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Abstract— The ability of robotic rehabilitation devices to
support paralysed end-users is ultimately limited by the degree
to which human-machine-interaction is designed to be effective
and efficient in translating user intention into robotic action.
Specifically, we evaluate the novel possibility of binocular eye-
tracking technology to detect voluntary winks from involuntary
blink commands, to establish winks as a novel low-latency
control signal to trigger robotic action. By wearing binocular
eye-tracking glasses we enable users to directly observe their
environment or the actuator and trigger movement actions,
without having to interact with a visual display unit or user
interface. We compare our novel approach to two conventional
approaches for controlling robotic devices based on electromyo-
graphy (EMG) and speech-based human-computer interaction
technology. We present an integrated software framework based
on ROS that allows transparent integration of these multiple
modalities with a robotic system. We use a soft-robotic SEM
glove (Bioservo Technologies AB, Sweden) to evaluate how the 3
modalities support the performance and subjective experience
of the end-user when movement assisted. All 3 modalities
are evaluated in streaming, closed-loop control operation for
grasping physical objects. We find that wink control shows
the lowest error rate mean with lowest standard deviation of
(0.23±0.07, mean ± SEM) followed by speech control (0.35±
0.13) and EMG gesture control (using the Myo armband by
Thalamic Labs), with the highest mean and standard deviation
(0.46±0.16). We conclude that with our novel own developed
eye-tracking based approach to control assistive technologies is
a well suited alternative to conventional approaches, especially
when combined with 3D eye-tracking based robotic end-point
control.

I. INTRODUCTION

Exoskeletons of lower and upper limbs offer unique abil-
ities for paralysed people to move again with their own
body. While rapid progress is made in the domain of robotic
actuation, the challenge remains how to provide intuitive,
natural control of these devices for the end-user [1]. Here,
we want to explore the best options for quick setup and easy
control of a "flip trigger" or "mouse click" like mechanics,
that enables a user to control an exoskeleton glove such that it
opens and closes using the same user command. A number of
modalities need to be considered: In robotic prosthetics one
of the most utilised approach is electromyography (EMG) to
measure residual muscle activation [2], [3]. For high level
spinal injuries where this control signal is not available one
can use invasive direct brain machine interfaces (BMI) where
signals are recorded directly from the brain [4]. However,
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Fig. 1. Illustration of eye-based control using a wink on the right eye. The
soft-robotic glove and eye-tracking glasses are worn by end-user. (Left)
After positioning the hand around the object, (Middle) the user executes a
wink, a unique voluntary signal, that triggers closing of the robotic glove,
(Right) enabling the user to lift the object.

here we are looking for a simple system, that enables setup,
operation and use within minutes, without need for surgery.
Thus, we need to consider other non-invasive approaches
using central brain signals based on electroencephalography
(EEG), which use suffers from large time delays and poor
response accuracy when operating in closed-loop [5], [6].

Another approach that has been shown to be successful in
the control of human-robot interaction is the use of voice
recognition [7]–[9]. However, these systems suffer from
the disadvantage of commands being wrongly interpreted,
having interference from other noise sources and, in a more
practical sense, users might be unwilling to use the device
due to attracting attention [10] or limiting their freedom to
use voice for interpersonal communucation. The fact that
both hands remain free with voice control is seen as a large
convenience [11] against button operated tools, however, this
does not present a clear advantage in the case of people that
suffer from motor disorders.
We showed recently how 3D eye-movements can be easily
measured using binocular eyetrackers to provide high reso-
lution information of where we are directing our visual at-
tention too. Eye movements are the only directly observable
behavioural signals that are highly correlated with actions at
the task level, and proactive of body movements and thus
reflect action intentions [12]. Moreover, eye movements are
preserved in many target groups, namely those suffering from
movement disorders leading to paralysis from stroke (when
brain areas that are unrelated to eye movements are not
affected), spinal cord injury, Parkinson’s disease, multiple
sclerosis [12] and muscular dystrophy and other motor



