5,694 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    "Wink to grasp" – comparing eye, voice & EMG gesture control of grasp with soft-robotic gloves

    Get PDF
    The ability of robotic rehabilitation devices to support paralysed end-users is ultimately limited by the degree to which human-machine-interaction is designed to be effective and efficient in translating user intention into robotic action. Specifically, we evaluate the novel possibility of binocular eye-tracking technology to detect voluntary winks from involuntary blink commands, to establish winks as a novel low-latency control signal to trigger robotic action. By wearing binocular eye-tracking glasses we enable users to directly observe their environment or the actuator and trigger movement actions, without having to interact with a visual display unit or user interface. We compare our novel approach to two conventional approaches for controlling robotic devices based on electromyo-graphy (EMG) and speech-based human-computer interaction technology. We present an integrated software framework based on ROS that allows transparent integration of these multiple modalities with a robotic system. We use a soft-robotic SEM glove (Bioservo Technologies AB, Sweden) to evaluate how the 3 modalities support the performance and subjective experience of the end-user when movement assisted. All 3 modalities are evaluated in streaming, closed-loop control operation for grasping physical objects. We find that wink control shows the lowest error rate mean with lowest standard deviation of (0.23 ± 0.07, mean ± SEM) followed by speech control (0.35 ± 0. 13) and EMG gesture control (using the Myo armband by Thalamic Labs), with the highest mean and standard deviation (0.46 ± 0.16). We conclude that with our novel own developed eye-tracking based approach to control assistive technologies is a well suited alternative to conventional approaches, especially when combined with 3D eye-tracking based robotic end-point control

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon

    Cyborgs as Frontline Service Employees: A Research Agenda

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose This paper identifies and explores potential applications of cyborgian technologies within service contexts and how service providers may leverage the integration of cyborgian service actors into their service proposition. In doing so, the paper proposes a new category of ‘melded’ frontline service employees (FLEs), where advanced technologies become embodied within human actors. The paper presents potential opportunities and challenges that may arise through cyborg technological advancements and proposes a future research agenda related to these. Design/methodology This study draws on literature in the fields of services management, Artificial Intelligence [AI], robotics, Intelligence Augmentation [IA] and Human Intelligence [HIs] to conceptualise potential cyborgian applications. Findings The paper examines how cyborg bio- and psychophysical characteristics may significantly differentiate the nature of service interactions from traditional ‘unenhanced’ service interactions. In doing so, we propose ‘melding’ as a conceptual category of technological impact on FLEs. This category reflects the embodiment of emergent technologies not previously captured within existing literature on cyborgs. We examine how traditional roles of FLEs will be potentially impacted by the integration of emergent cyborg technologies, such as neural interfaces and implants, into service contexts before outlining future research directions related to these, specifically highlighting the range of ethical considerations. Originality/Value Service interactions with cyborg FLEs represent a new context for examining the potential impact of cyborgs. This paper explores how technological advancements will alter the individual capacities of humans to enable such employees to intuitively and empathetically create solutions to complex service challenges. In doing so, we augment the extant literature on cyborgs, such as the body hacking movement. The paper also outlines a research agenda to address the potential consequences of cyborgian integration

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    • 

    corecore