both methods m and n terminate, re-
gardless of the way one calls them. We can have JULIA prove this by running
our termination analysis in library mode, which means that the public methods
of some class(es) are analyzed without making any hypothesis on their calling
context. For instance, the analyzer does not assume any order about which of
m and n is called before the other; it does not assume that any class has been
already instantiated before calling m or n, unless for Init itself and some sys-
tem classes. The results of this analysis might look surprising (<clinit> is the
name of a class initializer in Java bytecode).

All calls to these methods terminate:
public Init.<init>()

Some calls to these methods might not terminate:
public Init.m():void [inherits]
public Init.n():void [inherits]
public A.<init>() [introduces]
package static A.<clinit>():void [introduces]

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:12 • F. Spoto et al.

Only the (implicit) constructor of Init is found to terminate. Methods m and
n inherit nontermination because they call some other method that may not
terminate. This is correct, since class A is defined as follows.

public class A {
public static int f;

public A() {
while (true) {}

}

static {
int a = 0;
while (a == 0) {}

}
}

The instance initializer of A diverges, and it is (implicitly) called by method
m. The class initializer of A diverges also, and it is (implicitly) called by both
methods m and n. We recall that the static initializer of class A is called, in Java
bytecode, only the first time that a class is instantiated, or one of its static fields
is read or written, or one of its static methods is called.

Assume now that we have the following main method inside class Init, which
fixes the calling contexts of methods m and n.

public static void main(String[] args) {
new Init().m();
new Init().n();

}

Reverting to a traditional analysis from main instead of the library mode, JULIA

yields the following result.

All calls to these methods terminate:
public Init.<init>()
public Init.n():void

Some calls to these methods might not terminate:
public Init.m():void [inherits]
public static Init.main(java.lang.String[]):void [inherits]
public A.<init>() [introduces]
package static A.<clinit>():void [introduces]

However, it only does so if a preliminary class initialization analysis is per-
formed. This analysis finds out that, inside method n, class A has been already
initialized by the new A() statement inside method m, so that no call to the
static initializer of A happens inside n and the method terminates. It is true,
however, that that method is never reached since the call to m diverges. This
example shows that the subtle aspects of the semantics of instance and class
initialization of Java are faithfully respected by our analysis.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:13

Fig. 5. An example dealing with the dynamic dispatch mechanism over nonlinear data structures.

We conclude with an example that shows that our analyzer deals correctly
with the dynamic dispatch mechanism of object-oriented languages and with
nonlinear data structures. Figure 5 shows a program dealing with a binary tree,
implemented as a sequence of Nodes of several kinds: Internal nodes have two
successor nodes, while Nil and Div nodes have no successor. Note that this data
structure is not a list nor a one selector data structure. The height method is
expected to yield the height of the tree but it diverges for Div nodes since it
calls itself recursively indefinitely. Correctly, our analyzer concludes that all
calls inside this program terminate. This is because, although a Div object is
created by the first statement of main, that object does not flow into n, so that
the call n.height(), as well as those recursively activated by the redefinition of

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:14 • F. Spoto et al.

method height inside Internal, never lead to the redefinition of height inside
Div. Hence the program terminates.

If we modify the second statement of main into Node n = new Div(), we get
the following (correct) result.

All calls to these methods terminate:
public Div.<init>()
public Internal.<init>(Node,Node)
public Node.<init>()

Some calls to these methods might not terminate:
public Internal.height():int [inherits]
public Div.height():int [introduces]
public static Virtual.main(java.lang.String[]):void [inherits]

This time, the redefinition of height inside Div is reached by the computation
and it introduces divergence. As a consequence, the redefinition of height inside
Internal also inherits divergence, while the redefinition of height inside Nil
is never called.

The previous results are possible because JULIA determines precisely the set
of methods that might be called at runtime by each call to a virtual method,
such as n.height() (the set of its possible dynamic targets). This information
is computed through a preliminary class analysis [Palsberg and Schwartzbach
1991; Spoto and Jensen 2003].

3. OUR SIMPLIFIED JAVA BYTECODE

In this section we introduce a simplification of the Java bytecode that we will
consider in our examples and proofs.

In the following, a total function f is denoted by �→ and a partial func-
tion by →. The domain and codomain of a function f are dom(f) and rng(f),
respectively. We denote by [v1 �→ t1, . . . , vn �→ tn] the function f where
dom(f) = {v1, . . . , vn} and f (vi) = ti for i = 1, . . . , n. Its update is f [w1 �→
d1, . . . , wm �→ dm], where the domain may be enlarged (it is never reduced).

The Java Virtual Machine runs a Java bytecode program by keeping an
activation stack of states. Each state is created by a method call and survives
until the end of the call.

Definition 1. The set of values is Z∪L∪{null}, where L is the set of memory
locations. A state of the Java Virtual Machine is a triple 〈l || s || μ〉, where l is an
array of values, called local variables and numbered from 0 upwards, s is a stack
of values, called the operand stack (in the following, just stack), which grows
leftwards, and μ is a memory, or heap, which maps locations into objects. An
object is a function that maps its fields (identifiers) into values and that embeds
a class tag κ; we say that it belongs to class κ or is an instance of class κ or has
class κ. We require that there are no dangling pointers, that is, l ∩ L ⊆ dom(μ),
s ∩ L ⊆ dom(μ) and rng(μ(�)) ∩ L ⊆ dom(μ) for every � ∈ dom(μ). We write l k

for the value of the kth local variable; we write sk for the value of the kth stack
element (s0 is the base of the stack, s1 is the element above, and so on); we write

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:15

Fig. 6. The state of the Java Virtual Machine considered in Example 2.

o(f) for the value of the field f of an object o. The set of all classes is denoted by
K. The set of all states is denoted by �. When we want to fix the exact number
#l ∈ N of local variables and #s ∈ N of stack elements allowed in a state, we
write �#l ,#s.

We will often write the stack in the form x :: y :: z :: s, meaning that x is the
topmost value on the stack, y is the underlying element, and z the element still
below it; s is the remaining portion of the stack and might be empty. The empty
stack is written ε, as well as an empty array of local variables. When s is empty,
we often omit it and write x :: y :: z instead of x :: y :: z :: ε. Note that stacks
are recursive data structures built from the empty stack ε by pushing elements
on top. Hence we should write x :: y :: z :: s :: ε instead of x :: y :: z :: s. We use
the second notation for simplicity.

Example 2. Consider a memory μ = [�1 �→ o1, �2 �→ o2, �3 �→ o3] where
o1 = [f �→ �2], o2 = [f �→ �1] and o3 = [g �→ null, h �→ 3]. Then a state is

σ = 〈[5, �2] || �2 :: �3 || μ〉 ,

shown in Figure 6. Local variable 0 holds integer 5; local variable 1 holds �2 and
is hence bound to the object o2. The topmost element of the stack also holds �2
and is hence bound to the object o2; the underlying element, which is the base
of the stack, holds �3 and is hence bound to the object o3. We have σ ∈ �2,2 since
σ has 2 local variables and 2 stack elements.

Example 3. We have

σ = 〈[�1, �2, �4] || �3 :: �2 ||[�1 �→ o1, �2 �→ o2, �3 �→ o3, �4 �→ o4, �5 �→ o5]〉 ∈ �3,2

where o1 = [next �→ �4], o2 = [next �→ null], o3 = [next �→ �5], o4 = [next �→
null], and o5 = [next �→ null]. This state is shown in Figure 7.

In Definition 1 we have assumed for simplicity that values can only be inte-
gers, locations, or null. The Java Virtual Machine deals with other primitive

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:16 • F. Spoto et al.

Fig. 7. The state of the Java Virtual Machine considered in Example 3.

types, as well as with arrays. This simplification is useful for our presentation,
but our analyzer considers all primitive types and arrays.

Definition 4. The set of types of our simplified Java Virtual Machine is
T = K ∪ {int, void}. The void type can only be used as the return type of
methods. A method signature is denoted by κ.m(t1, . . . , tp) : t standing for a
method named m, defined in class κ, expecting p explicit parameters of type,
respectively, t1, . . . , tp and returning a value of type t, or returning no value
when t = void.

We recall that, in object-oriented languages, a method κ.m(t1, . . . , tp) : t also
has an implicit parameter of type κ called this inside the code of the method.
Hence the actual number of parameters is p + 1.

We do not distinguish between methods and constructors. A constructor is
just a method named <init> and returning void. Moreover, there are no static
methods in our simplified Java bytecode, although the extension of our def-
initions to deal with static methods is not difficult and our implementation
considers them.

In order to keep the notation reasonably low, we do not formalize the notion of
class and the fact that an object of class κ has exactly the fields required by κ; we
do not formalize the subclass relation, nor the lookup procedure for a method
from a class. We will talk about the type of a field, meaning the static type
required by the class that defines the field, as well as about the type of a local
variable or stack element, meaning the static type for that local variable or stack
element as computed by the type inference algorithm described in Lindholm
and Yellin [1999]. However, we will give no formal definition of them.

Java bytecode instructions work over states, by affecting their operand stack,
local variables, or memory. There are more than 100 Java bytecode instruc-
tions [Lindholm and Yellin 1999]. However, many of them are similar and only
differ in the type of their operands. Others are not relevant in this article,
such as those that perform tedious but useful stack manipulations. Hence we

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:17

concentrate here on a very restricted set of 11 instructions only, which exemplify
the operations that the Java Virtual Machine performs: stack manipulation,
arithmetics, interaction between the stack and the local variables set, object
creation and access, and method call. Our implementation considers, of course,
the whole set of Java bytecode instructions.

Definition 5. The set of instructions of our simplified Java bytecode is the
following (a formalization of their semantics will be given in Section 5).

const c. Pushes on top of the stack the constant c, which can be an integer or
null.

dup. Pushes on top of the stack its topmost element, which hence gets
duplicated.

new κ. Pushes on top of the stack a reference to a new object of class κ (which
is properly initialized).

load i. Pushes on top of the stack the value of local variable i.
store i. Pops the topmost value from the stack and writes it into local vari-

able i.
add. Pops the topmost two values from the stack and pushes their sum in-

stead.
getfield f . Pops the topmost value � of the stack, which must be a reference

to an object o or null, and pushes at its place o(f). If � is null, the computation
stops.

putfield f . Pops the topmost two values v (the top) and � (under v) from the
stack. The value � must be a reference to an object o or null. Value v is stored
into o(f). If � is null, the computation stops.

ifeq of type t. Pops the topmost element of the stack and checks if it is 0 (when
t is int) or null (when t ∈ K). If this is not the case, the computation stops.

ifne of type t. Pops the topmost element of the stack and checks if it is 0 (when
t is int) or null (when t ∈ K). If this is the case, the computation stops.

call κ1.m(t1, . . . , tp) : t, . . . , κn.m(t1, . . . , tp) : t. Pops the topmost p + 1 val-
ues (the actual parameters) a0, a1, . . . , ap from the stack. Value a0 is called
the receiver of the call and must be a reference to an object o or null.
In the latter case, the computation stops. Otherwise, a lookup procedure is
started from the class κ of o upwards along the superclass chain, looking
for a method called m, expecting p formal parameters of type t1, . . . , tp, re-
spectively, and returning a value1 of type t. It is guaranteed that such a
method is found in a class belonging to the set {κ1, . . . , κn}. That method is
run from a state having an empty stack and a set of local variables bound to
a0, a1, . . . , ap.

The preceding description of bytecode instructions deserves some comments.
First of all, we silently assume that the instructions are used correctly, that
is, that they are applied to states where they can work. For instance, the dup
instruction requires at least an element on the operand stack, or otherwise there

1Differently from Java, the return type of the method is used in the lookup procedure of the Java
bytecode [Lindholm and Yellin 1999].

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:18 • F. Spoto et al.

is nothing to duplicate; the getfield f and putfield f instructions need a reference
to an object o or null, but not an integer; they require that o actually contains a
field named f ; putfield requires that that field has a static type consistent with
the value that it is going to write inside. We assume that all these constraints
are true, as well as all other structural constraints enumerated in Lindholm and
Yellin [1999]. Among these constraints, a very important one is that, however
one reaches a Java bytecode instruction in a program, the number and types
of the stack elements and the number and types of the local variables are the
same. These constraints are checked by the Java bytecode verifier of the Java
Virtual Machine. Java bytecode that does not pass these checks is rejected and
cannot be run.

The ifeq and ifne instructions stop the computation when the condition they
embed is false. This corresponds to the fact that we are going to use those
instructions as filters at the beginning of the two branches of a conditional.
Only one branch will actually continue the execution.

In the call instruction, the set κ1.m(t1, . . . , tp) : t, . . . , κn.m(t1, . . . , tp) : t is an
overapproximation of the set of its dynamic targets, that is, of those methods
that might be called at runtime, depending on the runtime class of the receiver.
This overapproximation is always computable by looking at the class hierar-
chy [Dean et al. 1995]. A better one is provided by rapid type analysis [Bacon
and Sweeney 1996]. A still better approximation is provided by other examples
of class analysis, such as that in Palsberg and Schwartzbach [1991]. The latter,
formalized in Spoto and Jensen [2003] as an abstract interpretation of the set
of states, is the one used by our implementation.

Method return is implicit in our language, as we will soon see.
Our 11 Java bytecode instructions can be used to write Java bytecode pro-

grams. In order to reason about the control flow in the code, we assume that
flat code, as the one in Figure 1, is given a structure in terms of blocks of code
linked by arrows expressing how the flow of control passes from one to another.
These might be, for instance, the basic blocks of Aho et al. [1986], but we also
require that a call instruction can only occur at the beginning of a block. For
instance, Figure 8 shows the blocks derived from the code of the method expand
in Figure 1. The numbers on the right of each instruction are the number of
local variables and stack elements at the beginning of the instruction. Note
that at the beginning of the methods, the local variables hold the parameters
of the method.

The construction of the blocks also can be done in the presence of complex
control flows such as those arising from switches, exceptions, and subroutines
(the infamous jsr and ret instructions of the Java bytecode), although we do not
show it here.

From now on, a Java bytecode program will be a graph of blocks, such as that
in Figure 8. Inside each block there is one or more instructions among the 11
described before. This graph typically contains many disjoint subgraphs, each
corresponding to a different method or constructor. The ends of a method or
constructor, where the control flow returns to the caller, are the end of every
block with no successor, such as the leftmost one in Figure 8. For simplicity, we
assume that the stack there contains exactly as many elements as are needed

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:19

Fig. 8. Our simplified Java bytecode for the method expand in Figure 1. On the right of each
instruction we report the number of local variables and stack elements at that program point, just
before executing the instruction.

to hold the return value (normally 1 element, but 0 elements in the case of
methods returning void, such as all the constructors).

Definition 6. We write a block containing w bytecode instructions and hav-
ing m immediate successor blocks b1, . . . , bm, with m ≥ 0 and w > 0, as

ins1
ins2···
insw

⇒ b1···
bm

or just as
ins1
ins2···
insw

when m = 0.

A Java bytecode program P is a graph of such blocks.

In the following, P will always stand for the program under analysis.

4. PRELIMINARY ANALYSES

Before defining the path-length analysis in Section 6, we introduce here some
preliminary analyses which we assume already performed when the path-
length analysis is applied. This is because the path-length analysis uses the
information computed by such preliminary analyses and would be extremely
imprecise without it: no termination proof could realistically be obtained.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:20 • F. Spoto et al.

As we mentioned in Section 1, the proofs of termination for imperative pro-
grams need information about the possible sharing of data structures between
program variables, as well as about the possible cyclicity of the data structures
bound to the variables. As a consequence, the first two preliminary analyses
are a possible pair-sharing analysis (Section 4.1) and a possible cyclicity anal-
ysis (Section 4.2). We also use a further analysis which is a definite aliasing
analysis (Section 4.3). The latter is needed due to the way that Java bytecode
works, by copying values between local variables and stack elements. Namely,
a lot of aliasing is present between local variables and stack elements (due to
the instructions load and store) as well as between stack elements (due to the
instruction dup). Knowledge about such aliasing is important for the precision
of the path-length analysis.

Other preliminary static analyses can contribute to the precision of a subse-
quent path-length analysis (and hence of termination analysis) although they
are not so essential as pair-sharing, cyclicity, and aliasing. Those analyses are
discussed in Section 4.4.

4.1 Possible Pair-Sharing

In Section 2 we have seen that a call sh1.expand(sh2) terminates when sh1
and sh2 are bound to disjoint data structures, but does not terminate when
sh2 == sh1.next. We have said that the different behavior is a consequence of
the different sharing between sh1 and sh2 in the two situations. Namely, two
variables share if they both reach a common location, possibly transitively [Secci
and Spoto 2005].

The precision of our pair-sharing analysis can be improved if it is computed
together with possible update or, equivalently, definite purity or constancy in-
formation [Salcianu and Rinard 2005; Genaim and Spoto 2008], with a re-
duced product operation [Cousot and Cousot 1979]. Update means that for each
method we know which parameters might be affected by the call, in the sense
that some object reachable from those parameters might be modified during
the call. Note that this property is much stronger than the const annotation
of C++, which is a simple syntactical constraint that does not prevent from
modifying the objects reachable from a const parameter. The reduced product
of pair-sharing (as in Secci and Spoto [2005]) with update is what we have im-
plemented inside our analyzer, by using the abstract domain in Genaim and
Spoto [2008]. The update component improves the precision of pair-sharing and
cyclicity (Section 4.2). Assume, for instance, that the following method

void foo(C a, C b) {
a = b;
}

is called as foo(x,y) and that at the calling place variables x and y do not
share with each other. Since, at the end of method foo, variables a and b share,
our pair-sharing analysis concludes, conservatively, that variables x and y are
made to share by the call, which is not the case. The update component prevents
this, since it knows that no object reachable from a or b at the moment of the

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:21

call is modified during the execution of foo. Hence, variables x and y cannot be
made to share by the call. The example also works for cyclicity: assume that y
is cyclical while x is not cyclical. The cyclicity analysis in Rossignoli and Spoto
[2006] concludes that a and hence x are cyclical after the call foo(x,y), which is
not the case for x. The update component knows that no object reachable from
x is modified during the call and hence x cannot become cyclical. The update
component also improves the precision of path-length, as we show in Section 6.

