11,031 research outputs found

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Human Pose Driven Object Effects Recommendation

    Full text link
    In this paper, we research the new topic of object effects recommendation in micro-video platforms, which is a challenging but important task for many practical applications such as advertisement insertion. To avoid the problem of introducing background bias caused by directly learning video content from image frames, we propose to utilize the meaningful body language hidden in 3D human pose for recommendation. To this end, in this work, a novel human pose driven object effects recommendation network termed PoseRec is introduced. PoseRec leverages the advantages of 3D human pose detection and learns information from multi-frame 3D human pose for video-item registration, resulting in high quality object effects recommendation performance. Moreover, to solve the inherent ambiguity and sparsity issues that exist in object effects recommendation, we further propose a novel item-aware implicit prototype learning module and a novel pose-aware transductive hard-negative mining module to better learn pose-item relationships. What's more, to benchmark methods for the new research topic, we build a new dataset for object effects recommendation named Pose-OBE. Extensive experiments on Pose-OBE demonstrate that our method can achieve superior performance than strong baselines

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers

    Generative Recommendation: Towards Next-generation Recommender Paradigm

    Full text link
    Recommender systems typically retrieve items from an item corpus for personalized recommendations. However, such a retrieval-based recommender paradigm faces two limitations: 1) the human-generated items in the corpus might fail to satisfy the users' diverse information needs, and 2) users usually adjust the recommendations via inefficient passive feedback, e.g., clicks. Nowadays, AI-Generated Content (AIGC) has revealed significant success, offering the potential to overcome these limitations: 1) generative AI can produce personalized items to satisfy users' information needs, and 2) the newly emerged large language models significantly reduce the efforts of users to precisely express information needs via natural language instructions. In this light, the boom of AIGC points the way towards the next-generation recommender paradigm with two new objectives: 1) generating personalized content through generative AI, and 2) integrating user instructions to guide content generation. To this end, we propose a novel Generative Recommender paradigm named GeneRec, which adopts an AI generator to personalize content generation and leverages user instructions. Specifically, we pre-process users' instructions and traditional feedback via an instructor to output the generation guidance. Given the guidance, we instantiate the AI generator through an AI editor and an AI creator to repurpose existing items and create new items. Eventually, GeneRec can perform content retrieval, repurposing, and creation to satisfy users' information needs. Besides, to ensure the trustworthiness of the generated items, we emphasize various fidelity checks. Moreover, we provide a roadmap to envision future developments of GeneRec and several domain-specific applications of GeneRec with potential research tasks. Lastly, we study the feasibility of implementing AI editor and AI creator on micro-video generation

    Dual Contrastive Network for Sequential Recommendation with User and Item-Centric Perspectives

    Full text link
    With the outbreak of today's streaming data, sequential recommendation is a promising solution to achieve time-aware personalized modeling. It aims to infer the next interacted item of given user based on history item sequence. Some recent works tend to improve the sequential recommendation via randomly masking on the history item so as to generate self-supervised signals. But such approach will indeed result in sparser item sequence and unreliable signals. Besides, the existing sequential recommendation is only user-centric, i.e., based on the historical items by chronological order to predict the probability of candidate items, which ignores whether the items from a provider can be successfully recommended. The such user-centric recommendation will make it impossible for the provider to expose their new items and result in popular bias. In this paper, we propose a novel Dual Contrastive Network (DCN) to generate ground-truth self-supervised signals for sequential recommendation by auxiliary user-sequence from item-centric perspective. Specifically, we propose dual representation contrastive learning to refine the representation learning by minimizing the euclidean distance between the representations of given user/item and history items/users of them. Before the second contrastive learning module, we perform next user prediction to to capture the trends of items preferred by certain types of users and provide personalized exploration opportunities for item providers. Finally, we further propose dual interest contrastive learning to self-supervise the dynamic interest from next item/user prediction and static interest of matching probability. Experiments on four benchmark datasets verify the effectiveness of our proposed method. Further ablation study also illustrates the boosting effect of the proposed components upon different sequential models.Comment: 23 page

    Formalizing Multimedia Recommendation through Multimodal Deep Learning

    Full text link
    Recommender systems (RSs) offer personalized navigation experiences on online platforms, but recommendation remains a challenging task, particularly in specific scenarios and domains. Multimodality can help tap into richer information sources and construct more refined user/item profiles for recommendations. However, existing literature lacks a shared and universal schema for modeling and solving the recommendation problem through the lens of multimodality. This work aims to formalize a general multimodal schema for multimedia recommendation. It provides a comprehensive literature review of multimodal approaches for multimedia recommendation from the last eight years, outlines the theoretical foundations of a multimodal pipeline, and demonstrates its rationale by applying it to selected state-of-the-art approaches. The work also conducts a benchmarking analysis of recent algorithms for multimedia recommendation within Elliot, a rigorous framework for evaluating recommender systems. The main aim is to provide guidelines for designing and implementing the next generation of multimodal approaches in multimedia recommendation

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com
    corecore