disorders [13]. Despite this benefit, eye-tracking is not widely
used as control interface for robotic interfaces in movement
impaired patients. This is because conventional eye-tracking
based approaches require the use of display unit based user
interfaces and uncomfortable user commands based around
dwell times or gaze gestures, effectively requiring the user
to stare at screen buttons for prolonged times or close their
eyes in artificial blinks for long periods [14], [15]. These
limitations were mainly due to conventional eye-tracking
using monocular approaches, tracking one eye, instead of
tracking both eyes. Binocular eye-tracking, however, not only
enables tracking of eye-movements and their gaze-target in 3
dimensions [12], but also allows for distinguishing naturally
occurring, involuntary blinks from voluntary winks that do
not occur naturally. This effectively provides the end-user
with 2 separate "mouse click"-like commands – by winking
with their left or right eye. This enables the user to trigger
actions without having to interact with a display unit and thus
enables them to freely look at the location of intended action,
making it ideal for direct control of robotic actuators and
exoskeletons. Our aim is to combine a simple "mouse click"
control, here of the opening and closing of a wearable robotic
hand, with our 3D eye-tracking based end-point control of
robotic actuators or exoskeletons [12], such as robotic arm
support systems [16]. Here, a single wearable set of binocular
eye-tracking glasses can provide both command execution
trigger commands ("clicks") as well as high resolution end-
point control in 3D. This also motivates why we do not want
to consider multiple redundant eye movement measurement
modalities, such as EOG (Electroculography), as these pro-
vide only low resolution gaze direction decoding compared
to standard video based eye-tracking methods [17].

To evaluate the effectiveness and efficiency of our binocu-
lar eye-tracking based approach we developed a closed-loop
control system that enables us to integrate a binocular eye-
tracking system and other input modalities with soft-robotic
glove designed to assist paralysed or "weak" users (e.g.
stroke survivors) to execute or release a grasp. We compare
the ability of naive users to control the glove using a. flip
trigger-like control using winks, b. a simple voice command
and c. a hand EMG gesture detected by multichannel EMG.
We then ask the users to evaluate the 3 modes of operation
with their satisfaction or confidence ratings.

II. METHODS

Three different system setups have been developed and
their effectiveness assessed within the scope of this work.
Those are eye winks, speech and muscle contractions to
control a glove for assistive grasping.

a) System integration: To evaluate the multiple human-
machine interaction modalities we made used of the ability of
the Robot Operative System (ROS) [18] software framework
to operate in a distributed manner transparently. This enabled
us to use various computers in the lab dedicated to various
functions (EMG gesture control, voice control, wink control)
without having to transfer equipment or install software from
different machines onto a single one.

Fig. 2. Software architecture of the eye wink based control system for the
glove. The full outline boxes represent all the hardware used, the boxes with
dashed outline represent code or components of ROS architecture used, and
the arrows represent the connections between each component. On the left
of each arrow is the description of what the connection does, to the right of
the arrow we list the hardware through which the connection is achieved.

The entire system used for the evaluation consists of four
computers and two operating systems; two Microsoft Win-
dows machine (8.1 and 10.1) and two Linux (both Ubuntu
14.4) machines. The Linux computers run ROS distribution
indigo: one of both is the ROS Master and the other is a
ROS Slave. Exchange of information between computer is
done via a socket connection through an Ethernet network.
The Soft Extra Muscle (SEM) Glove and a microphone for
voice commands are both connected to the ROS Slave. The
Windows computers are used as bridging devices to connect
and read from the eye-tracker for gaze data and to read from
the Myo armband.