As we said previously, our pair-sharing analysis is completely context-
sensitive, which means that the analysis of a method is a function from the
input context for the method to the resulting sharing information at its inter-
nal and final program points. In this sense, it is a denotational static analysis.
The advantage of being context-sensitive is that the approximation of the result
of a method can be different for every input context for the call. Consider, for
instance, the following method.

public Sharing m(Sharing x) {
return x;

}

If one calls this.m(x) in a program point (a context) where this and x share,
then its result and this share after the call, while they do not share if one
calls it in a program point where this and x do not share. A context-sensitive
analysis supports this kind of reasoning since the approximation of a method is
functional (denotational). A noncontext-sensitive analysis, instead, provides an
approximation for the output of the method which is consistent with all possible
calls to the method. In the previous example, a noncontext-sensitive analysis
assumes that this and x share after the call, with no regard to the input context.
All our preliminary analyses and the path-length analysis that we will define in
Section 6 are context-sensitive since they are based on denotational semantics
so that they denote methods with relational, functional approximations.

The implementation of a context-sensitive analysis depends on the specific
analysis. In general, one distinguishes between properties of the input and
properties of the output of a denotation, such as pairs sharing in the input and
pairs sharing in the output. Then one builds constraints between those prop-
erties. These constraints are often logical implications implemented as binary
decision diagrams [Bryant 1986], as explained in Rossignoli and Spoto [2006]
and Spoto [2008b]. This is the case of our pair-sharing analysis also. In other
cases, they are numerical constraints. For instance, in Section 6, the approxima-
tion of a method is a polyhedron over input (v̌) and output (v̂) variables, hence
expressing a relation between the input and the output context of a method (in
general, of a piece of code).

In order to show our pair-sharing analysis on a concrete example, we fix a
specific input context and show the resulting approximations. Namely, Figure 9
shows the result of our pair-sharing analysis applied to the method expand in
Figure 8, under the hypothesis that the method is called in a context where its
parameters do not share with each other. For instance, we can assume that it is
called as sh1.expand(sh2) where sh1 and sh2 do not share. On the right of each
instruction we report the set of pairs of variables which might share, according

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:22 • F. Spoto et al.

Fig. 9. A pair-sharing analysis of the method expand in Figure 8.

to the analysis, just before the instruction is executed. We refer to the ith local
variable as li and to the ith stack element, from the base, as si. Figure 9 has
been obtained by first computing the denotation for method expand and then
fixing the input context of the denotation to compute the resulting abstract
information at the output of the method. Information about internal program
points (those that are not at the end of a method) has been recovered through
magic-sets [Payet and Spoto 2007]. Since this is a possible pair-sharing analysis,
correctness is to be understood in the sense that if two variables v1 and v2 actu-
ally share at runtime in a given program point, then the (unordered) pair (v1, v2)
belongs to the approximation at that program point. The converse does not nec-
essarily hold. For simplicity, we do not report information about reflexive shar-
ing, that is, pairs (v, v), since all variables of reference type share with them-
selves when they are not null. We do not report the update component either.

In many cases, sharing is actually aliasing, but this is not always the case.
For instance, before the first getfield next instruction, the sharing information
computed by the analysis is {(l0,l2),(s0,l1)}: the top of the stack s0 shares
with l1. After reading the next field of s0, the approximation does not change
because the value of the field next of s0 is conservatively assumed to share with
l1. This would not be the case for aliasing.

4.2 Possible Cyclicity

In Section 2 we have said that it is important, for termination analysis, to
spot those variables that might be bound to cyclical data structures, since

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:23

Fig. 10. A cyclicity analysis of the method expand in Figure 8.

iterations over such structures might diverge. Namely, a cyclical variable is
one that reaches a loop of locations. Without cyclicity information, the only pos-
sible conservative hypothesis is that all variables are cyclical, so that often no
proof of termination can be built.

Some aliasing and shape analyses are able to provide cyclicity information.
However, also in this case, it is possible to define a more abstract domain which
is just made of sets of variables which might be bound to cyclical data struc-
tures. This abstract domain, defined and proved correct in Rossignoli and Spoto
[2006], can be implemented through Boolean formulas in a completely context-
and flow-sensitive way, and is extremely fast in practice. It requires a prelim-
inary sharing analysis to achieve a good level of precision. It exploits purity
information, when available, to improve its precision further.

Let us fix again a specific calling context for method expand in Figure 1.
Namely, let us assume that that method is called as sh1.expand(sh2) with sh1
and sh2 which do not share and are not cyclical. Our cyclicity analysis builds
the empty approximation at every program point inside expand, meaning that
no local variable and no stack element can be bound to a cyclical data structure
inside that method.

Let us fix another calling context for expand. Namely, let us assume that it
is called as sh1.expand(sh2) with sh1 and sh2 which do not share and with
sh2 bound to a possibly cyclical data structure (but not sh1). The result of the
analysis is shown in Figure 10, where on the right of every instruction we have

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:24 • F. Spoto et al.

written the set of variables which might be bound to cyclical data structures
according to the analysis. Since this is a possible cyclicity analysis, correctness
means that if a variable is actually bound to a cyclical data structure at a given
program point at runtime, then that variable belongs to the approximation com-
puted by the analysis at that program point. The converse is not true in general.

Figure 10 shows that local variable 1, which holds sh2 in our example, is
everywhere potentially bound to a cyclical data structure. When a load 1 in-
struction pushes its value on the stack, also the top of the stack, which is s0
there, becomes potentially bound to a cyclical data structure. This is true until
that element is popped from the stack.

4.3 Definite Aliasing

Two variables are aliases when they are bound to the same value. If this value is
a location, then they must be bound to the same data structure (and hence they
share); if it is an integer, then this integer must be the same. In both cases, many
properties of the two variables are the same, as, for instance, their path-length
of Section 6. Hence we want to track definite aliasing of variables since their
path-length must be the same and this information improves the path-length
analysis. It is important to remark that we need definite aliasing, introduced
by Java bytecodes such as load, store, and dup, rather than possible aliasing.

We have developed a very simple domain for definite aliasing. It tracks the
set of pairs of variables which are definitely aliases. The load, store, and dup
bytecodes introduce aliasing into the set. When a variable is modified, the
pairs where it occurs are removed from the set. Also this analysis is completely
context- and flow-sensitive.

Figure 11 shows the aliasing information computed for the expand method
in Figure 8 for a calling context such as sh1.expand(sh2) where sh1 and sh2
are not aliases. On the right of each instruction we report the set of pairs
of variables which are definitely aliases according to the analysis. Reflexive
aliasing is not reported since a variable is always an alias of itself. This is
a definite aliasing analysis. Hence correctness means that if two variables are
reported to be aliases in the approximation computed by the analysis at a given
program point, then those two variables are actually always aliases at that
program point at runtime. The converse is not true in general.

One can see that the analysis finds out that when the dup instruction is
executed, the base of the stack, s0, is definitely an alias of l1. After the dup,
the two topmost elements on the stack are also definitely aliases, so that the
pair (s1,s2) is present in the approximation of the subsequent const null
instruction.

If two variables are definitely aliases in a program point, then they are also
possibly sharing there. This is why the sets in Figure 11 are always included
in the corresponding sets in Figure 9.

4.4 Other Preliminary Analyses

In Section 2, we have seen that some analyses can improve the precision of
a subsequent path-length analysis (and then of a termination analysis based

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:25

Fig. 11. A definite aliasing analysis of the method expand in Figure 8.

on path-length) if they are able to cut away spurious execution paths from the
control-flow of the program. We have seen examples related to null pointer
analysis (Figure 3), class initialization analysis (Figure 4), and class analysis
(Figure 5).

Our JULIA analyzer is able to perform all such analyses. The null
pointer analysis uses an abstract domain implemented through Boolean func-
tions [Spoto 2008b]. It is a rather traditional analysis that we implement in a
completely flow- and control-sensitive way. It is true that null pointer informa-
tion is subsumed by the path-length information that we describe in Section 6:
a variable contains null if and only if its path-length is 0. Nevertheless, our
preliminary, very inexpensive null pointer analysis simplifies the code which
is then used for the path-length analysis. Hence it is useful for the efficiency
of the overall termination analysis. Moreover, it determines the nonnull fields
more precisely than our path-length analysis and hence it is also useful for pre-
cision. Class initialization analysis uses a set of classes which are considered as
already initialized. This set can be different in different program points since,
again, we implement the analysis in a completely flow- and control-sensitive
way. Class analysis is a traditional analysis for object-oriented programs, that
we implement in the style of Palsberg and Schwartzbach [1991], by using a
flow-sensitive abstract interpretation [Spoto and Jensen 2003].

5. SEMANTICS OF THE JAVA BYTECODE

In this section we define an operational and an equivalent denotational seman-
tics for the Java bytecode. This means that we first define, formally, how each of

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:26 • F. Spoto et al.

our 11 instructions modifies the state of the Java Virtual Machine. Then we lift
this definition to blocks of instructions. An operational semantics is closer to the
implementation of an interpreter of the language and it is usually better un-
derstood. A denotational semantics is important for our purposes since we will
use it later to define a relational abstract domain that we will call path-length
(Section 6). For this reason we present both semantics, which are, however,
equivalent, as proved in Payet and Spoto [2007].

We define state transformers with the λ-notation: δ = λσ.σ ′ is a state trans-
former such that δ(σ) = σ ′ for every σ . In Definition 7 we often require a specific
structure for σ ; it is understood that when σ has no such structure, then δ(σ)
is undefined. Definition 7 defines the semantics of the bytecode instructions
different from call.

Definition 7. Each instruction ins different from call, occurring at a pro-
gram point q, is associated with its semantics insq : �li ,si → �lo,so at q, where
li, si, lo, so are the number of local variables and stack elements defined at q and
at the subsequent program point(s), respectively (this information is statically
known [Lindholm and Yellin 1999]; see, for instance, Figure 8). We assume that
insq(σ) is undefined on every σ where the pairs of variables which are not com-
puted at q by our possible pair-sharing analysis share, or where the variables
which are not computed at q by our possible cyclicity analysis are cyclical, or
where the pairs of variables computed at q by our definite aliasing analysis are
not aliases. Otherwise, insq is defined as follows.

constq c = λ〈l || s || μ〉.〈l || c :: s || μ〉
dupq = λ〈l || top :: s || μ〉.〈l || top :: top :: s || μ〉

newq κ = λ〈l || s || μ〉.〈l || � :: s || μ[� �→ o]〉
where � is a fresh location
and o is an object of class κ whose fields hold 0 or null

loadq i = λ〈l || s || μ〉.〈l || l i :: s || μ〉
storeq i = λ〈l || top :: s || μ〉.〈l [i �→ top] || s || μ〉

addq = λ〈l || x :: y :: s || μ〉.〈l ||(x + y) :: s || μ〉

getfieldq f = λ〈l || � :: s || μ〉.
{

〈l || μ(�)(f) :: s || μ〉 if � = null

undefined otherwise

putfieldq f = λ〈l || v :: � :: s || μ〉.
{

〈l || s || μ[� �→ μ(�)[f �→ v]]〉 if � = null

undefined otherwise

ifeq of typeq t = λ〈l || top :: s || μ〉.
{

〈l || s || μ〉 if top = 0 or top = null

undefined otherwise

ifne of typeq t = λ〈l || top :: s || μ〉.
{

〈l || s || μ〉 if top = 0 and top = null

undefined otherwise.

The fact that these transformers are undefined when the input state does
not satisfy the definite information computed by our static analyses is not

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:27

restrictive, since an instruction at program point q must receive an input state
where that information is true. For instance, the input state for the dup instruc-
tion in Figure 8 must receive an input state where l0 does not share with l1

(Figure 9), where l0 is noncyclical (Figure 10), and where s0 and l1 are aliases
(Figure 11).

Note that the store i operation might write into a local variable which was
not yet used before the same instruction. In such a case, the number of local
variables used in the output of the instruction is larger than the number of
local variables used in its input.

Example 8. Let q be the program point where the instruction dup of
Figure 8 occurs. There are 3 local variables and 2 stack elements there. Hence

dupq = λ〈[l0, s0, l2] || s1 :: s0 || μ〉.〈[l0, s0, l2] || s1 :: s1 :: s0 || μ〉 ∈ �3,2 → �3,3.

Note that, because of the alias information in Figure 11, we require that the
base of the stack is an alias of local variable 1. Moreover, μ must be such that
the pairs of variables not in {(l0, l2), (s0, l1)} (Figure 9) do not share and the
variables not in {s0, l1} (Figure 10) are not cyclical.

Example 9. Consider the state

σ = 〈[�1, �2, �4] || �3 :: �2 || [�1 �→ o1, �2 �→ o2, �3 �→ o3, �4 �→ o4, �5 �→ o5]︸ ︷︷ ︸
μ

〉 ∈ �3,2

of Example 3. Assume that li = 3 and si = 2 and that the pair-sharing, cyclicity,
and aliasing analyses give empty definite information at some program points
q and r. We have

(dupq)(σ) = 〈[�1, �2, �4] || �3 :: �3 :: �2 || μ〉 ∈ �3,3

(loadq 1)(σ) = 〈[�1, �2, �4] || �2 :: �3 :: �2 || μ〉 ∈ �3,3

(storeq 2)(σ) = 〈[�1, �2, �3] || �2 || μ〉 ∈ �3,1

(getfieldq next)(σ) = 〈[�1, �2, �4] || �5 :: �2 || μ〉 ∈ �3,2

((getfieldq next); (putfieldr next))(σ) = (putfieldr next)((getfieldq next)(σ))

= 〈[�1, �2, �4] || ε || μ′〉 ∈ �3,0

where μ′ = [�1 �→ o1, �2 �→ o′
2, �3 �→ o3, �4 �→ o4, �5 �→ o5] and o′

2 = o2[next �→
�5] = [next �→ �5].

5.1 Operational Semantics

The state transformers of Definition 7 define the operational semantics of each
single bytecode different from call. The semantics of the latter is more difficult
to define, since it performs many operations:

(1) creation of a new state for the callee with no local variables and containing
only the stack elements of the caller used to hold the actual arguments of
the call;

(2) lookup of the dynamic target method on the basis of the runtime class of
the receiver;

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:28 • F. Spoto et al.

Fig. 12. The execution of a call to a method.

(3) parameter passing, that is, copying the actual arguments from the stack
elements to the local variables of the callee;

(4) execution of the dynamic target method and return.

We model (1), (2), and (3) as state transformers, and (4) as the creation of a
new configuration for the callee and, finally, the rehabilitation of the configu-
ration of the caller. Figure 12 shows how each of these operations affects the
stack and the local variables.

The first operation is formalized as the following state transformer.

Definition 10. Let q be a program point where a call to a method
κ.m(t1, . . . , tp) : t occurs. Let lq and sq be the number of local variables and
stack elements at q, respectively. We define

argsq,κ.m(t1,... ,tp):t ∈ �lq ,sq → �0, p+1

as

argsq,κ.m(t1,... ,tp) = λ〈l || ap :: · · · :: a0 :: s || μ〉.〈ε || ap :: · · · :: a0 || μ〉.
The second operation is formalized as a filter state transformer that checks,

for each possible dynamic target method κi.m(t1, . . . , tp) : t, with 1 ≤ i ≤ n, if it
is actually selected at runtime. We assume that the stack holds only the actual
arguments and that the local variables of the callee are not yet initialized.

Definition 11. Let κ.m(t1, . . . , tp) : t be a method. We define

selectκ.m(t1,... ,tp):t : 	0, p+1→0, p+1

as

λ 〈ε || ap :: · · · :: a1 :: � || μ〉︸ ︷︷ ︸
σ

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ if � = null and the lookup procedure
of a method m(t1, . . . , tp) : t
from the class of μ(�)
selects its implementation in class κ

undefined otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:29

The third operation is formalized by a state transformer that copies the stack
elements into the corresponding local variables and clears the stack.

Definition 12. Let κ.m(t1, . . . , tp) : t be a method. We define

makescopeκ.m(t1,... ,tp):t : 	0, p+1→p+1,0

as

λ〈ε || ap :: · · · :: a1 :: a0 || μ〉.〈[i �→ ai | 0 ≤ i ≤ p] || ε || μ〉.
Definition 12 formalizes the fact that the ith local variable of the callee is a
copy of the element p − i positions down the top of the stack of the caller.

We define now the activation stack which tracks the sequence of calls to
methods.

Definition 13. A configuration is a pair 〈b || σ 〉 of a block b of the program
and a state σ . It represents the fact that the Java Virtual Machine is going
to execute b in state σ . An activation stack is a stack c1 :: c2 :: · · · :: cn of
configurations, where c1 is the topmost, current, or active configuration.

We can define now the operational semantics of a Java bytecode program.

Definition 14. The (small step) operational semantics of a Java bytecode
program P is a relation a′ ⇒P a′′ providing the immediate successor activation
stack a′′ of an activation stack a′. It is defined by the following rules.

ins is not a call〈
ins
rest ⇒ b1···

bm
|| σ

〉
:: a ⇒

〈
rest ⇒ b1···

bm
|| ins(σ)

〉
:: a

(1)

bmi is the block where method mi = κi.m(t1, . . . , tp) : t starts
σ = 〈l || ap :: · · · :: a0 :: s || μ〉, the call occurs at program point q

σ ′ = makescopemi (selectmi (argsq,mi (σ)))〈
call m1,... ,mn

rest ⇒ b1···
bm

|| σ
〉

:: a ⇒ 〈bmi || σ ′〉 :: 〈 rest ⇒ b1···
bm

||〈l || s || μ〉〉 :: a
(2)

〈 ||〈l || vs || μ〉〉 :: 〈b ||〈l ′ || s′ || μ′〉〉 :: a ⇒ 〈 b ||〈l ′ || vs :: s′ || μ〉〉 :: a
(3)

1 ≤ i ≤ m

〈 ⇒ b1···
bm

|| σ 〉 :: a ⇒ 〈bi || σ 〉 :: a
(4)

We define a′ ⇒P a′′ as not a′ ⇒P a′′. We also define ⇒∗
P as the reflexive and

transitive closure of ⇒P .

Rule (1) executes an instruction ins, different from call, by using its seman-
tics ins. The Java Virtual Machine then moves forward to run the rest of the
instructions. Rule (2) calls a method. It chooses one of the possible callees, looks
for the block bmi where the latter starts and builds its initial state σ ′, by using
args, select and makescope. It creates a new current configuration containing

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:30 • F. Spoto et al.

bmi and σ ′. It removes the actual arguments from the old current configura-
tion and the call from the instructions still to be executed at return time. Note
that the choice of the possible callee is only apparently nondeterministic, since
only one callee will be selected by the select function. For all the others, σ ′ does
not exist (select is a partial function). Control returns to the caller by rule (3),
which rehabilitates the configuration of the caller but forces the memory to be
that at the end of the execution of the callee. The return value of the callee is
pushed on the stack of the caller. Rule (4) applies when all instructions inside
a block have been executed; it runs one of its immediate successors, if any. This
rule is normally deterministic, since if a block of the Java bytecode has two or
more immediate successors then they start with mutually exclusive conditional
instructions and only one thread of control is actually followed.

