11,649 research outputs found

    Data Definitions in the ACL2 Sedan

    Full text link
    We present a data definition framework that enables the convenient specification of data types in ACL2s, the ACL2 Sedan. Our primary motivation for developing the data definition framework was pedagogical. We were teaching undergraduate students how to reason about programs using ACL2s and wanted to provide them with an effective method for defining, testing, and reasoning about data types in the context of an untyped theorem prover. Our framework is now routinely used not only for pedagogical purposes, but also by advanced users. Our framework concisely supports common data definition patterns, e.g. list types, map types, and record types. It also provides support for polymorphic functions. A distinguishing feature of our approach is that we maintain both a predicative and an enumerative characterization of data definitions. In this paper we present our data definition framework via a sequence of examples. We give a complete characterization in terms of tau rules of the inclusion/exclusion relations a data definition induces, under suitable restrictions. The data definition framework is a key component of counterexample generation support in ACL2s, but can be independently used in ACL2, and is available as a community book.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Polymorphic Types in ACL2

    Full text link
    This paper describes a tool suite for the ACL2 programming language which incorporates certain ideas from the Hindley-Milner paradigm of functional programming (as exemplified in popular languages like ML and Haskell), including a "typed" style of programming with the ability to define polymorphic types. These ideas are introduced via macros into the language of ACL2, taking advantage of ACL2's guard-checking mechanism to perform type checking on both function definitions and theorems. Finally, we discuss how these macros were used to implement features of Specware, a software specification and implementation system.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Parametricity and Local Variables

    Get PDF
    We propose that the phenomenon of local state may be understood in terms of Strachey\u27s concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our proposal is the following analogy: a non-local procedure is independent of locally-declared variables in the same way that a parametrically polymorphic function is independent of types to which it is instantiated. A connection between parametricity and representational abstraction was first suggested by J. C. Reynolds. Reynolds used logical relations to formalize this connection in languages with type variables and user-defined types. We use relational parametricity to construct a model for an Algol-like language in which interactions between local and non-local entities satisfy certain relational criteria. Reasoning about local variables essentially involves proving properties of polymorphic functions. The new model supports straightforward validations of all the test equivalences that have been proposed in the literature for local-variable semantics, and encompasses standard methods of reasoning about data representations. It is not known whether our techniques yield fully abstract semantics. A model based on partial equivalence relations on the natural numbers is also briefly examined

    Synthesis of Recursive ADT Transformations from Reusable Templates

    Full text link
    Recent work has proposed a promising approach to improving scalability of program synthesis by allowing the user to supply a syntactic template that constrains the space of potential programs. Unfortunately, creating templates often requires nontrivial effort from the user, which impedes the usability of the synthesizer. We present a solution to this problem in the context of recursive transformations on algebraic data-types. Our approach relies on polymorphic synthesis constructs: a small but powerful extension to the language of syntactic templates, which makes it possible to define a program space in a concise and highly reusable manner, while at the same time retains the scalability benefits of conventional templates. This approach enables end-users to reuse predefined templates from a library for a wide variety of problems with little effort. The paper also describes a novel optimization that further improves the performance and scalability of the system. We evaluated the approach on a set of benchmarks that most notably includes desugaring functions for lambda calculus, which force the synthesizer to discover Church encodings for pairs and boolean operations
    • …
    corecore