224 research outputs found

    Customization of digital library of PhD dissertations for citizens

    Get PDF
    PHD UNS is digital library of PhD dissertations defended at University of Novi Sad. A web page for basic and advanced search has been developed in order to improve discoverability of dissertations stored in the digital library. This paper presents customization of PHD UNS web search pages for citizens out of academy. The customization includes extension of available representation styles and implementation of automatic recommendations of PhD dissertations. Representation styles are extended with textual representation specially designed for non-academic citizens and visual representation based on word clouds. Automatic recommendations are based on collaborative approach built on PhD download history, i.e., performed on the basis of what other ‘similar’ users have found useful. The PHD UNS digital library logs information for each dissertation downloading. Besides basic information about downloaded dissertation, those logs also contain information about client machine which requested downloading. Those logs have been used in order to prove our customization really improve non-academic users’ experience

    Six Steps Toward Improving Discoverability of Ph.D. Dissertations

    Get PDF
    This study proposes six steps that scientific institutions should undertake to increase the visibility and accessibility of their dissertations; these steps were implemented in the digital library of the University of Novi Sad. An analysis was conducted thereafter to evaluate the success, and it was found that the six steps and associated strategies were successful, with 400,000 downloads having been performed since the digital library was operational. Although this study presents six steps for improving electronic thesis and dissertation (ETD) discoverability in the digital library at the University of Novi Sad, these steps can easily be customized and implemented for ETD digital libraries at any scientific institution

    Printing Process Parameters Identification System

    Get PDF
    The paper presents the research aimed at setting up and developing a software system for the printing process parameters identification based on modern computer and software systems, algorithmic principles, principles of expert systems construction and advanced learning. Thus, the possibilities of application of contemporary software tools were investigated, which facilitates the process and forms the program structure of the model that uses programming languages based on the expert systems construction principles and tools for the development of system model based on the principles of modern learning. For complex model development, concepts of process knowledge bases with influential process parameters of printing technique have been developed through modelling and construction based on the logic of expert systems with the presentation, use and involvement of experts knowledge in decision making with the evaluation of the impact of individual parameters. In addition to this approach, a module was developed using modern software tools based on an algorithmic principle and a module for identifying printing process parameters using modern platforms based on advanced learning. Sophisticated software model has been made through the research and developed with databases of process parameter identification systems based on modern software tools. This tool enables a significant expedition of the solution resolving, thus improving the graphical production process and the processes of acquiring and expanding knowledge. The model is based on integrative modules: a printing process parameters identification system based on algorithmic program structure systems, a printing process parameters identification system based on expert system building principles, and a printing process parameter identification system based on modern learning systems

    Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter

    Get PDF
    In this paper we test Extended Information Filter (EIF) for sequential training of Hyper Basis Function Neural Networks with growing and pruning ability (HBF-GP). The HBF neuron allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The main intuition behind HBF is in generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. We exploit concept of neuron’s significance and allow growing and pruning of HBF neurons during sequential learning process. From engineer’s perspective, EIF is attractive for training of neural networks because it allows a designer to have scarce initial knowledge of the system/problem. Extensive experimental study shows that HBF neural network trained with EIF achieves same prediction error and compactness of network topology when compared to EKF, but without the need to know initial state uncertainty, which is its main advantage over EKF

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions

    Guide to Options for ETD Programs

    Get PDF
    Dr. Martin Halbert of the University of North Texas documents the spectrum of ETD program implementation and offers guidance for academic decision-makers who are either creating or modifying ETD programs. Dr. Halbert identifies and offers in-depth analysis regarding the five key decisions that ETD programs must make. He also provides a literature review of publications, standards and reports that have been produced to date, and relates these to the key decisions

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems
    corecore