5.2 Denotational Semantics

In denotational semantics, a state transformer takes traditionally the name
of denotation. Denotations can be sequentially composed, hence modeling the
sequential execution of more instructions.

Definition 15. A denotation is a partial function � → � from an input state
to an output or final state. The set of denotations is denoted by 	. When we
want to fix the number of local variables and stack elements in the input and
output states, we write 	li ,si→lo,so , standing for �li ,si → �lo,so . Let δ1, δ2 ∈ 	.
Their sequential composition is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined when
δ1(σ) is undefined or when δ2(δ1(σ)) is undefined.

Since denotations are state transformers, Definition 7 gives the denotation
of all bytecodes different from call. The denotational semantics of the latter
is modeled, in a denotational fashion, by assuming that we already know the
functional behavior of the selected dynamic target. As specified by the official
documentation [Lindholm and Yellin 1999], it must be the case that at the
beginning of the callee the operand stack is empty and the p + 1 lowest local
variables hold the actual arguments of the call. At its end, the operand stack
holds only the return value of the callee, if any, for the simplifying hypothesis
of Section 3. Hence it has height so = 1 if a return value exists and so = 0
if the callee returns void. New local variables might exist at the end of the
execution of the callee, used inside its code. Hence at the end we have lo ≥ p+1
local variables. Note that the initial local variables, used to store the actual
parameters, might have been modified during the execution of the callee. The
execution of the callee is hence a denotation δ ∈ 	0, p+1→lo,so where so ∈ {0, 1}
depending on the return type of the callee and lo ≥ p + 1 (Figure 12). We can
plug this δ into each calling point to the callee. It is enough to observe that
the local variables of the caller do not change during the call. Its stack must
have the form ap :: · · · :: a0 :: s, where ap :: · · · :: a0 are the actual arguments
of the call and s are the x ≥ 0 underlying stack elements, if any. The stack
elements in s do not change during the call. The ap :: · · · :: a0 actual arguments
get popped off the stack and replaced with the return value of the callee, if any.
The final memory is that reached at the end of the execution of the callee. These

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:31

considerations let us extend the denotation δ of a callee into that of a call to
that callee.

Definition 16. Let κ.m(t1, . . . , tp) : t be a method and so = 0 if t = void,
so = 1 otherwise. Let lo ≥ p + 1. Let q be a program point where a call to
κ.m(t1, . . . , tp) : t occurs. Let lq , sq be the number of local variables and stack
elements used at q, with sq = p + 1 + x (at least the p + 1 actual arguments of
the call must be on the stack when we call a method). We define

extendκ.m(t1,... ,tp):t : 	0, p+1→lo,so �→ 	lq ,sq→lq ,x+so

such as, letting δ(〈ε || ap :: · · · :: a1 :: a0 || μ〉) = 〈l ′ || v || μ′〉, extendκ.m(t1,... ,tp):t(δ) is

λ〈l || ap :: · · · :: a1 :: a0 :: s || μ〉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈l || v :: s || μ′〉 if dom(μ) ⊆ dom(μ′);
every � ∈ dom(μ)
which is not reachable
from ap :: · · · :: a1 :: a0

is such that μ(�) = μ′(�);
and if the kth formal
argument is not modified
by κ.m(t1, . . . , tp) : t
then ak = (l ′)k

undefined otherwise.

Here, v stands for the return value of the callee, if any, or otherwise v = ε.

Note that extend plays the same role here as args and the rule for returning
from a method, used in the operational semantics.

In Definition 16 we require that δ, which must be thought of as the current
interpretation of κ.m(t1, . . . , tp) : t, does not erase locations: dom(μ) ⊆ dom(μ′).
This constraint would be too strong in the presence of garbage collection (which
we do not model in our formalization). In that case, that constraint should be
refined by saying that reachable locations cannot be erased by δ. We also require
that δ does not modify those objects which are not reachable from the actual
parameters of the call. Moreover, if the kth formal parameter is not modified
by method κ.m(t1, . . . , tp) : t, then its value is not affected by δ. Note that the
latter is a syntactical property: we just look for a store k instruction in the body
of κ.m(t1, . . . , tp) : t. If no such instruction is found, then we assert that the kth
argument is not modified. All these hypotheses are sensible for our language.
Making extendκ.m(t1,... ,tp):t(δ) undefined when they do not hold is a reasonable
definition. These constraints are needed in order to prove the correctness of the
abstract extend operation of Section 6.

An interpretation provides a set of denotations for each block b of the pro-
gram. These denotations represent the possible runs of the program from the
beginning of b until the end of the method where b occur (that is, until a block
with no successors). Sets can express nondeterministic behaviors, which is not

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:32 • F. Spoto et al.

the case in our concrete semantics, but is useful in view of the definition of
the abstract semantics in Section 6. By using sets, our concrete semantics is
already a collecting semantics [Cousot and Cousot 1977]. The operations ; and
extend over denotations are consequently extended to sets of denotations.

Definition 17. An interpretation ι for a program P is a mapping from P ’s
blocks into ℘(). More precisely, if b is a block such that at its beginning there
are l local variables and s stack elements and b is part of the body of a method
κ.m(t1, . . . , tp) : t, then ι(b) ⊆ 	l ,s→lo,so where lo ≥ l (new local variables might
be declared in the body of the method), so = 0 if t = void and so = 1 oth-
erwise. The set of all interpretations is written I and is ordered by pointwise
set-inclusion.

Example 18. The interpretation of the topmost block in Figure 8 must be
a subset of 	2,0→3,1 since, at the end of method expand, there are three local
variables and one stack element only. For the same reason, the interpretation
of the block containing the load 2 instruction, in the same figure, must be a
subset of 	3,0→3,1.

Given an interpretation ι providing an approximation of the functional be-
havior of the blocks of P , we can define an improved interpretation denoted by
[[]]ι.

Definition 19. Let ι ∈ I. We define the denotations in ι of an instruction ins
which is not call as

[[ins]]ι = {ins},
where ins is defined in Definition 7. For call, let mi = κi.m(t1, . . . , tp) : t for
1 ≤ i ≤ n. We define

[[call m1, . . . , mn]]ι =
⋃

1≤i≤n

extendmi ({selectmi }; {makescopemi
}; ι(bmi)),

where bmi is the block where method mi starts. The function [[]]ι is extended to
blocks as[[

ins1···
insw

⇒ b1···
bm

]]
ι

=
{

[[ins1]]ι; · · · ; [[insw]]ι if m = 0
[[ins1]]ι; · · · ; [[insw]]ι;

(
ι(b1) ∪ · · · ∪ ι(bm)

)
if m > 0.

Note that the semantics of call is computed as the extension of the se-
quential composition of denotations that select each given possible runtime
target method, then pass the parameters, and finally run the target method
(Figure 12). Only one of these compositions will be defined: that leading to the
target method that is selected at runtime. Note also that the semantics of a
block b takes all its followers b1, . . . , bm into account, so that it represents all
runs of the method where b occurs from b itself until its end.

The blocks of P are in general interdependent, because of loops and recur-
sion, and a denotational semantics must be built through a fixpoint computa-
tion. Given an empty approximation ι ∈ I of the denotational semantics, one
improves it into TP (ι) ∈ I and iterates the application of TP until a fixpoint, that
is, a ι such that TP (ι) = ι. That fixpoint will be the denotational semantics of P ,

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:33

since it corresponds to the minimal solution of the set of equations expressed
by TP . Our analyzer actually performs smaller fixpoints on each strongly con-
nected component of blocks rather than a huge fixpoint over all blocks. This is
important for efficiency reasons but irrelevant here for our theoretical results.

Definition 20. The transformer TP : I �→ I for P is defined as

TP (ι)(b) = [[b]]ι

for every ι ∈ I and block b of P .

PROPOSITION 21. TP is additive, that is TP (∪ j∈J ι j) = ∪ j∈J TP (ι j), so its least
fixpoint exists and is equal to �i≥0Ti

P , where T 0
P (b) = ∅ for every block b of P

and Ti+1
P = TP (Ti

P) for every i ≥ 0 [Tarski 1955].

Definition 22. The denotational semantics DP of P is the least fixpoint of
TP , as computed in Proposition 21.

Our denotational semantics is defined over the concrete domain ℘() and
uses the denotations of Definitions 7, 11, and 12 which are singleton sets in
℘(). It also uses the operators ;, ∪ and extend over ℘() of Definitions 15
and 16 (∪ is just set union). In order to define an abstract denotational seman-
tics, we have to provide an abstract domain, abstract domain elements correctly
approximating the singleton sets of denotations and abstract operators correct
with respect to the concrete ones. In the next section we will apply this tech-
nique to the definition of an abstract domain for path-length of data structures.

As we said at the beginning of this section, our operational and denotational
semantics are provably equivalent, as stated by the following result.

THEOREM 23. Let b a block of a program P and σin an initial state for b. The
functional behavior of b, as modeled by the operational semantics of Section 5.1,
coincides with its denotational semantics of Section 5.2:

{σout | 〈b || σin〉 ⇒∗
P 〈b′ || σout〉 ⇒P } = {δ(σin) | δ ∈ [[b]]DP , δ(σin) is defined }

5.3 Dealing with Exceptions

We describe here how we deal with exceptions in our semantical framework.
Figure 13 shows the transformation into basic blocks of the method main of

the program in Figure 3. There are instructions that have not been considered
in our simplification of the Java bytecode. The conditionals if cmpXX are similar
to the ifeq and ifne instructions but they work on the topmost two values on the
stack. The instruction catch is more interesting. It is put after each instruction
that might throw an exception. The idea is that it catches such exceptions.
Hence it represents the entry point to the exception handlers of the method.
The instruction throw throws back an exception to the caller of the method.

In order to formalize the semantics of catch and throw, we start by expanding
the semantics of the other instructions. The state is split into a normal state
and an exceptional state. For instance, the semantics of the dup instruction
(Definition 7) becomes

dupq = λ〈〈l || top :: s || μ〉, σe〉.〈〈l || top :: top :: s || μ〉, undefined〉,
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:34 • F. Spoto et al.

Fig. 13. Our simplified Java bytecode for the method main in Figure 3.

which means that dup does not use the state σe resulting from an exception that
is thrown before it and does not throw any exception (the output exceptional
state is undefined). Instructions that can throw an exception are modeled as in
the following example. We have

getfieldq f = λ〈〈l || � :: s || μ〉, σe〉.
{

〈〈l || μ(�)(f) :: s || μ〉, undefined〉 if � = null

〈undefined, 〈l || �′ || μ[�′ �→ npe]〉〉 otherwise

where �′ is a fresh location and npe is a NullPointerException object. This
means that the input exceptional state is not used but there might be an output
exceptional state, when the object whose field is read is actually null. In the
latter case, the exceptional state has a stack of one element only, which is a
pointer to the exception object; the output normal state is undefined.

On the same line, we can define the semantics of the throw instruction as

throwq = λ〈〈l || � :: s || μ〉, σe〉.
{

〈undefined, 〈l || � || μ〉〉 if � = null

〈undefined, 〈l || �′ || μ[�′ �→ npe]〉〉
where �′ is a fresh location and npe is a NullPointerException object. This

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:35

means that the input exceptional state is not used and that this instruction
always throws an exception, so that there is no output normal state. The out-
put exceptional state is built from the original input normal state, by throwing
away all stack elements but the topmost, which must be a pointer to an excep-
tion object. If that pointer is actually null, a NullPointerException is thrown
instead.

The catch instruction catches an exception e which has been thrown just
before that instruction. This is modeled by using the input exceptional state to
find e. This is the only instruction which uses the input exceptional state and
discards the input normal state.

catchq = λ〈σn, σe〉.〈σe, undefined〉
Since some instructions might throw more than one type of exception (for in-
stance, calls might throw all exceptions thrown by the method that they call),
we need to select the right exception handler on the basis of the runtime type of
the exception. This is done through top is instance of and top is not instance of
instructions. They check the class tag of the exception object on top of the stack.

top is instance of q κ = λ〈〈l || � || μ〉, σe〉.
{

〈〈〈l || � || μ〉, undefined〉 if μ(�) is a κ

〈undefined, undefined〉 otherwise

With the use of split states and of the instructions catch, throw,
top is instance of, and top is not instance of, one can define the operational and
denotational semantics of Java bytecode exactly as we already did in this sec-
tion. No other change is required. It is only for simplicity that, in the next
sections, we do not consider exceptions in the formalization.

We conclude this section by observing that if null pointer analysis is applied
to the method in Figure 3 then the lowest two blocks rooted at catch and the
block containing catch are removed since the putfield is found to never throw
any exception. Without this analysis, there is instead an (apparent) infinite loop
passing through the lower catch instruction and termination is not proved.

6. PATH-LENGTH ANALYSIS

In this section we define an abstraction of the denotations of Section 5. Namely,
their variables v are abstracted into an integer path-length: if v is bound to a
location then the path-length of v is the maximal length of a chain of locations
that one can follow from v; if v is bound to an integer i, then the path-length
of v is i itself.2 Since the exact determination of the possible path-lengths of a
variable at each given program point is undecidable, we must content ourselves
with an approximation of the possible range for the path-lengths. This leads
to the use of numerical constraints which are closed polyhedra [Cousot and
Halbwachs 1978].

The preceding definition of path-length is formalized shortly. We first define
an auxiliary function len j which follows the chains of locations up to j steps

2In our implementation we also consider variables bound to arrays. Their path-length is the length
of the array.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:36 • F. Spoto et al.

of dereference. This function is then used in the definition of the path-length
function len.

Definition 24. Let μ be a memory (Definition 1). Let

len j (null, μ) = 0

len j (i, μ) = i if i ∈ Z

len0(�, μ) = 0 if � ∈ dom(μ)

len j+1(�, μ) = 1 + max
{
len j (�′, μ)

∣∣ �′ ∈ rng(μ(�)) ∩ L

}
if � ∈ dom(μ)

for every j ≥ 0. We assume that the maximum of an empty set is 0. The path-
length of a value v in μ is len(v, μ) = lim

j→∞
len j (v, μ).

In the last case of the definition of len j , the intersection with L is needed
in order to consider only those values of the fields of the object μ(�) which are
locations �′. The fields of type integer of the objects are not used in the definition
of the path-length.

Note that if i ∈ Z then len(i, μ) = len j (i, μ) = i for every j ≥ 0 and memory
μ. Similarly, len(null, μ) = len j (null, μ) = 0 for every memory μ. Moreover, if
� is a location bound in μ to a cyclical data structure, then len(�, μ) = ∞.

Example 25. Consider the memory

μ = [�1 �→ o1, �2 �→ o2, �3 �→ o3, �4 �→ o4, �5 �→ o5],

where o1 = [next �→ �4], o2 = [next �→ null], o3 = [next �→ �5], o4 = [next �→
null], and o5 = [next �→ null] (Example 3). We have len(�1, μ) = 2, len(�2, μ) =
1, len(�3, μ) = 2, and len(�4, μ) = 1.

We can now map a state into a path-length assignment, that is, a function
specifying the path-length of its variables. This comes in two versions: in the
input version ˇlen, the state is considered as the input state of a denotation. In
the output version ˆlen, it is considered as the output state of a denotation. We
recall that l k is the value of the kth local variable in l and sk is the value of the
kth stack element from the base of s (Definition 1).

Definition 26. Let 〈l || s || μ〉 ∈ �#l ,#s. Its input path-length assignment is

ˇlen(〈l || s || μ〉) = [ľ k �→ len(l k , μ) | 0 ≤ k < #l] ∪ [šk �→ len(sk , μ) | 0 ≤ k < #s]

and, similarly, its output path-length assignment is

ˆlen(〈l || s || μ〉) = [l̂ k �→ len(l k , μ) | 0 ≤ k < #l] ∪ [ŝk �→ len(sk , μ) | 0 ≤ k < #s].

Example 27. Consider the state

σ = 〈[�1, �2, �4] || �3 :: �2 || [�1 �→ o1, �2 �→ o2, �3 �→ o3, �4 �→ o4, �5 �→ o5]︸ ︷︷ ︸
μ

〉

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:37

of Example 3. By using the results of Example 25 we conclude that

ˇlen(σ) =
[

ľ0 �→ len(�1, μ), ľ1 �→ len(�2, μ), ľ2 �→ len(�4, μ)
š1 �→ len(�3, μ), š0 �→ len(�2, μ)

]
= [ľ0 �→ 2, ľ1 �→ 1, ľ2 �→ 1, š1 �→ 2, š0 �→ 1].

Similarly, we have

ˆlen(σ) = [l̂0 �→ 2, l̂1 �→ 1, l̂2 �→ 1, ŝ1 �→ 2, ŝ0 �→ 1].

Example 28. Consider the state σ of Example 3 and the state

dupq(σ) = 〈[�1, �2, �4] || �3 :: �3 :: �2 ||[�1 �→ o1, �2 �→ o2, �3 �→ o3, �4 �→ o4, �5 �→ o5]︸ ︷︷ ︸
μ

〉

of Example 9. By Example 25 we have

ˆlen(dupq(σ)) = [l̂0 �→ 2, l̂1 �→ 1, l̂2 �→ 1, ŝ2 �→ 2, ŝ1 �→ 2, ŝ0 �→ 1].

Definition 29. Let li, si, lo, so ∈ N. The set PLli ,si→lo,so of the path-length
polyhedra contains all finite sets of integer linear constraints over the variables
{ľ k | 0 ≤ k < li} ∪ {šk | 0 ≤ k < si} ∪ {l̂ k | 0 ≤ k < lo} ∪ {ŝk | 0 ≤ k < so}, using
only the ≤ comparison operator.

Although only ≤ is allowed in a path-length constraint, we will also write
constraints such as x = y , standing for both x ≤ y and y ≤ x.

Example 30. The following polyhedron belongs to PL3,2→3,3.

pl =
⎧⎨
⎩

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2, š0 = ŝ0, š1 = ŝ1

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, š1 ≥ 0
š1 = ŝ2

⎫⎬
⎭

A path-length assignment fixes the values of the variables. When these val-
ues satisfy a path-length constraint, we say that they are a model of that con-
straint.

Definition 31. Let pl ∈ PLli ,si→lo,so and ρ be an assignment from a superset
of the variables of pl into Z ∪ {∞}. We say that ρ is a model of pl and we write
ρ |= pl when plρ is true, that is, by substituting, in pl, the variables with their
values provided by ρ, we get a tautological set of ground constraints.

