87 research outputs found

    Privacy-preserving, User-centric VoIP CAPTCHA Challenges: an Integrated Solution in the SIP Environment

    Get PDF
    Purpose – This work aims to argue that it is possible to address discrimination issues that naturally arise in contemporary audio CAPTCHA challenges and potentially enhance the effectiveness of audio CAPTCHA systems by adapting the challenges to the user characteristics. Design/methodology/approach – A prototype has been designed, called PrivCAPTCHA, to offer privacy-preserving, user-centric CAPTCHA challenges. Anonymous credential proofs are integrated into the Session Initiation Protocol (SIP) protocol and the approach is evaluated in a real-world Voice over Internet Protocol (VoIP) environment. Findings – The results of this work indicate that it is possible to create VoIP CAPTCHA services offering privacy-preserving, user-centric challenges while maintaining sufficient efficiency. Research limitations/implications – The proposed approach was evaluated through an experimental implementation to demonstrate its feasibility. Additional features, such as appropriate user interfaces and efficiency optimisations, would be useful for a commercial product. Security measures to protect the system from attacks against the SIP protocol would be useful to counteract the effects of the introduced overhead. Future research could investigate the use of this approach on non-audio CAPTCHA services. Practical implications – PrivCAPTCHA is expected to achieve fairer, non-discriminating CAPTCHA services while protecting the user’s privacy. Adoption success relies upon the general need for employment of privacy-preserving practices in electronic interactions. Social implications – This approach is expected to enhance the quality of life of users, who will now receive CAPTCHA challenges closer to their characteristics. This applies especially to users with disabilities. Additionally, as a privacy-preserving service, this approach is expected to increase trust during the use of services that use it. Originality/value – To the best of authors’ knowledge, this is the first comprehensive proposal for privacy-preserving CAPTCHA challenge adaptation. The proposed system aims at providing an improved CAPTCHA service that is more appropriate for and trusted by human users

    Mitigating Botnet-based DDoS Attacks against Web Servers

    Get PDF
    Distributed denial-of-service (DDoS) attacks have become wide-spread on the Internet. They continuously target retail merchants, financial companies and government institutions, disrupting the availability of their online resources and causing millions of dollars of financial losses. Software vulnerabilities and proliferation of malware have helped create a class of application-level DDoS attacks using networks of compromised hosts (botnets). In a botnet-based DDoS attack, an attacker orders large numbers of bots to send seemingly regular HTTP and HTTPS requests to a web server, so as to deplete the server's CPU, disk, or memory capacity. Researchers have proposed client authentication mechanisms, such as CAPTCHA puzzles, to distinguish bot traffic from legitimate client activity and discard bot-originated packets. However, CAPTCHA authentication is vulnerable to denial-of-service and artificial intelligence attacks. This dissertation proposes that clients instead use hardware tokens to authenticate in a federated authentication environment. The federated authentication solution must resist both man-in-the-middle and denial-of-service attacks. The proposed system architecture uses the Kerberos protocol to satisfy both requirements. This work proposes novel extensions to Kerberos to make it more suitable for generic web authentication. A server could verify client credentials and blacklist repeated offenders. Traffic from blacklisted clients, however, still traverses the server's network stack and consumes server resources. This work proposes Sentinel, a dedicated front-end network device that intercepts server-bound traffic, verifies authentication credentials and filters blacklisted traffic before it reaches the server. Using a front-end device also allows transparently deploying hardware acceleration using network co-processors. Network co-processors can discard blacklisted traffic at the hardware level before it wastes front-end host resources. We implement the proposed system architecture by integrating existing software applications and libraries. We validate the system implementation by evaluating its performance under DDoS attacks consisting of floods of HTTP and HTTPS requests