b) Actuation – SEM Glove: The SEM Glove (Soft
Extra Muscle Glove) is a commercial device developed
for aiding the grasping capability of a weak hand or arm
(Bioservo Technologies AB, Sweden). We had access to a
modified computer interfacable version with proprietary ROS
interface courtesy of Bioservo. The concept of the glove,
as opposed to the majority of solutions for this problem,
does not make use of rigid external structures but uses
instead a system similar to the biomechanics of the hand.
The glove has a. textile features that take into account the
necessity to transfer forces and torques to the fingers and
b. artificial tendons - incorporated in the ring and middle
fingers and thumb - that are actuated by electrical motors
controlled by mechanisms designed to transfer the required
forces by means of a specific transmission system. The
control system takes into account the information from tactile
sensors located in the fingertips and force sensors in the



palm, providing a servoing effect to the human grasp. The
glove was designed with the goal of aiding the grasp only,
so the actuators can only produce a pulling force that closes
the hand. The glove itself contains the sensors and the
artificial tendons, whilst the motor, actuators, batteries and
the controller are in a separate unit connected by a cable.
The SEM glove central processing unit, which also houses
the tendon motors, was connected via a USB serial port to
the ROS slave using a custom developed API.

c) "Wink" – Eye-tracking based control: The eye-
tracking signal was streamed in real-time and used to control
the glove in closed loop. Any binocular eye-tracking system
can detect and in principle distinguish left and right eye
winks from eye blinks. Here, we used binocular eye-tracking
glasses SMI ETG 2W A (SensoMotoric Instruments, Ger-
many) connected to a Windows 8.1 computer. Gaze data is
constantly recorded and streamed to the ROS Master using
the SMI API. Additionally on the Windows computer, the
data is also analysed to detect winks, which are defined as
any of the eyes being closed and the other kept open for
at least 400 ms. Once a wink is detected the ROS master
publishes a message under a defined topic (to which the
ROS Slave subscribes). Every time a wink is detected a
corresponding message is published under the designated
topic within the ROS environment. The ROS slave then
calls a function responsible for the contraction of the glove’s
artificial tendons and hence of the grasp of the hand. The
glove can be in one of two states either 1. contracted or
2. relaxed. Our system detects in which the state the glove
currently is in and changes it to the other state by calling
the ROS node responsible for it. This node determined the
tension on one of the fingers. That node is called three times
(for each finger) with an interval of 200 ms so that the fingers
are contracted as close in time as possible and providing a
smooth grasping motion. For relaxation the tension of the
tendons is set to zero, thus relaxing all tendons.

d) "Voice" – Speech control: The voice signal was
processed in real-time and used to control the glove in
closed loop. For speech control a slightly simplified system
architecture has been chosen. A 4-microphone array (Sony
PlayStation 3 Eye Camera, Sony, Japan) is connected to the
Linux Slave to record audio and in particular user speech.
The speech is recognised in streaming mode using the
Sphinx-4 library [19] within a Java application. The improve
speech recognition accuracy, the speech systems was given
a computational grammar based with a one-word grammar
consisting of the command word "action". No user specific
calibration was required thereafter. Once a command has
been recognised the glove is activated directly by calling
the ROS node responsible for contracting the tendons on the
Linux Slave. Background noise in the room (a large research
lab) was controlled for by requesting quiet use of the space.

e) "EMG" – myoelectric based control: We used a
commercial consumer grade electromygraphic sensor sys-
tem, the Myo armband (Thalamic Labs, Kitchener, Ontario,
Canada) to obtain EMG data that requires only a simple
calibration procedure and is out-of-the-box able to distin-

guish 5 different hand/wrist motions. The Myo armband
was placed according to the manufacturers instruction on
the contralateral lower arm with respect to the glove. Note,
that the contralateral arm was chosen, so as to emulate the
setting where a hemiparetic stroke patient would need wear
the glove on the ipsilateral side, but could reliably control
it only on the contralateral side. The vendors setup and
calibration procedure involving abducting the wrist was used
to calibrate the Myo armband signal. The EMG control signal
we used was the EMG pattern generated for the "double tap"
EMG gesture. This vendor built-in EMG pattern involves
opening and closing the middle, ring finger and thumb so the
3 finger tips touch each other. The executed muscle pattern
was processed in real-time by the vendor’s software system
and its output used to o control the glove in closed loop.
The decoded EMG gestures were streamed from the vendor’s
Myo armband API to our ROS control system. Once the
EMG gesture is successfully detected the Myo system sends
a signal to the Linux ROS Slave to operate the glove.