Example 32. Consider the path-length constraint pl of Example 30 and the
state σ of Example 3. By Examples 27 and 28 we have that

ρ = ˇlen(σ) ∪ ˆlen(dupq(σ)) =
[

ľ0 �→ 2, ľ1 �→ 1, ľ2 �→ 1, š1 �→ 2, š0 �→ 1
l̂0 �→ 2, l̂1 �→ 1, l̂2 �→ 1, ŝ2 �→ 2, ŝ1 �→ 2, ŝ0 �→ 1

]
is such that

plρ =
⎧⎨
⎩

2 = 2, 1 = 1, 1 = 1, 1 = 1, 2 = 2
1 = 1, 2 ≥ 0, 1 ≥ 0, 1 ≥ 0, 1 ≥ 0, 2 ≥ 0

2 = 2

⎫⎬
⎭ .

Hence ρ is a model of pl.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:38 • F. Spoto et al.

We can now define the concretization of a path-length constraint. It is the set
of denotations that induce input and output assignments that, together, form
a model of the constraint.

Definition 33. Let pl ∈ PLli ,si→lo,so . Its concretization is

γ (pl) =
{

δ ∈ 	li ,si→lo,so

∣∣∣∣∣ for all σ ∈ �li ,si such that δ(σ) is defined
we have

(
ˇlen(σ) ∪ ˆlen(δ(σ))

)
|= pl

}
.

Example 34. Consider the path-length constraint pl of Example 30. In Ex-
ample 32 we have seen that the state σ of Example 3 is such that (ˇlen(σ) ∪
ˆlen(dupq(σ))) |= pl, where dupq is the denotation of the dup instruction in

Figure 8, given in Example 8. However, this is true for every input state
σ such that dupq(σ) is defined. This is because every such σ has the form
〈[l0, s0, l2] || s1 :: s0 || μ〉 and satisfies the static information of Figures 9, 10
and 11. Hence

ρ = ˇlen(σ) ∪ ˆlen(dupq(σ))

= ˇlen
(
〈[l0, s0, l2] || s1 :: s0 || μ〉

)
∪ ˆlen

(
〈[l0, s0, l2] || s1 :: s1 :: s0 || μ〉

)

=

⎡
⎢⎢⎣

ľ0 �→ len(l0, μ), ľ1 �→ len(s0, μ), ľ2 �→ len(l2, μ)
š1 �→ len(s1, μ), š0 �→ len(s0, μ)

l̂0 �→ len(l0, μ), l̂1 �→ len(s0, μ), l̂2 �→ len(l2, μ)
ŝ2 �→ len(s1, μ), ŝ1 �→ len(s1, μ), ŝ0 �→ len(s0, μ)

⎤
⎥⎥⎦ .

It follows that

plρ =

⎧⎪⎪⎨
⎪⎪⎩

len(l0, μ) = len(l0, μ), len(s0, μ) = len(s0, μ)
len(l2, μ) = len(l2, μ), len(s0, μ) = len(s0, μ), len(s1, μ) = len(s1, μ)

len(s0, μ) = len(s0, μ), len(l0, μ) ≥ 0, len(s0, μ) ≥ 0
len(l2, μ) ≥ 0, len(s0, μ) ≥ 0, len(s1, μ) ≥ 0, len(s1, μ) = len(s1, μ)

⎫⎪⎪⎬
⎪⎪⎭

which is true since variables l0, s0, l2, and s1 do not have integer type at the
beginning of the execution of the dup instruction in Figure 8 and hence their
path-length is nonnegative (Definition 24). In conclusion, we have

dupq ∈ γ (pl).

We want to order our path-length constraints on the basis of their concretiza-
tion: pl1 ≤ pl2 if and only if γ (pl1) ⊆ γ (pl2). This results in a poset of polyhedra.
The � operation over sets of constraints is the union of the constraints, that is,
the intersection of the polyhedra that they represent, and the � operation is the
polyhedral hull [Stoer and Witzgall 1970] of the polyhedra that they represent,
that is, the smallest closed polyhedron which includes both.

In the following, we identify in the same equivalence class all elements hav-
ing the same concretization. For instance, {x ≤ y + 1} and {x + 2 ≤ y + 3} are
the same abstract element since γ ({x ≤ y + 1}) = γ ({x + 2 ≤ y + 3}).

Definition 35. The path-length polyhedra PLli ,si→lo,so are ordered as pl1 ≤
pl2 if and only if γ (pl1) ⊆ γ (pl2). They form a poset, that is, ≤ is reflexive, tran-
sitive, and antisymmetric. Their elements silently stand for their equivalence

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:39

class. Their top element is the tautological constraint true (which stands for
an empty set of linear constraints). Their least element is the constraint false
(which stands for a constraint such as 1 ≤ 0).

By the theory of abstract interpretation, we get a correct abstract denota-
tional semantics DPL

P for path-length as soon as we substitute the concrete
denotations of Definition 7 with elements of PL which include them in their
concretization. Moreover, we must provide the abstract counterparts over PL

of the operations ;, ∪ and extend over ℘().
We first define a constraint stating that no local variable and no stack element

is modified, that if two variables are definitely aliases, then they must have the
same path-length and that all variables of reference (noninteger) type have
nonnegative path-length.

Definition 36. Let L, S ⊆ N and q be a program point where there are lq
local variables and sq stack elements. We define

Unchangedq(L, S) = {ľ i = l̂ i | i ∈ L}
∪ {ši = ŝi | i ∈ S}

∪
{

ši = š j
∣∣∣∣ 0 ≤ i, j < sq and si is an alias of s j at q

according to our definite aliasing analysis

}

∪
{

ši = ľ j
∣∣∣∣ 0 ≤ i < sq , 0 ≤ j < lq and si is an alias of l j at q

according to our definite aliasing analysis

}

∪
{

ľ i = ľ j
∣∣∣∣ 0 ≤ i, j < lq and l i is an alias of l j at q

according to our definite aliasing analysis

}
∪ {ši ≥ 0 | 0 ≤ i < sq and si does not have integer type at q}
∪ {ľ i ≥ 0 | 0 ≤ i < lq and l i does not have integer type at q}.

Let l , s ∈ N. Then Unchangedq(l , s) = Unchangedq({0, . . . , l −1}, {0, . . . , s−1}).

Let us define the abstract counterparts of the ins denotations now.

Definition 37. Let #l , #s be the number of local variables and stack ele-
ments at a program point q. The abstract counterparts of the denotations of
Definition 7 are the following:

constPL

q c =
{

Unchangedq(#l , #s) ∪ {c = ŝ#s} if c ∈ Z

Unchangedq(#l , #s) ∪ {0 = ŝ#s} if c = null

dupPL

q = Unchangedq(#l , #s) ∪ {š#s−1 = ŝ#s}
newPL

q κ = Unchangedq(#l , #s) ∪ {1 = ŝ#s}
loadPL

q i = Unchangedq(#l , #s) ∪ {ľ i = ŝ#s}
storePL

q i = Unchangedq({0, . . . , #l − 1} \ i, {0, . . . , #s − 2}) ∪ {š#s−1 = l̂ i}
addPL

q = Unchangedq(#l , #s − 2) ∪ {š#s−2 + š#s−1 = ŝ#s−2}
ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:40 • F. Spoto et al.

getfieldPL

q f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unchangedq(#l , #s − 1)
if f has integer type

Unchangedq(#l , #s − 1) ∪ {š#s−1 ≥ ŝ#s−1}
if f does not have integer type and s#s−1 might be cyclical

at q
Unchangedq(#l , #s − 1) ∪ {š#s−1 ≥ 1 + ŝ#s−1}

if f does not have integer type and s#s−1 cannot be cyclical
at q

putfieldPL

q f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unchangedq(#l , #s − 2)
if f has integer type

Unchangedq(L, S)
if s#s−2 might share with s#s−1 at q

Unchangedq(L, S) ∪ {ľ i + š#s−1 ≥ l̂ i | 0 ≤ i < #l , i ∈ L}
∪{ši + š#s−1 ≥ ŝi | 0 ≤ i < #s − 2, i ∈ S}
otherwise

where L are the indexes of the local variables which cannot share with

s#s−2 at q and S the indexes x of the stack elements, with 0 ≤ x < #s − 2,

which cannot share with s#s−2 at q

ifeq of typePL

q t = Unchangedq(#l , #s − 1) ∪ {š#s−1 = 0}

ifne of typePL

q t =
{

Unchangedq(#l , #s − 1) ∪ {š#s−1 ≥ 1} if t = int

Unchangedq(#l , #s − 1) otherwise.

The abstract operations use the Unchanged constraint for the part of the
state which they do not modify. The part which is modified is modeled explicitly.
For instance, the constPL constraint says that the new top of the stack s#s has
path-length c when c is an integer value and 0 when c is null. The dupPL

constraint copies the path-length of the old top of the stack š#s−1 into the path-
length of the new top of the stack ŝ#s.

The definition of getfieldPL

q states that if we read the field of an object then
we get a value whose path-length is no larger than the path-length š#s−1 of the
object. Moreover, if the object cannot be cyclical, the path-length of its field is
strictly smaller than š#s−1.

For the definition of putfieldPL

q , remember that s#s−2 holds the object whose
field f is going to be modified, and that s#s−1 holds the value which is going
to be written inside f (Definition 7). Definition 37 states that if f has integer
type then no path-length changes. Otherwise, the local variables L and stack
elements S which do not share at q with the object whose field is modified (i.e.,
with s#s−2), and that still exist in the output of the instruction, do not change
their path-length. The other variables are affected by the putfield instruction.
Namely, if the putfield might build a cycle, that is, if the variable s#s−2 holding

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:41

the object might share with the variable s#s−1 holding the value which is going to
be written inside the field f of the object, then the path-length of the variables
not in L and not in S is not approximated (it might become infinite). Otherwise
it can only grow by the path-length of the value s#s−1 which is stored inside the
field.

Example 38. Consider the dup instruction in Figure 8. We know that l1 and
s0 are aliases at the program point q where the instruction occurs (Figure 11).
Hence dupPL

q is the constraint pl of Example 30.

Example 39. Let q be now the program point at the beginning of the code
in Figure 8. Consider the load 0 instruction at q. There are 2 local variables at q
(the parameters of the method), both of noninteger type, and no stack elements.
No variables are aliases at q (Figure 11). Hence

loadPL

q 0 = Unchangedq(2, 0) ∪ {ľ0 = ŝ0}
= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0} ∪ {ľ0 = ŝ0}
= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = ŝ0}.

Example 40. Let r be the program point at the beginning of the store 2
instruction in the topmost block in Figure 8. There are 2 local variables at r
(the parameters of the method), both of noninteger type, and 1 stack element,
of noninteger type. Variables s0 and l0 are aliases at r (Figure 11). Hence

storePL

r 2 = Unchangedr ({0, 1}, ∅) ∪ {š0 = l̂2}
= {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0} ∪ {š0 = l̂2}
= {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0, š0 = l̂2}.

Example 41. Let r be the program point at the beginning of the first
getfield next instruction in the lowest block in Figure 8. Assume that the ar-
gument of the method might be a cyclical list. There are 3 local variables at
r, all of noninteger type, and 1 stack element, of noninteger type. That stack
element might be cyclical if the input argument of the method might be cyclical
(Figure 10). Variables s0 and l1 are aliases at r (Figure 11). Hence

getfieldPL

r next = Unchangedr ({0, 1, 2}, ∅) ∪ {š0 ≥ ŝ0}

=
{

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2,
š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0

}
∪ {š0 ≥ ŝ0}

=
{

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2,
š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, š0 ≥ ŝ0

}
.

Example 42. Let r be the program point at the beginning of the putfield next
instruction in the lowest block in Figure 8. Assume that the argument of the
method might be a cyclical list. There are 3 local variables at r, all of noninteger
type, and 2 stack elements, of noninteger type. Variables s0 and l1 are aliases
at r (Figure 11). Only variables s0 and l1 and variables l0 and l1 might share
at r (Figure 9). Hence we are in the third case for putfieldPL

r in Definition 37.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:42 • F. Spoto et al.

We have L = {l0, l2} and S = ∅. Hence

putfieldPL

r next = Unchangedr (L, S) ∪ {ľ1 + š1 ≥ l̂1}

=
{

ľ0 = l̂0, ľ2 = l̂2,
š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0

}
∪ {ľ1 + š1 ≥ l̂1}

=
{

ľ0 = l̂0, ľ2 = l̂2,
š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, ľ1 + š1 ≥ l̂1

}
.

The intuition of this result is that locals 0 and 2 do not change their path-
length, since they are not affected by the modification of the field. Local 1 (that
is, other in Figure 1), instead, might increase its path-length by as much as the
path-length of the value which is written inside the field next.

We also provide correct approximations for the denotations used for a method
call.

Definition 43. Let κ.m(t1, . . . , tp) : t be a method. We define

argsPL

q,κ.m(t1,... ,tp) = {šsq−(p+1)+i = ŝi | 0 ≤ i < p + 1}
selectPL

κ.m(t1,... ,tp):t = Unchanged(0, p + 1)

makescopePL

κ.m(t1,... ,tp):t = {ši = l̂ i | 0 ≤ i < p + 1}.
We define now the abstract counterparts of the operators ;, ∪ and extend over

sets of denotations. For ;, we sequentially compose two path-length constraints
by matching the output variables of the first with the input variables of the
second. This is accomplished by renaming such variables into new overlined
variables T , which are then projected away with the ∃T operation. The ∪PL

operation is just the polyhedral hull operation. For extend, recall that we as-
sume we have already performed many preliminary static analyses (Section 4).
Namely, we assume that at the program point where a call instruction occurs
we know:

(1) which stack elements or local variables of the caller might share;
(2) which stack elements or local variables of the caller must be aliases of each

other;
(3) which formal parameters of the callee might be updated during the execu-

tion of the callee (that is, some reachable object might change its fields);
(4) which formal parameters of the callee might be modified during the execu-

tion of the callee. This is just a syntactical property: parameter k is modified
if a store k instruction occurs inside the code of the callee.

Definition 44. Let pl1 ∈ PLli ,si→lt ,st and pl2 ∈ PLlt ,st→lo,so . Let us also define
T = {l0

, . . . , l
lt−1

, s0, . . . , sst−1}. We define pl1;PL pl2 ∈ PLli ,si→lo,so as

pl1;PL pl2 = ∃T
(
pl1[v̂ �→ v | v ∈ T] ∪ pl2[v̌ �→ v | v ∈ T]

)
.

Let pl1, pl2 ∈ PLli ,si→lo,so . We define

pl1 ∪PL pl2 = polyhedral hull of pl1 and pl2.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:43

Let κ.m(t1, . . . , tp) : t be a method and so = 0 if t = void, so = 1 otherwise. Let
lo ≥ p + 1. Let q be a program point where a call to κ.m(t1, . . . , tp) : t occurs.
Let lq , sq be the number of local variables and stack elements used at q, with
sq = p + 1 + x (at least the p + 1 actual arguments of the call must be on the
stack when one calls a method). The actual parameters of the call at q are held
in sx+k with 0 ≤ k < p + 1. We define

extendPL

κ.m(t1,... ,tp):t : PL0, p+1→lo,so �→ PLlq ,sq→lq ,x+so

as

extendPL

κ.m(t1,... ,tp):t(pl) =

= ∃T

(
pl[v̂ �→ v | v ∈ T][šk �→ šk+x | 0 ≤ k < p + 1][ŝ0 �→ ŝx]

∪US ∪ MSA ∪ UL ∪ MLA

)
where

T = {l0
, . . . , l

lo−1}
US = {ši = ŝi | 0 ≤ i < x and si cannot share with any possibly updated

parameter}

MSA =
⎧⎨
⎩l

k = ŝi

∣∣∣∣∣∣
0 ≤ i < x, 0 ≤ k < p + 1,
si is a definite alias of the kth parameter
and the latter is not modified inside the callee

⎫⎬
⎭

UL = {ľ i = l̂ i | 0 ≤ i < lq and l i cannot share with any possibly updated
parameter}

MLA =
⎧⎨
⎩l

k = l̂ i

∣∣∣∣∣∣
0 ≤ i < lq , 0 ≤ k < p + 1,
l i is a definite alias of the kth parameter
and the latter is not modified inside the callee

⎫⎬
⎭ .

Example 45. Consider the constraints of Examples 39 and 40. We have

(loadPL

q 0);PL (storePL

r 2)

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = ŝ0}
;PL {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, š0 ≥ 0, š0 = l̂2}

= ∃{l0
,l

1
,s0}

{
ľ0 = l

0
, ľ1 = l

1
, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = s0

l
0 = l̂0, l

1 = l̂1, s0 = l
0
, l

0 ≥ 0, s0 ≥ 0, s0 = l̂2

}

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = l̂2}.
The extendPL operation is rather complex. Do not consider the MSA and MLA

sets for the moment. Then the definition says that if we know the path-length
behavior pl of the called method(s), we just have to lift the input stack elements
of pl by x positions, since the callee starts with p + 1 stack elements which are
copies of the highest p+1 stack elements of the caller. The latter, however, has x
more underlying elements (Definition 16). The same must be performed for the
only output stack element which might be used by the callee to yield its return
value. The output local variables are renamed into new overlined variables in

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:44 • F. Spoto et al.

T which are finally removed by ∃T . This definition would already be correct,
but extremely imprecise. In fact, it does not say anything about the effect of
the call on the set of variables Y = {l i | 0 ≤ i < lq} ∪ {si | 0 ≤ i < x} which
contains all the local variables of the caller and the x lower stack elements of
the caller, those which are not used to hold the p + 1 parameters. This is the
purpose of the UL and US sets, respectively. They say that the path-length of
any v ∈ Y is not modified by the call, but only if v cannot share with any of
the parameters of the call which might be updated during the execution of the
callee. This is correct since in such a case the callee has no way of modifying
the objects reachable from v and hence the path-length of v cannot be affected
by the call.

The definition in Spoto et al. [2006] stopped here and actually did not even
use the update information, so that it only required nonsharing in the definition
of the sets US and UL. Hence it was less precise. We improve it here further by
using the sets of constraints MSA and MLA. They consider the case when some
v ∈ Y is well shared with the kth actual parameter, but is actually an alias of
it. Furthermore, that parameter must not be modified inside the callee. In such
a case, it is enough to look at the final path-length of that parameter, held in l k

inside the callee, to determine the final path-length of v.
Note that since integer variables cannot share, the path-length of any v ∈ Y

of integer type is not affected by a call instruction (it will always be included in
the US or UL sets).

We can now state the correctness results for our path-length analysis.
Namely, we prove that the path-length constraints computed by our analysis
include their concrete counterparts in their concretization. We start with the
instructions.