    Hardening Tor Hidden Services

    Get PDF
    Tor is an overlay anonymization network that provides anonymity for clients surfing the web but also allows hosting anonymous services called hidden services. These enable whistleblowers and political activists to express their opinion and resist censorship. Administrating a hidden service is not trivial and requires extensive knowledge because Tor uses a comprehensive protocol and relies on volunteers. Meanwhile, attackers can spend significant resources to decloak them. This thesis aims to improve the security of hidden services by providing practical guidelines and a theoretical architecture. First, vulnerabilities specific to hidden services are analyzed by conducting an academic literature review. To model realistic real-world attackers, court documents are analyzed to determine their procedures. Both literature reviews classify the identified vulnerabilities into general categories. Afterward, a risk assessment process is introduced, and existing risks for hidden services and their operators are determined. The main contributions of this thesis are practical guidelines for hidden service operators and a theoretical architecture. The former provides operators with a good overview of practices to mitigate attacks. The latter is a comprehensive infrastructure that significantly increases the security of hidden services and alleviates problems in the Tor protocol. Afterward, limitations and the transfer into practice are analyzed. Finally, future research possibilities are determined

    Evaluating the usability and security of a video CAPTCHA

    Get PDF
    A CAPTCHA is a variation of the Turing test, in which a challenge is used to distinguish humans from computers (`bots\u27) on the internet. They are commonly used to prevent the abuse of online services. CAPTCHAs discriminate using hard articial intelligence problems: the most common type requires a user to transcribe distorted characters displayed within a noisy image. Unfortunately, many users and them frustrating and break rates as high as 60% have been reported (for Microsoft\u27s Hotmail). We present a new CAPTCHA in which users provide three words (`tags\u27) that describe a video. A challenge is passed if a user\u27s tag belongs to a set of automatically generated ground-truth tags. In an experiment, we were able to increase human pass rates for our video CAPTCHAs from 69.7% to 90.2% (184 participants over 20 videos). Under the same conditions, the pass rate for an attack submitting the three most frequent tags (estimated over 86,368 videos) remained nearly constant (5% over the 20 videos, roughly 12.9% over a separate sample of 5146 videos). Challenge videos were taken from YouTube.com. For each video, 90 tags were added from related videos to the ground-truth set; security was maintained by pruning all tags with a frequency 0.6%. Tag stemming and approximate matching were also used to increase human pass rates. Only 20.1% of participants preferred text-based CAPTCHAs, while 58.2% preferred our video-based alternative. Finally, we demonstrate how our technique for extending the ground truth tags allows for different usability/security trade-offs, and discuss how it can be applied to other types of CAPTCHAs

    A survey of denial-of-service and distributed denial of service attacks and defenses in cloud computing

    Get PDF
    Cloud Computing is a computingmodel that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain

    Mothers\u27 Adaptation to Caring for a New Baby

    Get PDF
    To date, most research on parents\u27 adjustment after adding a new baby to their family unit has focused on mothers\u27 initial transition to parenthood. This past research has examined changes in mothers\u27 marital satisfaction and perceived well-being across the transition, and has compared their prenatal expectations to their postnatal experiences. This project assessed first-time and experienced mothers\u27 stress and satisfaction associated with parenting, their adjustment to competing demands, and their perceived well-being longitudinally before and after the birth of a baby. Additionally, how maternal and child-related variables influenced the trajectory of mothers\u27 postnatal adaptation was assessed. These variables included mothers\u27 age, their education level, their prenatal expectations and postnatal experiences concerning shared infant care, their satisfaction with the division of infant caregiving, and their perceptions of their infant\u27s temperament. Mothers (N = 136) completed an online survey during their third trimester and additional online surveys when their baby was approximately 2, 4, 6, and 8 weeks old.;First-time mothers prenatally expected a more equal division of infant caregiving between themselves and their partners than did experienced mothers. Both first-time and experienced mothers reported less assistance from their partners than they had prenatally expected. Additionally, they experienced almost twice as many violated expectations than met expectations. Growth curve modeling revealed that a cubic function of time best fit the trajectory of mothers\u27 postnatal parenting satisfaction. Mothers reported less parenting satisfaction at 4 weeks, compared to 2 and 6 weeks, and reported stability in their satisfaction between 6 and 8 weeks. A quadratic function of time best fit the trajectories of mothers\u27 postnatal parenting stress and adjustment to the demands of their baby. Mothers reported more stress and difficulty adjusting to their baby\u27s demands at 4 and 6 weeks, compared to 2 and 8 weeks. A linear function of time best fit the trajectories of mothers\u27 adjustment to home demands, generalized state anxiety, and depressive symptoms. Mothers reported less difficulty meeting home demands, less generalized anxiety, and fewer depressive symptoms across the postnatal period. Mothers\u27 violated expectations were associated with level differences in all aspects of mothers\u27 postnatal adaptation except their adjustment to home demands. Specifically, more violated expectations, in number or in magnitude, were associated with poorer postnatal adaptation. Mothers\u27 violated expectations were not associated with the slope of mothers\u27 postnatal adaptation trajectories. Exploratory models revealed that other maternal and child-related variables also impacted the level and slope of mothers\u27 postnatal adaptation.;Overall, first-time and experienced mothers were more similar than different in regards to their postnatal adaptation. This study suggests that prior findings concerning adults\u27 initial transition to parenthood may also apply to adults during each addition of a new baby into the family unit. Additionally, mothers who reported less of a mismatch between their expectations and experiences concerning shared infant care had fewer issues adapting the postnatal period. Thus, methods to increase the assistance mothers receive from their partner should be sought. Limitations of this study and suggestions for future research are also discussed