f) User evaluation: We measured the efficacy and
efficiency of these three interaction systems. Users were
verbally explained that: 1. wink-based control required them
to perform wink for an unspecified amount of time, 2. voice
based control required the user to speak the trigger word
"action" and 3. Myo armband control required the user
to perform the "double tap" EMG gesture (demonstrated
by the experimenter). Users were asked to perform each
interaction command once before the experiment to confirm
their understanding and experience the consequence of their
action. Consecutively, user were asked to open and glove the
wearable robotic glove using the interaction command 10
times each. This required a user to at least trigger 20 open
and close events. All attempts to trigger a grasp or a release
have been recorded to obtain the error rate of the given
interaction scheme (error rate was defined as the sum of
accidental triggering and failed triggering over the requested
20 trigger events). To complement the objective evaluation
subjects were asked to complete the Quebec User Evalu-
ation of Satisfaction with assistive Technology (QUEST)
questionnaire [20] and the System Usability Scale (SUS)
questionnaire [21]. The QUEST questionnaire was adapted
by removing questions with regard to service, durability
and maintenance as these concepts would not apply in this
study. this figure evaluates to which extend the interaction
scheme conflicts with natural occurring behaviour or sensor
or environment noise.

III. RESULTS

Performance evaluation was conducted with healthy sub-
jects (N=9) with normal or corrected to normal eye sight
or eye sight, which was in all cases sufficient to perform
a successful eye-tracker calibration. Eye tracker and Myo
armband calibration was successful at first attempts with
every subject. All users were able to control the glove with
each of the three modalities 1. wink, 2. voice and 3. EMG
gesture. However, the performance varied in the number of
attempts needed to trigger the control (false negatives) and



Fig. 3. The rate at which the interface system performed on average
erroneously per intentionally triggered open/close events. Note, that EMG
Gesture and Speech recognition are based on commercial/publicly released
production systems, while the Wink system is a lab development proof-of-
principle system

in of number of true negatives comprising false positives
(i.e. unintended command triggering) and false negative (see
Fig. III). On average wink control required 1.2±0.43 (mean
± SD) attempts to invoke opening or closing the glove
and had an error rate of 0.35± 0.40. With regards to wink
control the error rate was lower with a rate of 0.23± 0.21.
The average number of attempts to trigger the opening or
closing of the glove was 1.21± 0.23. EMG gesture control
was outperformed by both speech and wink control, as it
required an average number of attempts of 1.4±0.5 and had
an error rate of 0.46±0.49.

The objective part of the evaluation based on user per-
formance was complemented by two subjective user ques-
tionnaires, the System Usability Scale (SUS, Fig. III) and
the Quebec User Evaluation of Satisfaction with assistive
Technology (QUEST, Fig. III) questionnaire . In the QUEST
questionnaire we have split the questions into those that
assess the interaction modality as a whole and those that
assess physical characteristics of the device. This is because,
the wink-based system is a lab developed proof-of-principle
interaction system without a production-level hardware pack-
aging, in contrast to commercial publicly released technology
like the Myo armband and the speech recognition, as s a
consequence it is expected that the commercial devices will
score better in the subjective assessment. From the QUEST
questionnaire we found that although there is general agree-
ment with regards to safety for all three modalities, there
is a discordance concerning easiness to use, effectiveness
and comfort. Although EMG gesture control has shown to
be less reliable than wink or speech control, the QUEST
questionnaire reveals that the median of the subjects is "very
satisfied" with the system being easy to use and "quite
satisfied" with the effectiveness. The eye trackers has scored
slightly lower with regards to comfort and and effectiveness
which is a consequence of it being a lab developed inter-
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Fig. 4. Quebec User Evaluation of Satisfaction with assistive Technology
(QUEST) evaluation results for the presented 3 different interface tech-
nologies for controlling the glove. Note, that EMG Gesture and Speech
recognition are based on commercial/publicly released production systems,
while the Wink system is a lab development proof-of-principle system

action scheme compared to the other commercial solutions.
The SUS questionnaire revealed that subjects would like to
use the eye tracking system more frequently. Surprisingly,
the median answered that eye tracking was less cumbersome
than speech control.