PROPOSITION 46. Let instruction ins, different from call, occur at program
point q. We have

insq ∈ γ (insPL

q).

Then we consider the auxiliary path-length constraints for the method call.

PROPOSITION 47. Let κ.m(t1, . . . , tp) : t be a method. We have

argsq,κ.m(t1,... ,tp):t ∈ γ (argsPL

q,κ.m(t1,... ,tp):t)

selectκ.m(t1,... ,tp):t ∈ γ (selectPL

κ.m(t1,... ,tp):t)

makescopeκ.m(t1,... ,tp):t ∈ γ (makescopePL

κ.m(t1,... ,tp):t).

Hence we consider the operators over the path-length constraints.

PROPOSITION 48. In the conditions of Definition 44, we have

γ (pl1); γ (pl2) ⊆ γ (pl1;PL pl2)

γ (pl1) ∪ γ (pl2) ⊆ γ (pl1 ∪PL pl2)

extendκ.m(t1,... ,tp):t(γ (pl)) ⊆ γ (extendPL

κ.m(t1,... ,tp):t(pl)).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:45

We now lift to our path-length polyhedra the notion of interpretation of
Definition 17.

Definition 49. A path-length interpretation ι for P is a map from P ’s blocks
into PL. More precisely, if b is a block such that at its beginning there are
l local variables and s stack elements and b is part of the body of a method
κ.m(t1, . . . , tp) : t, then ι(b) ∈ PLl ,s→lo,so where lo ≥ l (new local variables might
be declared in the body of the method), so = 0 if t = void and so = 1 otherwise.
The set of all path-length interpretations is written I

PL and is ordered by the
pointwise extension of ≤.

Hence we lift the definition of denotation of an instruction or block (Defini-
tion 19).

Definition 50. Let ι ∈ I
PL. We define the path-length denotations in ι of an

instruction ins which is not call as

[[ins]]PL

ι = insPL
.

For call, let mi = κi.m(t1, . . . , tp) : t for 1 ≤ i ≤ n. We define

[[call m1, . . . , mn]]PL

ι =
⋃

PL

1≤i≤n
extendPL

mi

(
selectPL

mi
;PL makescopePL

mi
;PL ι(bmi)

)
,

where bmi is the block where method mi starts. The function [[]]PL

ι is extended
to blocks as[[

ins1···
insw

⇒ b1···
bm

]]PL

ι

=
{

[[ins1]]PL

ι ;PL · · · ;PL [[insw]]PL

ι if m=0
[[ins1]]PL

ι ;PL · · · ;PL [[insw]]PL

ι ;
(
ι(b1) ∪PL · · · ∪PL ι(bm)

)
if m>0.

We can finally define a path-length denotational semantics. A technical dif-
ficulty is that we cannot define it as the least fixpoint of a TPL

P operator, since
that fixpoint does not exist in general (the union of an infinite set of polyhedra
might not be a polyhedron). Hence we content ourselves with a postfixpoint of
that operator, that is, an interpretation ι such that T PL

P (ι) ≤ ι. A postfixpoint
can be computed in a finite number of iterations through a widening operator
over polyhedra, which forces the analysis to converge [Cousot and Halbwachs
1978]. We actually use the more precise widening operator defined in Bagnara
et al. [2005].

Definition 51. The transformer TPL

P : I
PL �→ I

PL for P is defined as

TPL

P (ι)(b) = [[b]]PL

ι

for every ι ∈ I
PL and block b of P . We define a postfixpoint DPL

P of T PL

P , com-
putable in a finite number of iterations, by using the widening operator defined
in Bagnara et al. [2005]. Note that this widening operator keeps the polyhedra
closed. Hence we can define the path-length semantics of P as DPL

P .

THEOREM 52. The path-length semantics is correct with respect to the con-
crete denotational semantics of Section 5, that is,

DP ≤ γ (DPL

P).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:46 • F. Spoto et al.

In this section, for simplicity, we have not considered exceptions. If excep-
tions are taken into account, as modeled in Section 5.3, then the path-length
polyhedra are split into pairs of two polyhedra: the first polyhedron relates the
output normal state to the input normal state. The second polyhedron relates
the output exceptional state to the input normal state. Our implementation
uses this technique to deal with programs with exceptions.

We have seen that the path-length might be infinite (Definition 24) and that
∞ is allowed in the models of a polyhedron (Definition 31). Nevertheless, the
polyhedra build for each bytecode do not mention ∞ explicitly (Definitions 37
and 43) and the operators on such polyhedra (Definition 44) are standard and
easily implementable, for instance, in terms of the operators available in the
Parma Polyhedra Library [Bagnara et al. 2008]. Hence that library or a similar
one can safely be used to implement the path-length analysis.

7. COMPILATION INTO CONSTRAINT LOGIC PROGRAMS

In this section we prove that the result of a path-length analysis can be used to
translate a Java bytecode program into a constraint logic program [Jaffar and
Maher 1994] over path-length polyhedra (CLP(PL)), whose termination entails
the termination of the original Java bytecode program. It is important to re-
mark that we assume a specialized semantics of CLP computations here, where
variables are always bound to integer values [Spoto et al. 2009]. This means
that we do not allow free variables in a call to a predicate. This is consistent
with the fact that we model the path-length of the variables in a state, which
assigns an integer value to all the variables in the state. For instance, in the
CLP(PL) program.

p(x̌) :-{ ŷ ≥ 0}, b(ŷ).
b(x̌) :-{x̌ = ŷ + 1, ŷ ≥ 0}, b(ŷ).

we assume that a call to predicate p leads to a call to predicate b with a given,
nonnegative argument ŷ . That is, a specific value for ŷ is chosen, provided that
it is nonnegative, and the computation continues with b. This entails that any
call to p terminates, while this is not the case with the traditional semantics of
CLP, which allows partially constrained variables [Jaffar and Maher 1994].

From now on, we assume that the blocks of code have been decorated with a
unique name, as in Figure 14. In that figure, we also report the names of some
program points that we will use in the examples that follow.

Definition 53. Let P be a Java bytecode program. The CLP(PL) program
PCLP derived from P is built as follows. For each block

b
ins1
ins2···
insw

⇒ b1···
bm

in P , let c = [[ins1]]PL

DPL

P
;PL · · · ;PL [[insw]]PL

DPL

P
. We generate the CLP clauses

b(ˇvars) :- c, b1(ˆvars).
· · ·
b(ˇvars) :- c, bm(ˆvars).

(5)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:47

Fig. 14. The program in Figure 8, where each block is decorated with a unique name.

where ˇvars are the input local variables and stack elements at the beginning
of block b and ˆvars are the output local variables and stack elements at the
end of block b (in some fixed order). Moreover, if ins1 = callq m1, . . . , mn, where
mi = κi.m(t1, . . . , tp) : t, then we also add a clause

b(ˇvars) :-
(
argsPL

q,mi
;PL selectPL

mi
;PL makescopePL

mi

)
, bmi (l̂

0, . . . , l̂ p). (6)

for each 1 ≤ i ≤ n, where bmi is the block where method mi begins.

The clauses (5) mimic the execution of block b, followed by the execution of
one of its followers. The relation between the input state of b and that of its
followers is approximated by the path-length constraint c of the code inside
block b. Hence those clauses say that the execution of b from an input state σ

leads to the execution of b1, . . . , bm from a state σ ′ where the variables in σ (seen
as input variables) and those in σ ′ (seen as output variables) satisfy c. Note that
no clause is generated in (5) for those blocks with no followers, since they cannot
be part of a loop, so that they are not relevant for our termination analysis. If the
first instruction ins1 of block b is a call instruction (remember that we assume
that call instructions can only occur at the beginning of a block), the clauses (5)
assume a complete execution of that call, that is, they express a computation
in which control has come back to the callee. This would not be enough to
prove our correctness result (Theorem 56). This is because nontermination very
often occurs as a consequence of an infinite recursion, so that we must also
consider the case when a call does not complete its execution. To that purpose,
we introduce the clauses (6). They mimic, explicitly, the execution of the callee.
Namely, they single out from the stack the actual arguments of the call (argsPL),
then they check which dynamic target is selected (selectPL), then they move the
actual arguments from the stack to the lowest local variables (makescopePL),

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:48 • F. Spoto et al.

and they finally run the callee from block bmi . The latter starts its execution in
a state where the stack is empty and the p + 1 lowest local variables hold the
actual arguments of the call.

Our translation into CLP(PL) is similar in spirit to that in Albert et al. [2007a,
2008]. In both cases, a CLP program is constructed from the structure of the
code, seen as a graph of blocks of code. The main difference is that they use the
clauses (5), but they do not use the clauses (6). This second kind of clauses are
meaningful for termination analysis, but not for cost analysis.

Example 54. Only one clause is generated for the block b1 in Figure 14,
whose instructions occur at program points that we call q and r, respectively,

b1(ľ0, ľ1):-
(
[[loadq 0]]PL

DPL

P
;PL [[storer 2]]PL

DPL

P

)
, b2(l̂0, l̂1, l̂2).

which by Example 45 is

b1(ľ0, ľ1):- {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = l̂2}, b2(l̂0, l̂1, l̂2).

Example 55. Consider block b5 in Figure 14. At its beginning there are 3
local variables and 4 stack elements (Figure 8). We build two clauses for it. The
first belongs to the set (5).

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-
(
[[calls Sharing.〈init〉(Sharing) : void]]PL

DPL

P
;PL

[[putfieldt next]]PL

DPL

P
;PL [[loadu 1]]PL

DPL

P
;PL · · ·

· · · ;PL [[storez 2]]PL

DPL

P

)
, b2(l̂0, l̂1, l̂2).

The second is built since b5 starts with a call instruction (with only one possible
dynamic target). It is

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-
(
argsPL

s,Sharing.〈init〉(Sharing):void;
PL

selectPL

Sharing.〈init〉(Sharing):void;
PL

makescopePL

Sharing.〈init〉(Sharing):void

)
,

bSharing.〈init〉(Sharing):void(l̂0, l̂1).

Figure 15 shows the CLP(PL) program generated from the blocks of method
expand in Figure 14. Since that method calls the constructor of class Sharing, the
last clause in Figure 15 links the code for expand with that for the constructor
(not shown in the figure). It is interesting to observe that the last but one clause
contains the constraint ľ2 − 1 ≥ l̂2, that is, block b5 strictly decreases the path-
length of local variable 2 (variable cursor in Figure 1). Together with the fact
that that variable has reference type and hence has nonnegative path-length,
this is the key for a proof of termination for the method expand.

We can now state the correctness of our translation. Note that we assume
that the CLP predicates are called with concrete integer values for the variables,
according to our specialized semantics.

THEOREM 56. Let P be a Java bytecode program and b a block of P. If the
query b(vars) has only terminating computations in PCLP, for any fixed integer

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:49

Fig. 15. The CLP(PL) program generated from the Java bytecode method expand in Figure 14.
Block bSharing.〈init〉(Sharing):void is the first block of the code of the constructor of class Sharing.

values for vars, then all executions of a Java Virtual Machine started at block b
terminate.

PROOF. We prove this result by contradiction. That is, we prove that if there
is an execution of the Java Virtual Machine from block b that diverges, accord-
ing to the operational semantics of Section 5.1, then the query b(vars) has a
divergent computation in PCLP for some fixed integer values for vars.

Let hence

σ1
ins1→ σ2

ins2→ · · · insk−1→ σk
insk→ · · · (7)

be an infinite operational execution of the Java Virtual Machine from block b,
starting at a state σ1. The states in the sequence are those that are, at each
step, on top of the activation stack of the Java Virtual Machine. Instruction
insk is the instruction which makes the state on top of the activation stack
evolve from σk to σk+1. Note that in general we have [[insk]]DP (σk) = σk+1 since,
when insk is the last instruction of a method m, state σk+1 is derived from σh,
which was on top of the activation stack at the moment of the last call to m, by
replacing the actual parameters with the return value (Definition 14). That call
was executed by some call m1, . . . , mn instruction in the program, with m = mi
for some 0 ≤ i ≤ n. In such a case, we can identify a portion of (7). We have

σh
argsm→ σh+1

selectm→ σh+2
makescopem→ σh+3 · · · · · · σk

insk→ σk+1 (8)

where σh is the top of the activation stack at the moment of the last activation
of m and insk terminates that activation. By the equivalence of our denotational
and operational semantics (Theorem 23), we know that

σk+1 = extendm
({selectm}; {makescopem};DP (bm)

)
(σh)

and, since our language is deterministic, we have

σk+1 =
⋃

1≤i≤n

extendmi

({selectmi }; {makescopemi
};DP (bmi)

)
(σh)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:50 • F. Spoto et al.

that is [[call m1, · · · , mn]]DP (σh) = σk+1. Hence we can systematically rewrite
each such subsequence in (7) into a subsequence

σh
call m1,··· ,mn→ σk+1.

Let

σ ′
1

ins′
1→ σ ′

2
ins′

2→ · · · ins′
k−1→ σ ′

k
ins′

k→ · · · (9)

be the resulting, still infinite sequence. We now have

[[ins′
k]]DP (σ ′

k) = σ ′
k+1 (10)

for every k ≥ 0. This sequence can still contain instructions argsm, but they
must correspond to activations of method m that do not reach completion in (9).
Since a call instruction can only occur at the beginning of some block b, the
sequence (9) must have as a prefix

— σ ′
1

ins1→ σ ′
2 · · · σ ′

w
insw→ σ ′

w+1 · · · , where b =
ins1
ins2···
insw

;

— or σ ′
1

argsmi→ σ ′
2

selectmi→ σ ′
3

makescopemi→ σ ′
4, where b = callm1,... ,mn··· and 1 ≤ i ≤ n.

After that prefix, we will see another prefix. In the first case the new prefix will
correspond to a block b′ among the successors of b; in the second case, it will
correspond to the beginning bmi of method mi. By Definition 53, in the first case
PCLP contains the clause

b(ˇvars) :-
(
[[ins1]]PL

DPL

P
;PL · · · ;PL [[insw]]PL

DPL

P

)
, b′(ˆvars).

and in the second case it contains the clause

b(ˇvars) :-
(
[[argsmi

]]PL

DPL

P
;PL [[selectmi]]

PL

DPL

P
;PL [[makescopemi

]]PL

DPL

P

)
, bmi (l̂

0, . . . , l̂ p).

If we continue unwinding the infinite sequence (9), we hence find an infinite
sequence of clauses of PCLP

b1(ˇvars1) :-
(
[[ins′

1]]PL

DPL

P
;PL · · · ;PL [[ins′

w1
]]PL

DPL

P

)
, b2(ˆvars2).

b2(ˇvars2) :-
(
[[ins′

w1+1]]PL

DPL

P
;PL · · · ;PL [[ins′

w2
]]PL

DPL

P

)
, b3(ˆvars3).

...

bt(ˇvarst) :-
(
[[ins′

wt−1+1]]PL

DPL

P
;PL · · · ;PL [[ins′

wt
]]PL

DPL

P

)
, bt+1(ˆvarst+1).

...

where b(ˇvars) = b1(ˇvars1). This is not enough to conclude that PCLP has a
divergent computation from the query b(ˇvars), since a CLP computation stops
when its constraint store is unsatisfiable. Since the unification of the CLP atom
bt(ˆvarst) with the atom bt(ˇvarst) corresponds to the ;PL operation (renaming of

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:51

the variables into new overlined variables and existential quantification), then
we still have to prove that, for every t ≥ 1, the constraint store

cst = [[ins′
1]]PL

DPL

P
;PL · · · ;PL [[ins′

w1
]]PL

DPL

P
;PL · · · ;PL [[ins′

wt−1+1]]PL

DPL

P
;PL · · · ;PL [[ins′

wt
]]PL

DPL

P

is satisfiable. By the correctness of our path-length analysis (Theorem 52) and
by Propositions 46, 47, and 48, we conclude that

[[ins′
1]]DP ; · · · ; [[ins′

w1
]]DP ; · · · ; [[ins′

wt−1+1]]DP ; · · · ; [[ins′
wt

]]DP ∈ γ (cst) (11)

and by Eq. (10) we conclude that

([[ins′
1]]DP ; · · · ; [[ins′

w1
]]DP ; · · · ; [[ins′

wt−1+1]]DP ; · · · ; [[ins′
wt

]]DP)(σ ′
1) = σ ′

wt+1.

By (11) and Definition 33 this entails that

(ˇlen(σ ′
1) ∪ ˆlen(σ ′

wt+1)) |= cst ,

that is, cst has a model and is hence satisfiable. Note that a model provides
concrete integer values to each input variable and the existential operator used
by ;PL requires the existence of concrete integer values for the variables at each
predicate call. Hence we have found a divergent computation according to our
specialized semantics.

Let bstart be the initial block of our Java bytecode program P . Once the
CLP(PL) program PCLP is built from P , we can use a termination prover for
(constraint) logic programs to prove the termination of PCLP from bstart(ˇvars),
and hence (Theorem 56) that of P from bstart.

We use the BINTERM termination prover. Compared to traditional logic pro-
gramming termination provers, BINTERM deals with integer valued variables
instead of nonnegative integer valued variables and takes advantage of the
specialized operational semantics of CLP(PL). The prover (see Algorithm 1)
relies on the two static analysis techniques summarized next.

The first one combines closure computation with local ranking functions,
as in Codish and Taboch [1999], Dershowitz et al. [2001], Lee et al. [2001],
Codish et al. [2005], and Avery [2006]. We use two abstract domains: convex
polyhedra and monotonicity constraints [Brodsky and Sagiv 1989] augmented
with bounds. For each domain, the binary unfoldings of the abstraction of PCLP
are computed. Then for each binary recursive rule in the unfoldings, we try to
detect a local affine ranking function.

The second technique is a specialization of that in Mesnard and Serebrenik
[2008]. The call graph of PCLP is decomposed into its maximal strongly con-
nected components (SCCs). For each predicate in each intracomponent, a global
parametric affine ranking function is defined so that it takes nonnegative val-
ues and decreases of a fixed amount from the head of each clause to its body.
Then the existence of such an affine ranking function is decided by linear pro-
gramming. The last part of Algorithm 1, from line 10, could include the search
for more sophisticated ranking functions, as proposed, for instance, in Cousot
[2005].

We have actually used an improvement of the first technique which gives
better results in some cases. The idea is that, whenever predicate b in a binary

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:52 • F. Spoto et al.