    Generalized CAPTCHA with security applications

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 51-53).A puzzle only solvable by humans, or POSH, is a prompt or question with three important properties: it can be generated by a computer, it can be answered consistently by a human, and a human answer cannot be efficiently predicted by a computer. In fact, a POSH does not necessarily have to be verifiable by a computer at all. One application of POSHes is a scheme proposed by Canetti et al. that limits on-line dictionary attacks against password-protected local storage, without the use of any secure hardware or secret storage. We explore the area of POSHes, implement several candidate POSHes and have users solve them, to evaluate their effectiveness. Given these data, we then implement the above scheme as an extension to the Mozilla Firefox web browser, where it is used to protect user certificates and saved passwords. In the course of doing so, we also define certain aspects of the threat model for our implementation (and the scheme) more precisely.by Waseem S. Daher.M.Eng

    Enhancing Online Security with Image-based Captchas

    Get PDF
    Given the data loss, productivity, and financial risks posed by security breaches, there is a great need to protect online systems from automated attacks. Completely Automated Public Turing Tests to Tell Computers and Humans Apart, known as CAPTCHAs, are commonly used as one layer in providing online security. These tests are intended to be easily solvable by legitimate human users while being challenging for automated attackers to successfully complete. Traditionally, CAPTCHAs have asked users to perform tasks based on text recognition or categorization of discrete images to prove whether or not they are legitimate human users. Over time, the efficacy of these CAPTCHAs has been eroded by improved optical character recognition, image classification, and machine learning techniques that can accurately solve many CAPTCHAs at rates approaching those of humans. These CAPTCHAs can also be difficult to complete using the touch-based input methods found on widely used tablets and smartphones.;This research proposes the design of CAPTCHAs that address the shortcomings of existing implementations. These CAPTCHAs require users to perform different image-based tasks including face detection, face recognition, multimodal biometrics recognition, and object recognition to prove they are human. These are tasks that humans excel at but which remain difficult for computers to complete successfully. They can also be readily performed using click- or touch-based input methods, facilitating their use on both traditional computers and mobile devices.;Several strategies are utilized by the CAPTCHAs developed in this research to enable high human success rates while ensuring negligible automated attack success rates. One such technique, used by fgCAPTCHA, employs image quality metrics and face detection algorithms to calculate a fitness value representing the simulated performance of human users and automated attackers, respectively, at solving each generated CAPTCHA image. A genetic learning algorithm uses these fitness values to determine customized generation parameters for each CAPTCHA image. Other approaches, including gradient descent learning, artificial immune systems, and multi-stage performance-based filtering processes, are also proposed in this research to optimize the generated CAPTCHA images.;An extensive RESTful web service-based evaluation platform was developed to facilitate the testing and analysis of the CAPTCHAs developed in this research. Users recorded over 180,000 attempts at solving these CAPTCHAs using a variety of devices. The results show the designs created in this research offer high human success rates, up to 94.6\% in the case of aiCAPTCHA, while ensuring resilience against automated attacks
    • …
    corecore