IV. DISCUSSION

An ideal human-machine interface requires a signal that
can communicate sufficient complexity at a low latency to
dynamically guide and respond to environmental changes
of everyday life. In addition, for patient acceptance, this
interface must be very easy to learn, "feel" intuitive and
provide them with confidence and a sense of mastery of
the control. We evaluated here eye-tracking, voice and EMG
gesture based flip trigger commands to control wearable
robotic actuators. We conclude our developed eye-tracking
based approach objectively outperformed both alternatives
of speech and EMG gesture control for the purpose of
controlling assistive technologies.

Whilst eye-tracking is very effective tracking what the user
is interested in, initiating user interaction with eye-gaze is
cumbersome relying on blinking or long dwell times. Fun-
damentally gaze-based human-machine interaction requires
the differentiation of normal behavioural eye movements
and intentional eye "commands", which is known as the
Midas touch problem [22]. In the domain of human-computer
interaction much of the focus has been on two dimensional
interactions on a computer screen, where the locus of in-
teraction is fully programmable and under full control of
the user interface designer. Hence, gaze-based approaches
have been also combined with other modalities to control



Fig. 5. System Usability Scale (SUS) evaluation results for wink-, speech- and EMG gesture- based glove control interface technologies. Note, that EMG
Gesture and Speech recognition are based on commercial/publicly released production systems, while the Wink system is a lab development proof-of-
principle system

actuators, for discrete end-point selection with e.g. EMG-
based trigger commands [23], [24]. However, in the case of
robotic interaction, the interaction occurs in three dimensions
embedded in our physical reality. This poses a challenge in
terms of having to observe both the physical environment
where robotic actuation happens and potential visual user
interfaces. Alternatives to visual user interfaces typically
employ unnatural and uncomfortable "gaze gestures", such as
long dwell times or artificially long blinks. Here, instead we
solve the Midas Touch Problem using a binocular eye-tracker
to detect wink-based commands, thereby eliminating dwell
times or long blinking. We previously demonstrated that
binocular eye-tracking control enables real-time closed-loop
control that outperforms invasive (and non-invasive) brain-
machine interfaces in terms of cost and read-out data rates
[12] for continuous 3D end-point control of robot actuators
[25] and/or for free-gaze navigation of wheel-chairs [26].

We evaluated our wink-based system against two other
approaches: Myo armband EMG gesture triggers and voice
based command which are alternative modalities to control
an assistive glove. However we note that the suitability for
EMG in day-long use has skin-contact based limitations [27],
as well as electrical noise and humidity of the environment.

The subjective assessment of the technology in the user
questionnaires showed the wink-based control was perceived
as at least as or more Safe, Easy to Use and Effective
to use as the other modalities, while the SUS revealed
that learnability was rated equally high for all modalities.
Other differences reported might have been affected by the
hardware and setup procedure, which placed a commercial-
grade systems (speech, EMG) against a lab proof-of-principle
device (wink). Speech-based control had the fastest setup
time with a couple of seconds for voice adjustment only,
as the microphone was desk mounted. The voice-recognition
system we used (Spinx-4) uses pre-trained models of generic
human speech and does not require training on individual
users, however it also means that the robotic glove can be
remote triggered by other users. Eye-tracking based control
required approximately 3 min for setup, this included the
time to put on the eye-tracking glasses and fasten them with
a headband and performing a calibration via a provisional
software interface not optimised for usability. The Myo
armband-based control required usually less than 2 min
including calibration and testing if all five EMG gestures
are can be successfully distinguished.