Fig. 16. The termination analyses of some programs. Times are in milliseconds. M is the number
of methods of the program, B is the number of its bytecodes. PR is the time for the preprocessing of
the program, PA is the time for the preliminary analyses, PL is the time for the path-length analysis,
proof is the time to find a proof with BINTERM, TE is the number of methods whose termination is
proved, LP is the number of loops whose termination is proved, N is the number of loops whose
termination is proved by using numerical arguments, S is the number of loops whose termination
is proved by using arguments related to dynamic data structures in memory.

recursive rule of the form b(ˇvars) :-c, b(ˆvars′) is called, some invariant might
hold for the variables ˇvars, as a consequence of the execution of the predicates
of the program which have been called before b. This invariant can be useful to
prove the termination of b. For this reason, we compute a call contexts analysis
inspired by Gabbrielli and Giacobazzi [1994] and Codish and Taboch [1999] for
the predicates in the binary unfolding of the program and use the resulting in-
variants to improve the quality of the termination proof for the recursive rules.
As an example, consider the following CLP(PL) program, already unfolded in
its binary form.

entry :- { ŷ ≥ 0}, p(ŷ).
p(x̌) :- {x̌ = ŷ + 1, ŷ ≥ 0}, p(ŷ).
p(x̌) :- {x̌ ≤ −1, ŷ = x̌}, p(ŷ).

The entry point of the program is predicate entry. Predicate p does not termi-
nate in general, because of its second clause. However, any run from predicate
entry terminates, since p(x̌) is invoked with a call context x̌ ≥ 0 which disables
its second clause. Situations like this are found, for instance, in BubbleSort and
Double in Figure 16. As another example, the first test of BINTERM (lines 1–2 of

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:53

Algorithm 1. BINTERM: A Termination Test

Require. a program PCLP
Ensure. if BINTERM returns true then we have a termination proof

1: P ∗
1 ← the binary unfoldings of PCLP with respect to the polyhedral domain

2: if for each recursive rule of P ∗
1 there is an affine ranking function then

3: return true
4: else
5: P2 ← the abstraction of PCLP with respect to the bounded monotonicity domain
6: P ∗

2 ← the binary unfoldings of P2

7: if for each recursive rule of P ∗
2 there is an affine ranking function then

8: return true
9: else

10: if for each SCC of PCLP, for each predicate in this component, there is an affine
ranking function then

11: return true
12: else
13: return unknown
14: end if
15: end if
16: end if

Algorithm 1) proves the termination of the program

entry :- {true}, div2(x̂).
div2(x̌) :- {x̌ = 2 ∗ x̂, x̌ ≥ 1}, div2(x̂).

while the second test of BINTERM (lines 5–7) fails, also by using call contexts.
On the other hand, the presence of that second test is crucial for proving the
termination of a predicate with two arguments, decreasing with respect to a
lexicographical ordering.

entry :- {true}, lex(x̂1, x̂2).
lex(x̌1, x̌2) :- {x̂1 ≥ 0, x̂2 ≥ 0, x̌2 ≥ 0, x̌1 ≥ 1 + x̂1}, lex(x̂1, x̂2).
lex(x̌1, x̌2) :- {x̂1 ≥ 0, x̂2 ≥ 0, x̌1 = x̂1, x̌2 ≥ 1 + x̂2}, lex(x̂1, x̂2).

Finally, the example

entry :- {true}, gcd(x̂1, x̂2).
gcd(x̌1, x̌2) :- {x̌1 ≥ 1, x̌2 ≥ 1, x̂1 = x̌1, x̂2 = x̌2}, gcd2(x̂1, x̂2).
gcd2(x̌1, x̌2) :- {x̌1 ≥ x̌2 + 1, x̂1 = x̌1 − x̌2, x̂2 = x̌2}, gcd(x̂1, x̂2).
gcd2(x̌1, x̌2) :- {x̌2 ≥ x̌1 + 1, x̂1 = x̌1, x̂2 = x̌2 − x̌1}, gcd(x̂1, x̂2).

is proved terminating thanks to the last test of BINTERM (line 10) and with
the help of the call context x̌1 ≥ 1, x̌2 ≥ 1 which holds for any internal call to
gcd2(x̌1, x̌2).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:54 • F. Spoto et al.

8. EXPERIMENTS

In this section we describe our implementation of the termination analyzer for
full Java bytecode and report some experimental results.

The analyzer [Spoto et al. 2008] is the combination of the JULIA generic static
analyzer for Java bytecode [Spoto 2008a], written in Java, with the BINTERM

termination prover for constraint logic programs over numerical constraints,
written in Prolog. We now describe the different phases of the analysis in their
order of application.

(1) The user specifies the .class file containing the main() method of the
application under analysis. Alternatively, in library mode, the user spec-
ifies the set of .class files whose public methods must be analyzed. In
both cases, JULIA also analyzes all reachable methods, which typically re-
quires to load other classes than those specified by the user. This phase is
implemented through an application extraction algorithm based on Pals-
berg and Schwartzbach [1991]. It is an instance of class analysis and is
hence used also to compute the set of possible runtime targets for each
method call (Section 3). The .class files are parsed using the BCEL library
for bytecode manipulation (http://jakarta.apache.org/bcel). Most na-
tive methods are replaced with handwritten code which simulates their
behavior;

(2) Number and types of local variables and stack elements at each program
point are computed through the Kindall algorithm [Lindholm and Yellin
1999];

(3) Aliasing, pair-sharing, and cyclicity analyses are computed using the cor-
responding abstract domains implemented inside JULIA. Our pair-sharing
analysis is described in Secci and Spoto [2005] and is computed in reduced
product with purity information (as in Genaim and Spoto [2008]); our cyclic-
ity analysis is described in Rossignoli and Spoto [2006]. All these analyses
are computed using abstract versions of the denotational semantics of Sec-
tion 5. These denotational analyses are focused at internal program points
using magic-sets [Payet and Spoto 2007]. Pair-sharing and cyclicity abstract
domain elements are implemented through binary decision diagrams, using
the BUDDY library (http://sourceforge.net/projects/buddy). The null
pointer [Spoto 2008b] and class initialization analyses are also performed
since they might be useful for the precision of the subsequent path-length
analysis (Section 2);

(4) Path-length analysis is computed with our domain described in Section 6.
Abstract domain elements are closed polyhedra and have been implemented
through the PPL (Parma Polyhedra Library) [Bagnara et al. 2008]. When
the complexity of the operations over the polyhedra explodes (for instance,
because of a high number of local variables) a worst-case assumption is
made, that is, the path-length of the highest variables is not approximated;

(5) A constraint logic program is generated from the Java bytecode program,
by using the result of our path-length analysis (Section 7), and is then
sourced to the BINTERM termination prover for constraint logic programs.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:55

The latter looks for appropriate termination proofs (Section 7). The results
of the analysis are finally provided to the user.

Our experiments have been performed on a Linux machine based on a 64-bits
dual-core AMD Opteron processor 280 running at 2.4 Ghz, with 2 gigabytes of
RAM and 1 megabyte of cache, by using Sun Java Development Kit version 1.5
and SICStus Prolog version 3.12.8.

Figure 16 reports the results of the termination analysis of some small pro-
grams which are distributed together with JULIA. The source code of these
programs is available, but we have not used it for the analysis, which is per-
formed over the compiled bytecode. Programs Factorial, Diff, BubbleSort,
FactSum, Hanoi, BTree, FactSumList, and BinarySearchTree are taken from
Albert et al. [2007a, 2008], while Numerical1, Numerical2, and Numerical3
are taken from Cook et al. [2006a] and contain numerical loops only (that in
Numerical3 can actually diverge). The others have been chosen in order to test
the practicability of the analysis, since their termination depends on cycles,
nested cycles, iterations over one or multiple data structures, and exceptions.
The standard Java classes are not included in the analysis, which means that
the calls to the libraries are assumed to terminate. For each program we report
the number of methods, the number of bytecodes, the time spent for prepro-
cessing (phases (1) and (2) before), the time spent for the preliminary analyses
(phase (3)), the time spent for path-length analysis (phase (4)), and the time
spent while looking for a termination proof through BINTERM (phase (5)). All
times are in milliseconds. Figure 16 reports how many methods have been
proved to terminate. In all these programs a proof of termination is found for
every terminating method, so that the analysis is actually optimal. For Init,
there are 2 methods whose termination could not be proved, since they actually
diverge. They are the constructor and the static initializer of the class A shown
in Section 2. Figure 16 then reports how many loops are proved to terminate.
By loop we mean a strongly connected component of blocks of code containing
a cycle. Hence nested Java loops result in one loop only. Similarly, mutually
recursive methods form one loop only. Figure 16 reports also the number of
such loops whose termination has been proved by using numerical arguments
and the number of loops whose termination has been proved by reasoning over
dynamic data structures. In the first case, the ranking function for the loop
uses variables of the program whose type is int; in the second case, it uses
variables of reference type. Since ranking functions in general use more than
one variable, it is possible for a loop to be proved by using both numerical and
structural arguments.

Figure 17 reports the results of the termination analysis of larger programs.
We have chosen such programs so that they do not use native methods of the
standard Java library beyond those that we have already specified, nor re-
flection, nor multithreading (these limitations are discussed in Section 10).
This figure shows that our analysis scales to programs of up to 1000 methods,
computing nontrivial calculations. RayTracer is a ray-tracing program involv-
ing complex floating-point calculations. The source code of this program is not
available to us. NQueens is a solver of the n-queens problem, based on a library

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:56 • F. Spoto et al.

Fig. 17. The termination analyses of some larger programs. Times are in milliseconds. M is the
number of methods of the program, B is the number of its bytecodes. PR is the time for the pre-
processing of the program, PA is the time for the preliminary analyses, PL is the time for the
path-length analysis, proof is the time to find a proof with BINTERM, TE is the number of methods
whose termination is proved, LP is the number of loops whose termination is proved, N is the num-
ber of loops whose termination is proved by using numerical arguments, S is the number of loops
whose termination is proved by using arguments related to dynamic data structures in memory.

Fig. 18. The methods called by RayTracer and whose termination is not proved by our analyzer.

for binary decision diagrams. This library is included in the analysis. Kitten is
a didactic compiler for a simple imperative object-oriented language, used by
the first author for his classes. It uses highly cyclical dynamic data structures,
such as abstract trees (with sharing subtrees) and graphs of basic blocks. In all
these examples, the standard Java libraries have been included in the analy-
sis. The number of methods whose termination is not proved does not include
the methods that are not proved to terminate only because they call another
method whose termination is not proved. That is, we only count the methods
that introduce possible nontermination according to our analyzer.

Figure 18 shows the methods called by RayTracer and whose termination is
not proved by our analyzer. We have investigated why our analyzer fails to prove
their termination. Method AbstractStringBuilder.stringSizeOfInt(int) it-
erates over the elements of an array stored in a field of an object. However, in-
stead of loading that array on the stack once and then using that reference dur-
ing the iteration, it reloads the array at every iteration. As a consequence, our
analyzer does not understand that the length of the array does not change across
iterations and that the number of iterations is consequently bound from above.
Method Class.desiredAssertionStatus() contains the following instructions.

43: astore_3
44: aload_2
45: monitorexit
46: aload_3
47: athrow
Exception table:

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:57

from to target type
18 42 43 any
43 46 43 any

Our analyzer thinks that the monitorexit instruction at line 45 might throw
an exception which leads back to line 43, hence entering an infinite loop. We do
not know if this can ever be the case. The proof is not easy since monitorexit
can throw an exception when it is invoked on null (but this is already ex-
cluded by our null pointer analysis here) but also when the rules for correct
bracketing with monitorenter are not satisfied [Lindholm and Yellin 1999]. Our
analyzer does not include at the moment any analysis for this correct brack-
eting. Such a recursive exception handler looks, however, very strange to us
and might actually be a bug in the standard Java libraries. The methods in
Figure 18 dealing with strings and related classes are not proved to terminate
since they might throw a StringIndexOutOfBoundsException, whose construc-
tor calls back the methods for creating and appending strings. Such call-backs
might throw again an exception and so on infinitely often. We suppose that such
behavior cannot happen in practice, but our analyzer fails to prove it. Method
closestIntersection terminates because of some geometrical reasoning about
rays of light, as we have checked by decompiling the bytecode. Our analyzer has
no hope of proving this. Method render contains a large number of local vari-
ables. The complexity of our analysis explodes so that a worst-case assumption
is made for the method, whose termination is not proved.

Our analyzer fails to prove the termination of some methods of the standard
Java library also for the other two test programs. Furthermore, it also fails
to prove the termination of some methods of the application. For NQueens, the
methods which are not proved to terminate are mainly those of the library for
binary decision diagrams that perform bitwise operations, since binary decision
diagrams are efficiently represented through bitmaps. To prove their termina-
tion, one needs a precise model of such bitwise operations, which our analyzer
currently lacks (as well as other analyzers; see the same limitation for Termina-
tor in Cook et al. [2006a]). For the Kitten compiler, our analyzer fails to prove
that methods dealing with the graph of basic blocks of code actually terminate.
This is a limitation of our analysis: those methods terminate since a block is
never visited twice but this is not captured by our analysis (Section 10). Other
methods are not proved to terminate because of some imprecision in the non-
cyclicity analysis: the analyzer fails to prove that the hierarchy of classes in the
compiled program is noncyclical. Noncyclicity of this hierarchy is guaranteed
by the semantical analysis phase of the compiler, but our analyzer is not clever
enough to understand this.

9. RELATED WORK

There is a huge literature on termination analysis of computer programs and
on the formal specification of the semantics and of the analysis of Java or Java
bytecode. Here we provide a terse survey of the most relevant papers in those
areas.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:58 • F. Spoto et al.

Termination analysis for logic and functional languages. Automatic termi-
nation of logical rules was studied in Ullman and Gelder [1988]. Plümer [1990]
describes an early attempt to automate termination proofs for Prolog. The first
results in this stream of research are summarized in De Schreye and Decorte
[1994]. Termination of a logic program has also been proved through the bi-
nary unfoldings of the program, a set of binary clauses whose termination can
be more easily assessed [Codish and Taboch 1999]. Techniques exist that in-
fer classes of input arguments for which termination is guaranteed, rather
than just proving termination for a class of inputs [Mesnard 1996; Genaim
and Codish 2005; Mesnard and Bagnara 2005]. In Manolios and Vroon [2006b],
static analysis and theorem proving are used to approximate in a finite way all
the concrete calls among functions in a pure functional program. The result of
this approximation is a set of calling context graphs. Using these graphs, ter-
mination is proved by arguments relying on some decreasing measures on the
function parameters. This technique is improved in Manolios and Vroon [2006a]
by issuing queries to a theorem prover. If the latter can solve the queries in a
fixed amount of time, the precision of the analysis is improved. The use of the-
orem proving also allows one to get counterexamples when the analysis fails
to prove termination. More recently, with the aim of improving the efficiency
of the analysis, termination of term rewrite systems has been encoded into a
Boolean formula which is satisfiable if and only if there exists a lexicographic
path order or a multiset path order [Codish 2007]. The experiments are very
promising. APROVE [Giesl et al. 2006] is one of the most advanced systems for
automated termination proofs of term rewrite systems, which can also ana-
lyze Prolog and Haskell programs [Schneider-Kamp et al. 2006]. Other tools,
specialized for logic programs, are CTI by Mesnard [1996], HASTA-LA-VISTA by
Serebrenik and De Schreye [2002], POLYTOOL by Nguyen and De Schreye, TALP
by E. Ohlebusch et al. [2000], TERMILOG by N. Lindenstrauss et al. [1997], and
TERMINWEB by Taboch et al. [2002].

Termination analysis for imperative programs. Automatic termination
analysis of imperative programs goes back to Floyd’s seminal work [Floyd 1967].
After many years of research, it is mature enough now to apply to Java byte-
code [Albert et al. 2007a, 2008] and large system code written in the C language,
as the TERMINATOR system shows [Cook et al. 2006b] (see the detailed discussion
in Section 1). Termination of the imperative reversal algorithm of some special
kind of cyclic lists, called panhandle lists, is proved in Loginov et al. [2006]. A
panhandle list is a cyclical list whose starting node is not part of the cycle. This
is normally considered a complex problem of termination analysis and our anal-
ysis does not prove its termination. It must be noted that termination has been
proved in Loginov et al. [2006] through very specific reasonings about the kind
of data structure at hand (addition of ad-hoc instrumentation relations), while
we aim at a generic and automatic termination analysis. In Bouajjani et al.
[2006] counters are used to reason about the size of every region between two
sharing points in one selector linked data structures, that is, again, linked lists.
Counter automata are used as abstract models of the programs. This technique
is used to prove termination of two sorting algorithms. The use of counters

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:59

might be similar to our use of path-lengths, but their counters measure the dis-
tance between two sharing points in a list, while the path-length is the length
of the maximal chain of pointers for any possible kind of data structure. The
limits of their work is that only linked lists are considered. Moreover, function
calls are not supported. The problem with function calls is that one needs in-
formation about sharing and purity [Salcianu and Rinard 2005; Genaim and
Spoto 2008] of their arguments in order to model the effects of the calls on
the heap [Chang and Leino 2005]. In Definition 44 we use such information to
approximate method calls. In Brotherston et al. [2008], termination is proved
by looking for cyclicity in the Hoare-like proof tree of the program, constructed
by suitable execution rules over separation logic [Reynolds 2000; Ishtiaq and
O’Hearn 2001]. The only considered data structures are lists. Function calls
are not considered. By a careful choice of the predicates of separation logic,
this technique can also prove the termination of the panhandle list reversal.
Note that we prove termination of the program in Figure 5, which uses trees
rather than flavors of lists, and that we support functions. Nevertheless, the
results in Loginov et al. [2006], Berdine et al. [2006], Bouajjani et al. [2006],
and Brotherston et al. [2008] show that termination analysis, tied to a specific
data structure, leads to more precise results than does a general approach such
as ours. For instance, it proves the termination of the panhandle list reversal,
where our analysis fails.

Termination of concurrent programs. Podelski and Rybalchenko [2007]
prove termination of generic concurrent programs working over integers. It
is not clear how this work can be generalized to deal with dynamically allo-
cated data structures in the heap, since sharing allows one process to modify
the data of another process and this effect should be somehow modeled. The
complexity of the concurrent update of memory should also be modeled, by us-
ing the results of Manson and Pugh [2001] and Manson et al. [2005]. Analysis of
concurrent Java is also tackled in Cook et al. [2007]. They prove the termination
of a thread by providing an abstraction of the behavior of all other concurrent
threads (the environment). This abstraction can then be refined on the basis of
counterexamples found during the proof. The technique might not terminate
in general. They only consider the case of a finite and fixed number of threads.
The generalization to the case of an unbounded number of dynamically created
threads might be more difficult than it seems. Although all examples only use
primitive types, there is a small comment at the end of Cook et al. [2007, page
327] saying that they have augmented their analysis with some data structures
on the heap. We do not know which data structures have been considered and
how they have been modeled in the analysis. There is no correctness proof nor
example of this last augmented analysis.

