6,581 research outputs found

    Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models

    Get PDF
    The collection and interpretation of data is a critical component of traffic and transportation engineering used to establish baseline performance measures and to forecast future conditions. One important source of traffic data is commercial motor vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature of transportation systems including vehicle composition. One aspect of effective microscopic traffic simulation models that has received increased attention in recent years is the calibration of these models, which has traditionally been concerned with identifying the "best" parameter set from a range of acceptable values. Recent research has begun the process of automating the calibration process in an effort to accurately reflect the components of the transportation system being analyzed. The objective of this research is to develop a methodology in which the effects of CMVs can be included in the calibration of microscopic traffic simulation models. The research examines the ITS data available on weight and operating characteristics of CMVs and incorporates this data in the calibration of microscopic traffic simulation models. The research develops a methodology to model CMVs using microscopic traffic simulation models and then utilizes the output of these models to generate the data necessary to quantify the impacts of CMVs on infrastructure, travel time, and emissions. The research uses advanced statistical tools including principal component analysis (PCA) and recursive partitioning to identify relationships between data collection sites (i.e., WIM, AVC) such that the data collected at WIM sites can be utilized to estimate weight and length distributions at AVC sites. The research also examines methodologies to include the distribution or measures of central tendency and dispersion (i.e., mean, variance) into the calibration process. The approach is applied using the CORSIM model and calibrated utilizing an automated genetic algorithm methodology

    The use of simulation in the design of a road transport incident detection algorithm

    No full text
    Automatic incident detection is becoming one of the core tools of urban traffic management, enabling more rapid identification and response to traffic incidents and congestion. Existing traffic detection infrastructure within urban areas (often installed for traffic signal optimization) provides urban traffic control systems with a near continuous stream of data on the state of traffic within the network. The creation of a simulation to replicate such a data stream therefore provides a facility for the development of accurate congestion detection and warning algorithms. This paper describes firstly the augmentation of a commercial traffic model to provide an urban traffic control simulation platform and secondly the development of a new incident detection system (RAID-Remote Automatic Incident Detection), with the facility to use the simulation platform as an integral part of the design and calibration process. A brief description of a practical implementation of RAID is included along with summary evaluation results

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    An automatic calibration procedure of driving behaviour parameters in the presence of high bus volume

    Get PDF
    Most of the microscopic traffic simulation programs used today incorporate car-following and lane-change models to simulate driving behaviour across a given area. The main goal of this study has been to develop an automatic calibration process for the parameters of driving behaviour models using metaheuristic algorithms. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and a combination of GA and PSO (i.e. hybrid GAPSO and hybrid PSOGA) were used during the optimization stage. In order to verify our proposed methodology, a suitable study area with high bus volume on-ramp from the 0-1 Highway in Istanbul has been modelled in VISSIM. Traffic data have been gathered through detectors. The calibration procedure has been coded using MATLAB and implemented via the VISSIM-MATLAB COM interface. Using the proposed methodology, the results of the calibrated model showed that hybrid GAPSO and hybrid PSOGA techniques outperformed the GA-only and PSO-only techniques during the calibration process. Thus, both are recommended for use in the calibration of microsimulation traffic models, rather than GA-only and PSO-only techniques.This study is a part of Ph.D. thesis of the corresponding author from the Istanbul Technical University, Turkey. We would like to thank Prof. Dr. Toma? Maher and Assist. Dr. Rok Marseti? from the Traffic Technical Institute of Civil and Geodetic Engineering Faculty, University of Ljubljana, Slovenia, for their kind support, valuable comments, and helpful suggestions. The authors are also thankful to the PTV-AG Karlsruhe Company for their support in providing a thesis-based unlimited version of VISSIM softwarePublisher's Versio

    Automatic and efficient driving strategies while approaching a traffic light

    Full text link
    Vehicle-infrastructure communication opens up new ways to improve traffic flow efficiency at signalized intersections. In this study, we assume that equipped vehicles can obtain information about switching times of relevant traffic lights in advance. This information is used to improve traffic flow by the strategies 'early braking', 'anticipative start', and 'flying start'. The strategies can be implemented in driver-information mode, or in automatic mode by an Adaptive Cruise Controller (ACC). Quality criteria include cycle-averaged capacity, driving comfort, fuel consumption, travel time, and the number of stops. By means of simulation, we investigate the isolated strategies and the complex interactions between the strategies and between equipped and non-equipped vehicles. As universal approach to assess equipment level effects we propose relative performance indexes and found, at a maximum speed of 50 km/h, improvements of about 15% for the number of stops and about 4% for the other criteria. All figures double when increasing the maximum speed to 70 km/h.Comment: Submitted to ITSC - 17th International IEEE Conference on Intelligent Transportation System

    An Automatic Calibration Procedure of Driving Behaviour Parameters in the Presence of High Bus Volume

    Get PDF
    Most of the microscopic traffic simulation programs used today incorporate car-following and lane-change models to simulate driving behaviour across a given area. The main goal of this study has been to develop an automatic calibration process for the parameters of driving behaviour models using metaheuristic algorithms. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and a combination of GA and PSO (i.e. hybrid GAPSO and hybrid PSOGA) were used during the optimization stage. In order to verify our proposed methodology, a suitable study area with high bus volume on-ramp from the O-1 Highway in Istanbul has been modelled in VISSIM. Traffic data have been gathered through detectors. The calibration procedure has been coded using MATLAB and implemented via the VISSIM-MATLAB COM interface. Using the proposed methodology, the results of the calibrated model showed that hybrid GAPSO and hybrid PSOGA techniques outperformed the GA-only and PSO-only techniques during the calibration process. Thus, both are recommended for use in the calibration of microsimulation traffic models, rather than GA-only and PSO-only techniques.</p
    corecore