EMG-based control is difficult to realise for severely paral-



ysed users such as spinal cord injured and may be compli-
cated to be operated by the ipsilateral side in stroke survivors.
We used the contralateral arm for obtaining control signs,
which however restricts the usability of the contralateral arm
for other purposes. In contrast the eyes link directly to the
brain and are little affected by spinal cord injuries or stroke.
Voice-based control of computer and portable devices is
now common place, however for many paralysed users such
as stroke survivors, speech-based commands are difficult to
interpret due to speech impediments, and severely paralysed
users with tracheal respirators are linked to the breathing
cycle, being unable to execute movement commands fluently.
Finally, end-users may prefer to use language for its original
purpose of communication, while voice-based processing
can lead to safety and security critical situations if voice
recognition is not highly selective to who utters commands.

In conclusion, we have developed a novel system that
makes use of binocular eye-tracking to control a glove
for grasping aid. We have performed the first study that
consistently compares the performance of EMG gesture
control, voice recognition and eye-tracking as commands
for controlling a robotic actuator. Furthermore, we showed
that eye tracking had the lowest error rate among three all
modalities. We were able to demonstrate that the SEM glove
is easily controlled by using intended winks. There is no
complex control algorithm to detect intention, it is merely
used the ability to voluntarily close one of the eyes, while
they can freely observe the environment.

Acknowledgements: This research was supported by
EU Horizon 2020 project ENHANCE (http://www.enhance-
motion.eu) Grant 644000. We thank Martin Wahlstedt and
Alexander Skoglund from Bioservo for providing us with
their proprietary ROS interface to the SEM glove for this
evaluation.

REFERENCES

[1] T. R. Makin, F. de Vignemont, and A. A. Faisal, “Neurocognitive
barriers to the embodiment of technology,” Nature Biomedical Engi-
neering, vol. 1, p. 0014, 2017.

[2] E. Scheme and K. Englehart, “Electromyogram pattern recognition
for control of powered upper-limb prostheses: State of the art and
challenges for clinical use,” Journal of Rehabilitation Research and
Development, vol. 48, no. 6, pp. 643–660, 2011, cited By 172.

[3] K. Kiguchi and Y. Hayashi, “An emg-based control for an upper-limb
power-assist exoskeleton robot,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1064 – 1071,
2012.

[4] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D.
Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt,
et al., “Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm,” Nature, vol. 485, no. 7398, pp. 372–375, 2012.

[5] “Spatial and temporal resolutions of eeg: Is it really black and white? a
scalp current density view,” Intl. Journal of Psychophysiology, vol. 97,
no. 3, pp. 210 – 220, 2015, on the benefits of using surface Laplacian
(current source density) methodology in electrophysiology.

[6] G. R. Müller-Putz, V. Kaiser, T. Solis-Escalante, and G. Pfurtscheller,
“Fast set-up asynchronous brain-switch based on detection of foot
motor imagery in 1-channel eeg,” Medical & Biological Engineering
& Computing, vol. 48, no. 3, pp. 229–233, 2010.

[7] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle-
swarm-optimized fuzzy-neural network for voice-controlled robot sys-
tems,” IEEE Transactions on Industrial Electronics, vol. 52, no. 6, pp.
1478–1489, 2005.

[8] G. Pires and U. Nunes, “A wheelchair steered through voice commands
and assisted by a reactive fuzzy-logic controller,” Journal of Intelligent
and Robotic Systems: Theory and Applications, vol. 34, no. 3, pp.
301–314, 2002.

[9] X. Lv, M. Zhang, and H. Li, “Robot control based on voice command,”
2008, pp. 2490–2494.

[10] T. Simpson, C. Broughton, M. Gauthier, and A. Prochazka, “Tooth-
click control of a hands-free computer interface,” IEEE Transactions
on Biomedical Engineering, vol. 55, no. 8, pp. 2050–2056, 2008.