Termination proofs based on nonlinear invariants. In some cases, programs
terminate because some nonlinear quantity decreases over a well-founded
domain. For that purpose, recent research has developed new techniques
that prove termination of loops using nonlinear expressions. Bradley et al.
[2005] build finite difference trees for expressions. This only works when such
expressions have finite trees. Cousot [2005] builds polynomial ranking

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:60 • F. Spoto et al.

functions of nonlinear loops. It is limited to expressions that can be approx-
imated by sums of squares and it requires heavy floating point calculations.
Babic et al. [2007] proves termination by checking for possible divergence to
infinite of every variables inside loops. The authors say that their technique
proves termination in more cases than Bradley et al. [2005] and Cousot [2005],
without requiring heavy floating point calculations. While nonlinear expres-
sions are important for the termination of programs dealing with integer vari-
ables, it is not clear to us that they also contribute to the proof of termination
of programs dealing with dynamic data structures in the heap.

Termination of floating point computations. While termination of loops over
integers has been largely studied, there are only a few results about termination
of loops dealing with floating point numbers. They make the analysis complex
since, because of rounding errors, the expected behavior might be different from
the real behavior of the program [Monniaux 2008]. Serebrenik and De Schreye
[2002] prove termination of these programs by modeling the official standard-
ized implementation of floating point numbers. They use level mappings over
reals, but decreases must be bounded from below by some positive constant. In
this article, we do not prove termination of loops over floating point numbers.

Formalizations of the semantics of Java. Our formalization of the seman-
tics of Java bytecode is indebted to Klein and Nipkow [2006], where Java and
Java bytecode are mathematically formalized and the compilation of Java into
bytecode and its type-safeness are machine-proved. Our formalization of the
state of the Java Virtual Machine (Definition 1) is similar to theirs, with the
exception that we do not use a program counter nor keep the name of the cur-
rent method and class inside the state. This information is not relevant for our
abstraction into path-length and we avoid program counters by using blocks of
code linked by arrows as concrete representation of the structure of the byte-
code. Also our formalization of the heap and of the objects inside the heap is
identical to theirs. Their mathematical formalization has been coded inside the
Isabelle/HOL theorem prover and then used to prove the absence of overflows
in a program [Wildmoser and Nipkow 2005] with the help of code annotations
(invariants) which have been later computed automatically through interval
analysis [Wildmoser et al. 2005]. Our formalization is denotational rather than
operational since we use it to define an abstraction of a relational property of
the semantics of the commands (the path-length), that is, an abstraction of the
denotations. The same abstraction, based on an operational semantics, would
be awkward. Another formalization of the semantics of the Java bytecode is pre-
sented in Bannwart and Müller [2005] but it is relatively different from ours in
the definition of the heap and in the use of weakest preconditions rather than
denotational semantics.

Abstract domains for the static analysis of Java. Our abstract domain for
path-length (Section 6) abstracts a property of the heap, namely, the max-
imal length of a chain of pointers reachable from each variable in the pro-
gram. From this point of view, it is related to a traditional norm used to prove
termination of logic programs, which measures the height of a term, seen as

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:61

a tree. The main difference is that, for its definition, we need precise informa-
tion about the shape of the heap at runtime at each program point. Namely,
we need information about sharing and cyclicity of data structures. Determin-
ing an overapproximation of the pairs of program variables that share at each
program point is an extensively studied problem. There is a huge literature
about pointer or aliasing analysis [Choi et al. 1993; Steensgaard 1996] and
about shape analysis [Wilhelm et al. 2002; Distefano et al. 2006] of data struc-
tures. Many flavors of such analyses are fully qualified for computing possible
sharing pairs of variables. More generally, separation logic [Reynolds 2000; Ish-
tiaq and O’Hearn 2001] is a framework which allows one to define analyses of
properties of the heap and can express properties like sharing and cyclicity of
data structures. It is known, however, that a static analysis for sharing can be
much more abstract than aliasing or shape analysis, which justifies the devel-
opment of abstract domains which track these properties explicitly, rather than
as a side-effect [Pollet et al. 2001]. Namely, the abstract domain, defined and
proved correct in Secci and Spoto [2005], is just made of sets of pairs of possibly
sharing variables. This results in a static analysis which can be implemented
in a completely context- and flow-sensitive way and still requires one or two
orders of magnitude less time than, for instance, aliasing analysis [Payet and
Spoto 2007]. It must be clear, however, that sharing is too abstract if possible
aliasing is what is needed, but this is not the case in this article.

Tools for the static analysis of Java. Many tools have been devoted to the
analysis or verification of Java or Java bytecode programs. Although such sys-
tems have not been used for termination analysis, we think that they could
be instantiated for that purpose. They should be enriched with analyses com-
puting information about the shape of the memory, such as our sharing and
cyclicity analyses; hence some measure similar to our path-length informa-
tion could be computed and termination proved by showing that, along loops
and recursion, this measure is decreasing over a well-founded order. BANDERA

[Corbett et al. 2000] takes a source Java program and extracts compact finite-
state models of the program which can then be sourced to a model checker.
It also performs some static analyses. It includes a program slicer for better
efficiency and uses abstract interpretation for the finite representation of the
states. JAVAPATHFINDER [Visser et al. 2003] uses model-checking to explore the
states of a Java program and its scheduling sequences. As a consequence, it
has been shown effective to prove properties of real-time Java [Lindstrom et al.
2005]. JMOPED [Suwimonteerabuth et al. 2007] is a test environment for a sub-
set of Java. It uses model-checking to explore the set of states reachable from
some input states taken from a testing set. It signals bugs or problems such as
assertion violations, null pointer exceptions, and array bound violations. Test-
ing is not in general complete, so it is hard to foresee an application of this tool
to termination analysis, where termination must be proved for all input states.
Moreover, only a subset of Java is considered, with strong limitations such as
a ban of negative numbers. JMOPED has also been used for testing Java byte-
code [Suwimonteerabuth et al. 2005], with strong limitations such as a bound
on the heap size which prevents a new bytecode from occurring inside a loop.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:62 • F. Spoto et al.

KEY [Ahrendt et al. 2005] is a tool for the design, implementation, specification,
and verification of object-oriented programs. It verifies properties expressed in
the Object Constraint Language or in JML. It is a semiautomatic tool, based on
theorem proving. Programs must first be annotated with the properties to prove
and a theorem prover then attempts their proof with possible human interac-
tion. BOOGIE [Barnett et al. 2005] is a program verifier for Spec# programs in
the .NET framework. It has been recently applied to Java bytecode [Lehner and
Müller 2007], by translating it into BOOGIEPL, the input language of BOOGIE. It
includes a framework for abstract interpretation to build loop invariants that
it uses to instrument the code. Invariants about the heap can be constructed
through the abstract domain defined in Chang and Leino [2005]. Namely, this
allows one to track which parts of the heap are preserved across updates and
get information about purity of function arguments. Proofs are built through
theorem-proving. The goal of this tool is the proof of object invariants [Leino
and Wallenburg 2008], that is, data consistency properties about the objects of a
program. These invariants might be violated within a small scope but must hold
after each call from the external environment has completed. Object invariants
are specified by the user and verified by the system. The use of ownership [Leino
and Müller 2004; Müller 2007] allows one to model invariants which must hold
of data structures as a whole rather than for single component objects. It is also
possible to prove class invariants, which are related to static fields [Leino and
Müller 2005]. A distinguishing feature of these works is the modularity of the
verification, which we currently lack. These works based on theorem proving
cannot be considered fully automatic since the user has to provide a specification
of the property to prove and the theorem prover will likely require human inter-
vention to reach the proof. Moreover, although it is possible, in principle, to prove
termination with such techniques, we are not aware of any general technique
for that purpose. In object-oriented programs the set of classes to analyze must
be extracted from the starting class, containing the main method, by using some
form of application extraction. This extraction is important in order to avoid the
analysis of all classes, even those that are not relevant for the analysis. Our
JULIA tool uses a sophisticated algorithm based on Palsberg and Schwartzbach
[1991], rephrased for the Java bytecode. We are not aware of other tools imple-
menting similar, very precise application extraction techniques.

Previous publications of this material. The material presented in this article
is partially based on our previous work. Secci and Spoto [2005] and Rossignoli
and Spoto [2006] present the sharing and cyclicity analyses that we use in
Section 4. The path-length abstract domain has been defined in Spoto et al.
[2006]. The last three papers are presented for Java, while we rephrase their
analyses here for Java bytecode and embed them into the semantic framework
of Payet and Spoto [2007], where the operational and denotational semantics
of Section 5 are presented and their equivalence is shown.

10. DISCUSSION

We have shown that our analyzer proves, automatically, termination of pro-
grams using nontrivial forms of loops and recursion (Section 2 and Figure 16).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:63

However, as the larger analyses in Section 8 show, it cannot, of course, decide
termination in all cases. Many terminating methods are not proved to termi-
nate. We consider some of them here.

A first example are methods that work over graphs. Since graphs are typically
cyclical, it is not possible for us to prove termination of such methods. Methods
over graphs often terminate because visited nodes get colored. The set of colored
nodes is typically held in a Set, as in the following method defined on the node
of a graph.

void visit(Set<Node> coloured) {
if (coloured.contains(this)) return;
else coloured.add(this);

... visit this node and its successors, recursively ...
}

Here, coloured avoids repeated visits since a node cannot be colored twice.
Termination of this (very frequent) programming pattern would follow from a
proof that a node cannot be put twice in the set, that the set coloured does not
shrink and that the set of nodes does not grow. Note that this proof cannot be
obtained by simply using the size of the set as the path-length of coloured.

Another notable example are those methods whose termination depends on
computations over real numbers, such as some approximation algorithms. In
our implementation, the path-length of float and double variables is not com-
puted, so that all such methods cannot be proved to terminate. The problem
here is that numerical rounding must be taken into account for a faithful ap-
proximation of the values of real variables [Monniaux 2008]. Moreover, the set
of real numbers is not well-founded even if a lower bound is considered. It might
be possible here to use techniques which prove strict decrease by some positive
constant [Serebrenik and De Schreye 2002].

The precision of our termination analysis is also limited by the fact that arith-
metic bytecodes such as imul or idiv have no linear approximation that we can
use for their path-length analysis. For the moment, we provide no path-length
approximation for their result. This situation might be improved with some pre-
liminary constant propagation, since in many cases those operations involve a
variable and a constant, so that their path-length can be approximated by a
linear constraint. A more general solution is to use nonlinear approximations
of the path-length, such as in Bradley et al. [2005], Cousot [2005], and Babic
et al. [2007]. This will increase the cost of the analysis, though.

The precision of the preliminary analyses is important for the precision of the
termination analysis. For instance, our analyzer does not prove the termination
of the method

public void expand(Sharing other) {
Sharing cursor = this;
while (cursor != null) {
try {
other.next = new Sharing(null);

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:64 • F. Spoto et al.

other = other.next;
cursor = cursor.next;

}
catch (NullPointerException e) {
}

}
}

when it is called with a nonnull argument other. This is because our pre-
liminary null pointer analysis is not able to prove that other remains nonnull
inside the while loop. In order to prove that result, we would need a more precise
null pointer analysis and we should include the java.lang. hierarchy in the
analysis, so that the analyzer can prove that the OutOfMemoryErrorwhich might
be thrown by new Sharing(null) is not a subclass of NullPointerException.

In general, better information about the fields of the objects is needed in
our analyses. Sharing, cyclicity, and path-length are by definition properties
that involve some information about the fields. But this is not always true. For
instance, integer fields of objects do not contribute to the definition of the path-
length (Definition 24). As a consequence, we cannot prove termination of a loop
decreasing an integer field which is bounded from below. We plan to study the
applicability of the domain in Chang and Leino [2005] to our framework. It
provides a way of approximating fields which is finer than ours.

It must be stressed also that our analysis is meant for sequential Java byte-
code, not using multithreading. However, we share this limitation with most
other works on termination analysis. If one allows any kind of data structures,
possibly shared between threads, and an unbounded number of dynamically
created threads, very little can be said about the termination of the programs.
Recent research can prove only special cases, when, for instance, the number
of threads is fixed in advance [Cook et al. 2007].

A final limitation of our analysis is a consequence of the use of native meth-
ods and reflection (the ability of Java programs to access, create, and modify
objects, classes, and the program itself through some methods of the standard
Java libraries, mostly native). We have manually provided approximations for
a few hundreds of such methods, for all the static analyses that we perform.
For other native methods, JULIA signals a warning to the user, meaning that the
result of the analyses might not be reliable. Most native methods implement-
ing reflection have not been manually specified. Since reflection can modify
the same program under analysis, we cannot see a simple way of analyzing
programs dealing with reflection.

Let us make a final consideration about the cost of our analysis. Figure 17
reports analysis of programs of up to 1201 methods, since the cost of the anal-
ysis is still relatively high. This problem is not related to preprocessing and to
the preliminary analyses, which are able to scale to programs of up to 10,000
methods, but it is related to the cost of the path-length analysis and of the
subsequent termination proof. A possible solution to this problem is to use less
precise but more efficient abstractions or algorithms. Octagons [Miné 2006] or
size-change termination in polynomial time [Ben-Amram and Lee 2007] are

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:65

possible candidates. Moreover, the standard Java library classes could be an-
alyzed once and for all, so that a path-length approximation for them can be
plugged into all programs that use these libraries, instead of reanalyzing the
libraries each time. Besides, library methods that are known to terminate, for
instance, by using semiautomatic techniques such as theorem proving, need not
be proved to terminate by our analyzer. This would increase both its efficiency
and its precision.

In conclusion, our analyzer shows that a completely automatic termination
proof for Java bytecode is possible. Future research will improve its precision
and reduce the cost of the analysis.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their helpful comments on this
work. They thank P. Hill for her help with English. They also thank R. Bagnara
for his support with the installation and use of the Parma Polyhedra Library
and all the developers of the PPL for providing them with the Java interface to
that library.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers, Principles Techniques and Tools. Addison
Wesley.

AHRENDT, W., BAAR, T., BECKERT, B., BUBEL, R., GIESE, M., HÄHNLE, R., MENZEL, W., MOSTOWSKI, W.,
ROTH, A., SCHLAGER, S., AND SCHMITT, P. H. 2005. The KeY Tool. Softw. Syst. Model. 4, 1, 32–54.

ALBERT, E., ARENAS, P., CODISH, M., GENAIM, S., PUEBLA, G., AND ZANARDINI, D. 2007a. Termination
analysis of Java bytecode. In Proceedings of the 9th International Workshop on Termination
(WST’07). A. Serebrenik and D. Hofbauer, Eds.

ALBERT, E., ARENAS, P., CODISH, M., GENAIM, S., PUEBLA, G., AND ZANARDINI, D. 2008. Termination
analysis of Java bytecode. In Proceedings of the International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS’08). G. Barthe and F. S. de Boer, Eds. Lecture
Notes in Computer Science, vol. 5051. Springer, 2–18.

ALBERT, E., ARENAS, P., GENAIM, S., PUEBLA, G., AND ZANARDINI, D. 2007b. Cost analysis of java byte-
code. In Proceedings of the 16th European Symposium on Programming (ESOP’07). R. De Nicola,
Ed. Lecture Notes in Computer Science, vol. 4421. Springer, 157–172.

AVERY, J. 2006. Size-Change termination and bound analysis. In Proceedings of the 8th Interna-
tional Symposium on Functional and Logic Programming (FLOPS’06). M. Hagiya and P. Wadler,
Eds. Lecture Notes in Computer Science, vol. 3945. Springer, 192–207.

BABIC, D., HU, A. J., RAKAMARIC, Z., AND COOK, B. 2007. Proving termination by divergence. In Pro-
ceedings of the 5th IEEE International Conference on Software Engineering and Formal Methods
(SEFM’07). IEEE Computer Society, 93–102.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast static analysis of c++ virtual function calls. In Proceed-
ings of the Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’96). ACM SIGPLAN Not. 31, 10, ACM, 324–341.

BAGNARA, R., HILL, P. M., RICCI, E., AND ZAFFANELLA, E. 2005. Precise widening operators for convex
polyhedra. Sci. Comput. Program. 58, 1–2, 28–56.

BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. 2008. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and software
systems. Sci. Comput. Program. 72, 1–2, 3–21.

BANNWART, F. AND MÜLLER, P. 2005. A program logic for bytecode. Electr. Not. Theor. Comput.
Sci. 141, 1, 255–273.

BARNETT, M., CHANG, B.-Y. E., DELINE, R., JACOBS, B., AND LEINO, K. R. M. 2005. Boogie: A modular
reusable verifier for object-oriented programs. In Proceedings of the 4th International Symposium

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:66 • F. Spoto et al.

on Formal Methods for Components and Objects (FMCO’05). F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, Eds. Lecture Notes in Computer Science, vol. 4111. Springer, 364–
387.

BEN-AMRAM, A. M. AND LEE, C. S. 2007. Program termination analysis in polynomial time. ACM
Trans. Program. Lang. Syst. 29, 1.

BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., O’HEARN, P. W., WIES, T., AND YANG, H. 2007a.
Shape analysis for composite data structures. In Proceedings of the 19th International Conference
on Computer Aided Verification (CAV’07). W. Damm and H. Hermanns, Eds. Lecture Notes in
Computer Science, vol. 4590. Springer, 178–192.

BERDINE, J., CHAWDHARY, A., COOK, B., DISTEFANO, D., AND O’HEARN, P. W. 2007b. Variance analyses
from invariance analyses. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’07). M. Hofmann and M. Felleisen, Eds. 211–224.

BERDINE, J., COOK, B., DISTEFANO, D., AND O’HEARN, P. W. 2006. Automatic termination proofs
for programs with shape-shifting heaps. In Proceedings of the 18th International Conference on
Computer Aided Verification (CAV’06). T. Ball and R. B. Jones, Eds. Lecture Notes in Computer
Science, vol. 4144. Springer, 386–400.

BOUAJJANI, A., BOZGA, M., HABERMEHL, P., IOSIF, R., MORO, P., AND VOJNAR, T. 2006. Programs with
lists are counter automata. In Proceedings of the 18th International Conference on Computer
Aided Verification (CAV’06). T. Ball and R. B. Jones, Eds. Lecture Notes in Computer Science,
vol. 4144. Springer, 517–531.

