5,575 research outputs found

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation

    Robotic Cameraman for Augmented Reality based Broadcast and Demonstration

    Get PDF
    In recent years, a number of large enterprises have gradually begun to use vari-ous Augmented Reality technologies to prominently improve the audiences’ view oftheir products. Among them, the creation of an immersive virtual interactive scenethrough the projection has received extensive attention, and this technique refers toprojection SAR, which is short for projection spatial augmented reality. However,as the existing projection-SAR systems have immobility and limited working range,they have a huge difficulty to be accepted and used in human daily life. Therefore,this thesis research has proposed a technically feasible optimization scheme so thatit can be practically applied to AR broadcasting and demonstrations. Based on three main techniques required by state-of-art projection SAR applica-tions, this thesis has created a novel mobile projection SAR cameraman for ARbroadcasting and demonstration. Firstly, by combining the CNN scene parsingmodel and multiple contour extractors, the proposed contour extraction pipelinecan always detect the optimal contour information in non-HD or blurred images.This algorithm reduces the dependency on high quality visual sensors and solves theproblems of low contour extraction accuracy in motion blurred images. Secondly, aplane-based visual mapping algorithm is introduced to solve the difficulties of visualmapping in these low-texture scenarios. Finally, a complete process of designing theprojection SAR cameraman robot is introduced. This part has solved three mainproblems in mobile projection-SAR applications: (i) a new method for marking con-tour on projection model is proposed to replace the model rendering process. Bycombining contour features and geometric features, users can identify objects oncolourless model easily. (ii) a camera initial pose estimation method is developedbased on visual tracking algorithms, which can register the start pose of robot to thewhole scene in Unity3D. (iii) a novel data transmission approach is introduced to establishes a link between external robot and the robot in Unity3D simulation work-space. This makes the robotic cameraman can simulate its trajectory in Unity3D simulation work-space and project correct virtual content. Our proposed mobile projection SAR system has made outstanding contributionsto the academic value and practicality of the existing projection SAR technique. Itfirstly solves the problem of limited working range. When the system is running ina large indoor scene, it can follow the user and project dynamic interactive virtualcontent automatically instead of increasing the number of visual sensors. Then,it creates a more immersive experience for audience since it supports the user hasmore body gestures and richer virtual-real interactive plays. Lastly, a mobile systemdoes not require up-front frameworks and cheaper and has provided the public aninnovative choice for indoor broadcasting and exhibitions

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    • …
    corecore