[11] M. Punt, C. Stefels, C. Grimbergen, and J. Dankelman, “Evaluation
of voice control, touch panel control and assistant control during
steering of an endoscope,” Minimally Invasive Therapy and Allied
Technologies, vol. 14, no. 3, pp. 181–187, 2005.

[12] W. W. Abbott and A. A. Faisal, “Ultra-low-cost 3d gaze estimation:
an intuitive high information throughput compliment to direct brain–
machine interfaces,” Journal of neural engineering, vol. 9, no. 4, p.
046016, 2012.

[13] H. Kaminski, C. Richmonds, L. Kusner, and H. Mitsumoto, “Differ-
ential susceptibility of the ocular motor system to disease,” Annals of
the New York Academy of Sciences, vol. 956, pp. 42–54, 2002, cited
By 40.

[14] H. Istance, R. Bates, A. Hyrskykari, and S. Vickers, “Snap clutch, a
moded approach to solving the midas touch problem,” in Proceedings
of the 2008 Symposium on Eye Tracking Research &#38; Applications,
ser. ETRA ’08, 2008, pp. 221–228.

[15] K. Grauman, M. Betke, J. Gips, and G. Bradski, “Communication via
eye blinks - detection and duration analysis in real time,” vol. 1, 2001,
pp. I1010–I1017, cited By 81.

[16] R. Maimon-Dror, J. Quesada Fernandez, G. Zito, S. Dziemian, and
A. Faisal, “Towards free 3d end-point control for arm exoskeletons &
robotic-assisted reaching using gaze-based control,” in Rehabilitation
Robotics (ICORR), 2017 IEEE 15th Intl. Conference on, vol. 15.
IEEE, 2017, pp. 1–6.

[17] C. H. Morimoto and M. R. Mimica, “Eye gaze tracking techniques for
interactive applications,” Computer vision and image understanding,
vol. 98, no. 1, pp. 4–24, 2005.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

[19] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf,
and J. Woelfel, “Sphinx-4: A flexible open source framework for
speech recognition,” 2004.

[20] L. Demers, R. Weiss-Lambrou, and B. Ska, “The quebec user evalua-
tion of satisfaction with assistive technology (quest 2.0): an overview
and recent progress,” Technology and Disability, vol. 14, no. 3, pp.
101–105, 2002.

[21] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[22] R. J. Jacob, “What you look at is what you get: eye movement-based
interaction techniques,” in Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 1990, pp. 11–18.

[23] E. A. Corbett, K. P. Körding, and E. J. Perreault, “Real-time evaluation
of a noninvasive neuroprosthetic interface for control of reach,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 21, no. 4, pp. 674–683, 2013.

[24] C. Loconsole, R. Bartalucci, A. Frisoli, and M. Bergamasco, “A new
gaze-tracking guidance mode for upper limb robot-aided neuroreha-
bilitation,” in World Haptics Conference (WHC), 2011 IEEE. IEEE,
2011, pp. 185–190.

[25] P. M. Tostado, W. W. Abbott, and A. A. Faisal, “3d gaze cursor: Con-
tinuous calibration and end-point grasp control of robotic actuators,”
in Robotics and Automation (ICRA), 2016 IEEE Intl. Conference on.
IEEE, 2016, pp. 3295–3300.

[26] S. I. Ktena, W. Abbott, and A. A. Faisal, “A virtual reality platform for
safe evaluation and training of natural gaze-based wheelchair driving,”
in Neural Engineering (NER), 2015 7th Intl. IEEE/EMBS Conference
on. IEEE, 2015, pp. 236–239.

[27] C. Gavriel and A. A. Faisal, “A comparison of day-long recording
stability and muscle force prediction between bsn-based mechanomyo-
graphy and electromyography,” in Wearable and Implantable Body
Sensor Networks (BSN), 2014 11th Intl. Conference on. IEEE, 2014,

pp. 69–74.