BRADLEY, A., MANNA, Z., AND SIPMA, H. 2005. Termination of polynomial programs. In Proceed-
ings of the 6th International Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’05). R. Cousot, Ed. Lecture Notes in Computer Science, vol. 3385. Springer,
113–129.

BRODSKY, A. AND SAGIV, Y. 1989. Inference of monotonicity constraints in datalog programs. In
Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. ACM Press, 190–199.

BROTHERSTON, J., BORNAT, R., AND CALCAGNO, C. 2008. Cyclic proofs of program termination in
separation logic. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’08). G. C. Necula and P. Wadler, Eds. ACM, 101–112.

BRYANT, R. E. 1986. Graph-Based algorithms for boolean function manipulation. IEEE Trans.
Comput. 35, 8, 677–691.

CHANG, B.-Y. E. AND LEINO, K. R. M. 2005. Abstract interpretation with alien expressions and heap
structures. In Proceedings of the 6th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’05). R. Cousot, Ed. Lecture Notes in Computer Science, vol.
3385. Springer, 147–163.

CHOI, J. D., BURKE, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. In Proceedings of the 20th Symposium on Principles
of Programming Languages (POPL’93). ACM, 232–245.

CODISH, M. 2007. Proving termination with (boolean) satisfaction. In Proceedings of the 17th
International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR’07).
A. King, Ed. Lecture Notes in Computer Science, vol. 4915. 1–7.

CODISH, M., LAGOON, V., AND STUCKEY, P. J. 2005. Testing for termination with monotonicity con-
straints. In Proceedings of the 21st International Conference on Logic Programming (ICLP’05).
M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. 326–340.

CODISH, M. AND TABOCH, C. 1999. A semantics basis for termination analysis of logic programs.
J. Logic Program. 41, 1, 103–123.

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2005. Abstraction refinement for termination. In
Proceedings of the 12th Static Analysis Symposium (SAS’05). C. Hankin and I. Siveroni, Eds.
Lecture Notes in Computer Science, vol. 3672. Springer, 87–101.

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2006a. Termination proofs for systems code. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’06). M. I. Schwartzbach and T. Ball, Eds. ACM, 415–426.

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2006b. Terminator: beyond safety. In Proceedings
of the 18th International Conference on Computer Aided Verification (CAV’06). T. Ball and R. B.
Jones, Eds. Lecture Notes in Computer Science, vol. 4144. Springer, 415–418.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:67

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2007. Proving thread termination. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’07). J. Ferrante and K. S. McKinley, Eds. ACM, 320–330.

CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S., PASAREANU, C. S., ROBBY, AND ZHENG, H. 2000.
Bandera: Extracting finite-state models from java source code. In Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE’00). ACM, 439–448.

COUSOT, P. 2005. Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In Proceedings of the 6th International Con-
ference on Verification, Model Checking, and Abstract Interpretation (VMCAI’05). R. Cousot, Ed.
Lecture Notes in Computer Science, vol. 3385. Springer, 1–24.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’77). 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In Proceed-
ings of the 6th ACM Symposium on Principles of Programming Languages (POPL’79). ACM,
269–282.

COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among variables of
a program. In Proceedings of the 5th ACM Symposium on Principles of Programming Languages
(POPL’78). ACM, 84–96.

DE SCHREYE, D. AND DECORTE, S. 1994. Termination of logic programs: The never-ending story.
Journal of Logic Programming 19/20, 199–260.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the 9th European Conference on Object-Oriented Pro-
gramming (ECOOP’95). W. G. Olthoff, Ed. Lecture Notes in Computer Science, vol. 952. Springer,
77–101.

DERSHOWITZ, N., LINDENSTRAUSS, N., SAGIV, Y., AND SEREBRENIK, A. 2001. A general framework for
automatic termination analysis of logic programs. Appl. Algebra Engin. Comm. Comput. 12, 1-2,
117–156.

DISTEFANO, D., O’HEARN, P. W., AND YANG, H. 2006. A local shape analysis based on separation
logic. In Proceedings of the 12th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’06). H. Hermanns and J. Palsberg, Eds. Lecture Notes
in Computer Science, vol. 3920. Springer, 287–302.

FLOYD, R. W. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer Sci-
ence, J. T. Schwartz, Ed. Proceedings of Symposia in Applied Mathematics, vol. 19. American
Mathematical Society, Providence, Rhode Island, 19–32.

GABBRIELLI, M. AND GIACOBAZZI, R. 1994. Goal independency and call patterns in the analysis of
logic programs. In Proceedings of the ACM Symposium on Applied Computing (SAC’94). ACM,
394–399.

GENAIM, S. AND CODISH, M. 2005. Inferring termination conditions for logic programs using back-
wards analysis. Theory Prac. Logic Program. 5, 1-2, 75–91.

GENAIM, S. AND SPOTO, F. 2008. Constancy analysis. In Proceedings of the 10th Workshop on Formal
Techniques for Java-like Programs (FTfJP’08), M. Huisman, Ed.

GIESL, J., SCHNEIDER-KAMP, P., AND THIEMANN, R. 2006. Automatic termination proofs in the depen-
dency pair framework. In Proceddings of the 3th International Joint Conference on Automated
Reasoning (IJCAR’06). U. Furbach and N. Shankar, Eds. Lecture Notes in Computer Science,
vol. 4130. Springer, 281–286.

GOTSMAN, A., BERDINE, J., AND COOK, B. 2006. Interprocedural shape analysis with separated heap
abstractions. In Proceedings of the 13th International Static Analysis Symposium (SAS’06). K. Yi,
Ed. Lecture Notes in Computer Science, vol. 4134. Springer, 240–260.

ISHTIAQ, S. S. AND O’HEARN, P. W. 2001. BI as an assertion language for mutable data structures. In
Proceedings of the 28th Symposium on Principles of Programming Languages (POPL’01). ACM,
14–26.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint logic programming: A survey. J. Logic Program. 19,
20, 503–581.

KLEIN, G. AND NIPKOW, T. 2006. A machine-checked model for a java-like language, virtual ma-
chine, and compiler. ACM Trans. Program. Lang. Syst. 28, 4, 619–695.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:68 • F. Spoto et al.

LEAVENS, G. T., LEINO, K. R. M., AND MÜLLER, P. 2007. Specification and verification challenges for
sequential object-oriented programs. Formal Aspects Comput. 19, 2, 159–189.

LEE, C. S., JONES, N. D., AND BEN-AMRAM, A. M. 2001. The size-change principle for program
termination. In Proceedings of the 28th Symposium on Principles of Programming Languages
(POPL’01). ACM, 81–92.

LEHNER, H. AND MÜLLER, P. 2007. Formal translation of bytecode into boogiePL. Electr. Not. Theor.
Comput. Sci. 190, 1, 35–50.

LEINO, K. R. M. AND MÜLLER, P. 2004. Object invariants in dynamic contexts. In Proceedings of
the 18th European Conference on Object-Oriented Programming (ECOOP’04). M. Odersky, Ed.
Lecture Notes in Computer Science, vol. 3086. Springer, 491–516.

LEINO, K. R. M. AND MÜLLER, P. 2005. Modular verification of static class invariants. In Proceed-
ings of the International Symposium of Formal Methods Europe (FM’05). J. Fitzgerald, I. J. Hayes,
and A. Tarlecki, Eds. Lecture Notes in Computer Science, vol. 3582. Springer, 26–42.

LEINO, K. R. M. AND WALLENBURG, A. 2008. Class-local object invariants. In Proceedings of the 1st
India Software Engineering Conference (ISEC’08). G. Schroff, P. Jalote, and S. K. Rajamani Eds.,
ACM, 57–66.

LINDENSTRAUSS, N., SAGIV, Y., AND SEREBRENIK, A. 1997. TermiLog: A system for checking termina-
tion of queries to logic programs. In Proceedings of the 9th International Conference on Computer
Aided Verfication (CAV’97). O. Grumberg, Ed. Lecture Notes in Computer Science, vol. 1254.
Springer, 444–447.

LINDHOLM, T. AND YELLIN, F. 1999. The JavaTM Virtual Machine Specification, 2nd ed. Addison-
Wesley.

LINDSTROM, G., MEHLITZ, P. C., AND VISSER, W. 2005. Model checking real time java using java
Pathfinder. In Proceedings of the 3rd International Symposium on Automated Technology for
Verification and Analysis (ATVA,05). D. Peled and Y.-K. Tsay, Eds. Lecture Notes in Computer
Science, vol. 3707. Springer, 444–456.

LOGINOV, A., REPS, T. W., AND SAGIV, M. 2006. Refinement-based verification for possibly-cyclic lists.
In Proceedings of Theory and Practice of Program Analysis and Compilation, Essays Dedicated
to Reinhard Wilhelm on the Occasion of His 60th Birthday, T. W. Reps, M. Sagiv, and J. Bauer,
Eds. Lecture Notes in Computer Science, vol. 4444. Springer, 247–272.

LOGOZZO, F. AND FÄHNDRICH, M. 2008. On the relative completeness of bytecode analysis versus
source code analysis. In Proceedings of the 17th International Conference on Compiler Construc-
tion (CC’08). L. Hendren, Ed. Lecture Notes in Computer Science. Springer, 197–212.

MANOLIOS, P. AND VROON, D. 2006a. Integrating static analysis and general-purpose theorem
proving for termination analysis. In Proceedings of the 28th International Conference on Soft-
ware Engineering (ICSE’06). L. J. Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM,
873–876.

MANOLIOS, P. AND VROON, D. 2006b. Termination analysis with calling context graphs. In Proceed-
ings of the 18th International Conference on Computer Aided Verification (CAV’06). T. Ball and
R. B. Jones, Eds. Lecture Notes in Computer Science, vol. 4144. Springer, 401–414.

MANSON, J. AND PUGH, W. 2001. Core semantics of multithreaded java. In Proceedings of the ACM
Java Grande Conference. ACM, 29–38.

MANSON, J., PUGH, W., AND ADVE, S. V. 2005. The java memory model. In Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05).
J. Palsberg and M. Abadi, Eds. ACM, 378–391.

MESNARD, F. 1996. Inferring left-terminating classes of queries for constraint logic programs.
In Proceedings of the Joint International Conference and Symposium on Logic Programming,
M. Maher, Ed. The MIT Press, 7–21.

MESNARD, F. AND BAGNARA, R. 2005. cTI: A constraint-based termination inference tool for ISO-
Prolog. Theory Pract. Logic Program. 5, 1-2, 243–257.

MESNARD, F. AND SEREBRENIK, A. 2008. Recurrence with affine level mappings is p-time decidable
for CLP(R). Theory Pract. Logic Program. 8, 1, 111–119.

MINÉ, A. 2006. The octagon abstract domain. Higher-Order Symb. Comput. 19, 1, 31–100.
MONNIAUX, D. 2008. The pitfalls of verifying floating-point computations. ACM Trans. Program.

Lang. Syst. 30, 3.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

A Termination Analyzer for Java Bytecode Based on Path-Length • 8:69

MÜLLER, P. 2007. Reasoning about object structures using ownership. In Proceedings of the Work-
shop on Verified Software: Theories, Tools, Experiments (VSTTE’07). B. Meyer and J. Woodcock,
Eds. Lecture Notes in Computer Science, vol. 4171. Springer.

NYUGEN, M. T. AND DE SCHREYE, D. 2005. Polynomial interpretations as a basis for termination
analysis of logic programs. In Proceedings of the 21st International Conference on Logic Program-
ming (ICLP’05). M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668.
Springer, 311–326.

OHLEBUSCH, E., CLAVES, C., AND MARCHÉ, C. 2000. TALP: A tool for the termination analysis of
logic programs. Proceedings of the 11th International Conference on Rewriting Techniques and
Applications (RTA’00). L. Bachmair, Ed. Lecture Notes in Computer Science, vol. 1833. Springer,
270–273.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-Oriented type inference. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’91). A. Paepcke, Ed. ACM SIGPLAN Not., 26, 11 ACM, 146–161.

PAYET, E. AND SPOTO, F. 2007. Magic-sets transformation for the analysis of java bytecode. In
Proceedings of the 14th International Static Analysis Symposium (SAS’07). H. R. Nielson and
G. Filé, Eds. Lecture Notes in Computer Science, vol. 4634. Springer, 452–467.

PIPPENGER, N. 1997. Pure versus impure lisp. ACM Trans. Program. Lang. Syst. 19, 2,
223–238.

PLÜMER, L. 1990. Termination proofs for logic programs. Lecture Notes in Computer Science, vol.
446. Springer.

PODELSKI, A. AND RYBALCHENKO, A. 2004a. A complete method for synthesis of linear ranking
functions. In Proceedings of the 5th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’04). B. Steffen and G. Levi, Eds. Lecture Notes in Computer
Science, vol. 2937. Springer, 239–251.

PODELSKI, A. AND RYBALCHENKO, A. 2004b. Transition invariants. In Proceedings of the 19th
IEEE Symposium on Logic in Computer Science (LICS’04). H. Ganzinger, Ed. IEEE,
32–41.

PODELSKI, A. AND RYBALCHENKO, A. 2007. Transition predicate abstraction and fair termination.
ACM Trans. Program. Lang. Syst. 29, 3.

POLLET, I., LE CHARLIER, B., AND CORTESI, A. 2001. Distinctness and sharing domains for static
analysis of java programs. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01). Lecture Notes in Computer Science, vol. 2072. 77–98.

REYNOLDS, J. C. 2000. Intuitionistic reasoning about shared mutable data structure. In Proceed-
ings of Millennial Perspectives in Computer Science, Symposium in Honour of Sir Tony Hoare,
J. Davies, B. Roscoe, and J. Woodcock, Eds. 303–321.

ROSSIGNOLI, S. AND SPOTO, F. 2006. Detecting non-cyclicity by abstract compilation into boolean
functions. In Proceedings of the 7th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’06). E. A. Emerson and K. S. Namjoshi, Eds. Lecture Notes in
Computer Science, vol. 3855. Springer, 95–110.

SALCIANU, A. AND RINARD, M. C. 2005. Purity and side effect analysis for java programs. In Pro-
ceedings of the 6th International Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’05). R. Cousot. Ed. Lecture Notes in Computer Science, vol. 3385. Springer,
199–215.

SCHNEIDER-KAMP, P., GIESL, J., SEREBRENIK, A., AND THIEMANN, R. 2006. Automated termination
analysis for logic programs by term rewriting. In Proceedings of the 16th International Sym-
posium on Logic-Based Program Synthesis and Transformation (LOPSTR’06). G. Puebla. Ed.
Lecture Notes in Computer Science, vol. 4407. Springer, 177–193.

SECCI, S. AND SPOTO, F. 2005. Pair-sharing analysis of object-oriented programs. In Proceedings of
Static Analysis Symposium (SAS’05). C. Hankin and I. Siveroni, Eds. Lecture Notes in Computer
Science, vol. 3672. 320–335.

SEREBRENIK, A. AND DE SCHREYE, D. 2002. On termination of logic programs with floating point
computations. In Proceedings of the 9th International Symposium on Static Analysis (SAS’02).
M. V. Hermenegildo and G. Puebla, Eds. Lecture Notes in Computer Science, vol. 2477. Springer,
151–164.

SPOTO, F. 2008a. The JULIA static analyser. http://profs.sci.univr.it/∼spoto/julia.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

8:70 • F. Spoto et al.

SPOTO, F. 2008b. Nullness analysis in boolean form. In Proceedings of the 6th IEEE International
Conference on Software Engineering and Formal Methods (SEFM’08). A. Cerone and S. Goner
Eds. IEEE Computer Society, 21–30.

SPOTO, F., HILL, P. M., AND PAYET, E. 2006. Path-Length analysis for object-oriented programs.
In International Workshop on Emerging Applications of Abstract Interpretation (EAAI’06).
http://profs.sci.univr.it/∼spoto/papers.html.

SPOTO, F. AND JENSEN, T. 2003. Class analyses as abstract interpretations of trace semantics. ACM
Trans. Programm. Lang. Syst. 25, 5, 578–630.

SPOTO, F., MESNARD, F., AND PAYET, E. 2008. Julia + BinTerm: An automatic termination prover
for Java bytecode. http://spy.sci.univr.it/JuliaWeb.

SPOTO, F., LU, L., AND MESNARD, F. 2009. Using CLP simplifications to improve Java bytecode
termination analysis. Electr. Notes Theor. Comput. Sci. 253, 5, 129–144.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the 23th ACM
Symposium on Principles of Programming Languages (POPL’96). 32–41.

STOER, J. AND WITZGALL, C. 1970. Convexity and Optimization in Finite Dimensions I. Springer.
SUWIMONTEERABUTH, D., BERGER, F., SCHWOON, S., AND ESPARZA, J. 2007. jMoped: A test environ-

ment for java programs. In Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07). W. Damm and H. Hermanns, Eds. Lecture Notes in Computer Science, vol.
4590. Springer, 164–167.

SUWIMONTEERABUTH, D., SCHWOON, S., AND ESPARZA, J. 2005. jMoped: A java bytecode checker based
on moped. In Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05). N. Halbwachs and L. D. Zuck, Eds. Lecture
Notes in Computer Science, vol. 3440. Springer, 541–545.

TABOCH, C., GENAIM, S., AND CODISH, M. TerminWeb: Semantic based termination analyser for logic
programs. http://www.cs.bgu.ac.il/∼mcodish/TerminWeb.

TARSKI, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math 5,
285–309.

TURING, A. 1936. On computable numbers, with an application to the entscheidungsproblem.
London Math. Soc. 42, 2, 230–265.

ULLMAN, J. D. AND GELDER, A. V. 1988. Efficient tests for top-down termination of logical rules. J.
ACM 35, 2, 345–373.

VISSER, W., HAVELUND, K., BRAT, G. P., PARK, S., AND LERDA, F. 2003. Model checking programs.
Autom. Softw. Engin. 10, 2, 203–232.

WILDMOSER, M., CHAIEB, A., AND NIPKOW, T. 2005. Bytecode analysis for proof carrying code. Electr.
Not. Theore. Comput. Sci. 141, 1, 19–34.

WILDMOSER, M. AND NIPKOW, T. 2005. Asserting bytecode safety. In Proceedings of the 14th Euro-
pean Symposium on Programming (ESOP’05). S. Sagiv, Ed. Lecture Notes in Computer Science,
vol. 3444. Springer, 326–341.

WILHELM, R., REPS, T. W., AND SAGIV, S. 2002. Shape analysis and applications. In The Compiler
Design Handbook, Y. N. Srikant and P. Shankar, Eds. 175–218.

Received September 2007; revised May 2009; accepted July 2009

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 3, Article 8, Publication date: March 2010.

